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Abstract. Extreme weather events, such as droughts, have
been increasingly affecting the agricultural sector, causing
several socio-economic consequences. The growing econ-
omy requires improved assessments of drought-related im-
pacts in agriculture, particularly under a climate that is get-
ting drier and warmer. This work proposes a probabilis-
tic model that is intended to contribute to the agricultural
drought risk management in rainfed cropping systems. Our
methodology is based on a bivariate copula approach using
elliptical and Archimedean copulas, the application of which
is quite recent in agrometeorological studies. In this work
we use copulas to model joint probability distributions de-
scribing the amount of dependence between drought condi-
tions and crop yield anomalies. Afterwards, we use the estab-
lished copula models to simulate pairs of yield anomalies and
drought hazard, preserving their dependence structure to fur-
ther estimate the probability of crop loss. In the first step, we
analyse the probability of crop loss without distinguishing
the class of drought, and in the second step we compare the
probability of crop loss under drought and non-drought con-
ditions. The results indicate that, in general, Archimedean
copulas provide the best statistical fits of the joint probabil-
ity distributions, suggesting a dependence among extreme
values of rainfed cereal yield anomalies and drought in-
dicators. Moreover, the estimated conditional probabilities
suggest that when drought conditions are below moderate
thresholds, the risk of crop loss increases between 32.53 %
(cluster 1) and 32.6 % (cluster 2) in the case of wheat and be-
tween 31.63 % (cluster 2) and 55.55 % (cluster 2) in the case
of barley. From an operational point of view, the results aim

to contribute to the decision-making process in agricultural
practices.

1 Introduction

Agriculture is one of the activities most directly influenced
by climate variability (Lesk et al., 2016; IPCC, 2012) and
by extreme weather events in particular (IPCC, 2012). The
latter are a major source of risk in agricultural systems, of-
ten entailing substantial crop yield losses (Bokusheva et al.,
2016; Kogan et al., 2015; Saadi et al., 2015). Despite the con-
straints associated with the application of certain governmen-
tal policies in agricultural systems, the success of mitigating
the consequences of climate extremes is largely dependent
on the development of appropriate risk management strate-
gies (Paredes et al., 2014; Quiroga et al., 2011). For this pur-
pose, probabilistic information of the agricultural risk asso-
ciated with certain meteorological conditions is currently a
major requirement (Madadgar et al., 2017; Jayanthi et al.,
2014; Iglesias and Quiroga, 2007), particularly within the
scope of projected climate changes (Hernández-Barrera and
Rodríguez-Puebla, 2017; Ferrise et al., 2011).

From both researcher’s and stakeholder’s perspectives, the
management of agricultural drought risk has been a chal-
lenging task for decades, mainly in regions dominated by
high precipitation variability and recurrent dry and warm
episodes, such as the Mediterranean region and the Iberian
Peninsula (IP) in particular (Vicente-Serrano et al., 2014;
Sousa et al., 2011; Martin-Vide and Lopez-Bustins, 2006).
Recent work has found significant negative trends of drought
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indexes in the IP, based on long-term time series including
the entire 20th century, particularly in southern regions (Pás-
coa et al., 2017a; Sousa et al., 2011), and the expected declin-
ing of crop yields due to future warming conditions has also
been pointed out (Hernández-Barrera and Rodríguez-Puebla,
2017; Ferrise et al., 2011).

The assessment of yield variability based on crop and me-
teorological information is crucial for a more stable farmer
income and management (Reidsma et al., 2010). The recently
developed drought index SPEI (Standardized Precipitation
Evapotranspiration Index; Vicente-Serrano et al., 2010) is
found to be particularly suitable for agricultural drought ap-
plications in Mediterranean regions (Zampieri et al., 2017)
and shows significant correlations with crop yields in the IP
(Ribeiro et al., 2019a; Páscoa et al., 2017b). On the other
hand, crop models describing the biological processes are
one of the existing tools used to assess crop productivity,
e.g. CERES (Crop Environment REsource Synthesis) mod-
els (Capa-Morocho et al., 2016; Hlavinka et al., 2010) and
AquaCrop (Paredes et al., 2016; Vergni et al., 2015). These
crop models are important tools in agrometeorological stud-
ies as they are able to compute irrigation requirements and
yield simulations, and they have been particularly useful for
assessing the impacts of climate change on agricultural pro-
ductions (Leng and Hall, 2019; Hlavinka et al., 2010). How-
ever, such models are limited in their ability to quantify the
impact of climate variability on crop yields over larger scales
(Estes et al., 2013), and the detailed representation of crop’s
biophysical interactions requires demanding parameteriza-
tion settings and input data (Giménez et al., 2016; Paredes et
al., 2014, 2016). Thus, empirical modelling constitutes an al-
ternative for representing the large-scale impacts of drought
conditions in the agricultural sector (Bokusheva et al., 2016;
Kogan et al., 2015; Matsumura et al., 2015; Vicente-Serrano
et al., 2006), requiring lower computation costs than mecha-
nistic modelling (Estes et al., 2013; Ferrise et al., 2011).

In addition, the use of satellite-based data is increasing
for agricultural purposes (Kogan et al., 2015; Rojas et al.,
2011) and considerable correlations between remote sens-
ing of vegetation and crop yield are found in the IP (Ribeiro
et al., 2019a; Gouveia and Trigo, 2008; Vicente-Serrano et
al., 2006). Some studies have considered the use of differ-
ent remote sensing drought indicators to account for differ-
ent crop sensitivities to drought, such as to moisture and
thermal conditions over the vegetative cycle (Ribeiro et al.,
2019a; Bokusheva et al., 2016; Zarei et al., 2013; Kogan,
2001). Moreover, the establishment of models for estimat-
ing crop yield under drought influence, using the combina-
tion of different drought indicators and different timescales
of drought occurrence, have shown an added value in the per-
formance of the crop yield simulations over the IP (Ribeiro et
al., 2019a; Hernandez-Barrera et al., 2017; Vicente-Serrano
et al., 2006).

The statistical modelling of crop yield variability under
drought conditions has been previously done to estimate

drought-related crop losses (Ribeiro et al., 2019a; Zampieri
et al., 2017; Kogan et al., 2015). Some authors have esti-
mated crop yield probability distribution functions to find
crop-specific risk levels and have applied Monte Carlo meth-
ods to generate large sample sizes of yield distributions
over Mediterranean areas (Resco et al., 2010; Iglesias and
Quiroga, 2007). At the country level in Europe, Naumann et
al. (2015) have developed drought damage functions using a
single power law dependence between drought severity and
the associated damage. At a regional level in the IP, regres-
sion techniques (Ribeiro et al., 2019a; Hernandez-Barrera et
al., 2017; Hernández-Barrera and Rodríguez-Puebla, 2017)
and artificial neural network (ANN) models (Ribeiro et al.,
2019a) have been used to model the response of rainfed win-
ter cereal yields to drought conditions. A major conclusion
in Ribeiro et al. (2019a) was that there are stronger relation-
ships between remote sensing indices and cereal yield in the
northern sector of the IP and between SPEI and cereal yield
in the southern sector of the IP. This character of the response
of crop yields to climate conditions highlights how it varies
according to the location, type of crop, moment of the vege-
tative cycle, drought indicator and temporal scale.

More recently, copula-based models have been applied for
agricultural purposes, to model the dependence structures be-
tween crop yields and environmental conditions using joint
distributions (Ribeiro et al., 2019b; Madadgar et al., 2017;
Bokusheva et al., 2016; Li et al., 2015). The concept of cop-
ulas is quite popular in financial risk modelling and has been
becoming a valuable tool to model the risks associated with
climate hazards, such as droughts (Ganguli and Reddy, 2012;
Mirabbasi et al., 2012; Serinaldi et al., 2009). Based on the
Sklar’s theorem (Sklar, 1959) a copula approach “joins” the
probability of drought occurrence and the probability of crop
losses caused by the drought event. A detailed description
about the use of copulas is provided by Nelsen (2006).

A major advantage of copula methods is the generation of
joint distributions independently of their marginal distribu-
tion functions (Maity, 2018; Nelsen, 2006). Copula functions
show a great flexibility in modelling the dependence between
individual variables (such as crop yield and drought indica-
tors) with complex relationships without making significant
assumptions. In addition, copula functions are adequate for
modelling rare events in multivariate distributions and gen-
erating large samples, allowing us to find the probability that
individual variables will not exceed a certain extreme (tailed)
value (Madadgar et al., 2017). A recent study by Madadgar
et al. (2017) has produced probability distributions of rain-
fed crop yields in Australia under drought impacts based
on copula-based techniques, using the Standardized Precip-
itation Index (SPI) and the Standardized Soil moisture In-
dex (SSI). For crop insurance purposes at the farm level in
Kazakhstan, Bokusheva et al. (2015) modelled the joint dis-
tributions of wheat yields and two satellite-based drought in-
dices (vegetation condition index, VCI, and temperature con-
dition index, TCI). At the global scale, Leng and Hall (2019)
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have also used copulas to assess the likelihood of yield loss in
response to droughts based on SPI for the a historical (1961–
2016) and a future period (2071–2100) under the RCP8.5
emission scenario to investigate future changes in yield loss
risk. The authors found that global wheat is more vulnerable
to droughts than maize, rice, and soybeans and that global
warming is expected to amplify drought-driven yield loss
risk.

In this study, a copula-based approach is adopted to model
the joint probability density function of crop yield and the
drought conditions for probabilistic yield assessment, based
on the data and empirical analysis previously considered in
Ribeiro et al. (2019a). This method allows us to estimate the
dependence structures between the probability distributions
of crop yield and drought indicators using copula functions.
The novelty and interest of this approach relates to the fact
that this methodology will allow us to estimate the likelihood
of crop loss and compare the expected losses under drought
conditions and non-drought conditions in the IP. This key
question is posed based on the current demand, of the most
interest to stakeholders such as farmers and insurance com-
panies, to mitigate agricultural drought risk over the major
agricultural areas in the IP.

2 Data and methods

2.1 Study area and data

The exposure analysis performed by Ribeiro et al. (2019a)
allowed the identification of two clusters of provinces in
the IP dominated by rainfed agricultural practices (Fig. 1),
located approximately in the regions of Castilla and Léon
(cluster 1 – northern region) and Castilla–La Mancha (clus-
ter 2 – southern region). Given the suitability of using these
two clusters for an agricultural drought analysis at the re-
gional level, here we have considered the same area selec-
tion criteria: provinces with more than 50 % of the territory
occupied by agricultural areas and more than 50 % of rain-
fed crops according to the CORINE Land Cover (2012) (for
more details please see Ribeiro et al., 2019a). Considering
previous requirements, and for sequential purposes, the crop
and drought hazard data used in Ribeiro et al. (2019a) have
been incorporated in the present study to analyse the dis-
tributions of probabilities. Spatial averages of annual yield
anomalies (t ha−1) of barley and wheat were computed over
the two clusters during the period 1986–2012, based on pro-
duction (t) and area (ha) information obtained from the Por-
tuguese National Statistics Institute and the Spanish Agricul-
ture, Food and Environment Ministry.

Drought conditions were investigated using the hydro-
meteorological drought indicator SPEI and three satellite-
based indices obtained from NOAA-AVHRR since 1981,
namely the VCI (Kogan, 1990), the TCI (Kogan, 1995)
and the Vegetation Health Index (VHI) (Kogan, 1995). The

Figure 1. Provinces with more than 50 % of the territory occupied
by agricultural areas and more than 50 % of rainfed crops (yel-
low), according to CLC (2012), and selected clusters of provinces.
Cluster 1 provinces: Zamora (I), Valladolid (II), Palencia (III),
Burgos (IV) and Segovia (V). Cluster 2 provinces: Toledo (VI),
Cuenca (VII), Ciudad Real (VIII) and Albacete (IX).

monthly drought index SPEI gridded values, with a spa-
tial resolution of 0.5◦, were computed based on precipi-
tation and temperature values from the Climate Research
Unit TS3.21 database (Harris et al., 2014) using a variety
of timescales (1 to 12 months). The weekly global maps of
VCI, TCI and VHI were retrieved at 4 km spatial resolu-
tion from NOAA’s ftp server (ftp://ftp.star.nesdis.noaa.gov/
pub/corp/scsb/wguo/data/VHP_4km/geo_TIFF/, last access:
21 June 2018). While SPEI computation uses climatic water
balance anomalies incorporating the role played by the evap-
orative demand on the occurrence of dry events (Vicente-
Serrano et al., 2010), the remote sensing indices character-
ize the moisture, through the VCI, the temperature-induced
stress, through the TCI, and health of vegetation, through
the VHI.

Considering the vegetative cycle of wheat and barley,
and in accordance with the results obtained by Ribeiro et
al. (2019a), the data of VCI, TCI and VHI used in this
work covered the period from week 35 (early September)
to week 25 (late June) and data of SPEI covered January to
June. Spatial averages of all of these indicators were com-
puted for each provincial cluster and used for further mod-
elling of the joint probability between the drought hazard and
cereal yield anomalies over the period 1986–2012. Stepwise
regression models (95 % confidence level) were established
to select the timescales and months of SPEI, together with
the weeks of VCI, TCI and VHI, better related with wheat
and barley annual yield (Ribeiro et al., 2019a). The selection
of the most relevant drought indicator for each cereal and
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cluster was performed based on the largest absolute value of
the standardized regression coefficients from the models de-
veloped in Ribeiro et al. (2019a), in order to constitute pairs
of cereal yield anomalies and drought indicators. Afterwards,
for each cereal time series, the joint probability with drought
conditions was estimated using one drought indicator.

2.2 Copula-based method

2.2.1 The concept of copula

Copula functions are powerful tools used to estimate the joint
distribution between variables (Madadgar et al., 2017; Boku-
sheva et al., 2016; Zhang et al., 2011). The concept of copula
was firstly introduced by Sklar (1959) to decompose a joint
cumulative distribution function FXY (x, y) into two parts
(Eq. 1): the marginal distribution functions FX(x)= u and
FY (y)= v and the copula C describing the dependence be-
tween u and v,

FXY (x,y)= C(u,v), (1)

where the margins u and v are uniformly distributed on the
interval [0, 1] (Nelsen, 2006). This study adopts a bivari-
ate modelling approach such that for each pair (X, Y ) of
cereal and drought indicators over each cluster we consid-
ered bivariate copula functions to estimate the joint proba-
bility distributions. Trivariate copulas have been proposed in
the analysis of hydrological extremes (Afshar et al., 2016;
Bezak and Brilly, 2014; Saghafian and Mehdikhani, 2014),
but the development of higher-dimensional copulas exhibits
very complex structures and further studies and evaluations
are required. In comparison to high-dimensional copulas, the
two-dimensional copulas involve much less computational
cost and allow for more easily interpretable and illustratable
relationships between the interval margins. For this reason,
in the present study we restricted the analysis to the bivariate
case using two-dimensional copulas, simplifying the inter-
pretation of the results .

There is a range of copula families described in the lit-
erature that are able to estimate the dependence between
the univariate variables (Nelsen, 2006). The most commonly
used copula families focus on the Archimedean and ellipti-
cal classes (Maity, 2018). There are three Archimedean copu-
las that are particularly popular, given their simple functional
form and their different patterns of dependence captures, i.e.
Clayton, Gumbel and Frank, while there the two most popu-
lar elliptical copulas are derived from elliptical distributions,
i.e. Gaussian and t copulas. These five copula functions are
well-documented and have been employed in recent agrom-
eteorological studies with a number of annual observations
similar to our study (Madadgar et al., 2017; Zscheischler et
al., 2017; Bokusheva et al., 2016). Table 1 summarizes the
mathematical expressions of the referred copula functions
considered in the present study.

An important concept for studying extreme events is the
tail dependence, whose importance is more critical than the
overall dependence structure for risk analysis (Bokusheva,
2014). The joint tail behaviour describes the amount of de-
pendence in the corners of upper-right and lower-left quad-
rants (i.e. joint extreme events) and its representation de-
pends on the type of copula (Nelsen, 2006). The Frank, Gaus-
sian and t copulas describe a joint symmetric structure with
a symmetric tail dependence, i.e. the same degree of depen-
dence in both pairs of extremes. The Clayton and Gumbel
copulas have an asymmetric tail dependence with greater de-
pendence in the lower or upper tail, suggesting greater prob-
abilities of joint lower or upper extremes (i.e. lower or higher
values of yield anomalies, given lower or higher values of
drought indicators).

2.2.2 Fitting of the copula functions

The estimation of the copula parameters can be performed
using different methods based on maximum likelihood, such
as maximum likelihood estimate (MLE), inference functions
for margins (IFM) or canonical maximum likelihood (CML)
(Maity, 2018). With MLE, both individual margins and cop-
ula parameters are estimated together, whereas with IFM the
marginal parameters are first estimated individually. In this
study the statistical inference of the copula functions is per-
formed with the CML method, which stands for a nonpara-
metric estimation of the margins. In this way, the individ-
ual variables were first transformed to the unit scale (pseudo-
observations) using the kernel density estimator of the cumu-
lated distribution function (CDF) without making assump-
tions about the marginal distributions (Fig. 2). The drawback
of the shorter sample size is surpassed by the nonparametric
estimation of the margins, which avoids significant assump-
tions about their distributions, even when the available sam-
ple is rather small (Fahr, 2017; Corder and Foreman, 2011).
The fitting of the bivariate copula functions was then applied
to the pseudo-observations, and the dependence parameters
were estimated by means of maximum likelihood (Fig. 2).
Figure 2 summarizes the main steps of the copula-based ap-
proach adopted in the present study. For a detailed descrip-
tion on fitting methods please see Maity (2018).

Akaike’s Information Criterion (AIC) is frequently em-
ployed as a model selection tool in copula modelling (Li
et al., 2015; Mirabbasi et al., 2012). Therefore, the se-
lection of the best copula function for each pair of ce-
real and drought indicators was made based on the evalua-
tion of AIC values, calculated as AIC=−2× (sum of log-
likelihood)+ 2× (number of parameters) (Fig. 2). The cop-
ula function minimizing the AIC value was selected for
each case. For verification purposes, the leave-one-out cross-
validated log likelihood was also computed during the esti-
mation of the parameters. This step was performed to confirm
the reliability of the selected copula models and we found
that, in general, the same functions are selected with both the
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Table 1. Equations of the copula functions, where u and v are univariate variables, 8−1 is the inverse of standard Gaussian CDF, t−1
df is the

inverse Student’s t CDF, “df” is the degree of freedom, and ρ and θ are dependence parameters.

Family Joint cumulative distribution function C(u, v) Parameter
range

Gaussian
8−1(u)∫
−∞

8−1(v)∫
−∞

1
2π
√(

1−ρ2
) exp

(
−
u2
+v2
−2ρuv

2
(
1−ρ2

) )
dudv −1≤ ρ ≤ 1

t

t−1
df (u)∫
−∞

t−1
df (v)∫
−∞

1
2π

√(
1− ρ2

)
exp

(
1+ u2

+v2
−2ρuv

df
(
1−ρ2

) )− df+2
2
dudv −1≤ ρ ≤ 1

df≥ 1

Clayton
(
u−θ + v−θ − 1

)− 1
θ

∈ [−1,∞[/{0}

Frank 1
θ ln

(
1+

(
e−θu−1

)(
e−θv−1

)
e−θ−1

)
θ 6= 0

Gumbel e−
[
(− lnu)θ+(− lnv)θ

] 1
θ

|θ |<∞

Figure 2. Scheme of the copula-based approach adopted in the present study.

AIC and the cross-validated log-likelihood criteria. For this
reason, and given the wide use of the AIC, only the results
for model selection based on the AIC will be presented.

2.2.3 Probability of non-exceedance and conditional
probability of non-exceedance

After the estimation of the copula parameters, the established
models are used to simulate 1000 pairs of uniformly dis-
tributed data (Fig. 2). In the present study, let FXsim(x)= usim
denote the simulated CDF of yield x and FYsim(y)= vsim

the simulated CDF of drought indicator y. The data gener-
ation using the joint relationship preserves the dependence
structure between the margins. The simulated data in the
range [0, 1] are transformed back to the original scale using
the kernel estimations of the inverse CDF, providing Xsim
and Ysim, respectively.

First the copula simulations were used to estimate the
risk of crop loss in terms of the probability of not ex-
ceeding a threshold value of yield, i.e. probability of non-
exceedance (PNE) (Fig. 2). In this study we considered the
threshold of minus one standard deviation (−XSD) of each
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cereal yield anomaly time series, as we are focused on real
losses of yield and not just values below the mean (Eq. 2).

PNE−XSD = usim (−XSD)= Pr(Xsim ≤−XSD) (2)

The PNE gives information about how likely the occurrence
of a yield value below a certain threshold is. In other words,
it gives the expected chance in percentage that the negative
yield anomaly will not exceed (i.e. is not higher than) minus
one standard deviation (−1 SD).

Afterwards we partitioned the simulated data
points of Xsim into those corresponding to drought
(e.g. SPEI<=−0.84; Agnew, 2000, and/or VHI<= 40; Ko-
gan, 2001) and non-drought conditions (e.g. SPEI>−0.84
and/or VHI> 40) (Fig. 2). The respective CDFs were used
to estimate the risk of crop loss in terms of the conditional
probability of non-exceedance (CPNE) given by Eqs. (3)
and (4), where Yth-dr is the drought threshold amounting to
−0.84 and 40, respectively, when the SPEI and VHI or TCI
are used.

CPNE−XSD|drought = Pr(Xsim ≤−XSD|Ysim ≤ Yth-dr) (3)
CPNE−XSD|non_drought = Pr(Xsim ≤−XSD|Ysim > Yth-dr) (4)

For the purpose of validation and estimation of confidence
intervals, the theoretical values of the above CPNE were in-
ferred from the copula functions using the Eqs. (5) and (6)
(deduced from the definition of conditional probability),

CPNE−XSD|drought =
C (u−SD,vth-dr)

vth-dr
, (5)

CPNE−XSD|non_drought =
u−SD−C (u−SD,vth-dr)

1− vth-dr
, (6)

where u−SD = FX(−XSD) and vth-dr = FY (Yth-dr) are the
marginal probabilities of crop loss and drought occurrence
obtained from the kernel-based univariate CDFs. The lower
and upper bound of the 95 % confidence interval (ci) of the
estimated copula dependence parameters were considered
using the Eqs. (5) and (6) in order to obtain the confidence
interval of CPNE coming from the inaccuracy of the cop-
ula parameter and to address if the CPNE using simulations
(Eqs. 3 and 4) lies within the 95 % confidence level.

In sum, first we describe the joint probability of drought
hazard and yield anomalies and simulate pairs of data pre-
serving their dependence structure. After that, probability
of crop loss (PNE) and conditional probability of crop
loss (CPNE) are estimated, addressing whether the proba-
bility of crop loss under drought conditions is higher than
during non-drought conditions and if distinguishing drought
severity is important. The probability distributions (based on
a normal kernel function) of the generated yield anomalies
are also analysed for graphical visualization of the area cor-
responding to crop loss.

Table 2. Variables used for copula application. In the first column,
the numbers 1 and 2 correspond to the respective provincial cluster
(clusters 1 and 2). In the second column, the numbers correspond
to the selected weeks in the case of the remote sensing indices and
to the selected months and timescales (in months) in the case of
SPEI. The values of the standardized regression coefficients were
determined by Ribeiro et al. (2019a).

Cereal Drought Standardized
(X) indicator regression

(Y ) coefficients

Wheat 1 TCI 23 0.76
Barley 1 VHI 22 0.91
Wheat 2 SPEI 4–1 1.05
Barley 2 SPEI 2–5 1.07

3 Results

3.1 Fitting copula models

The estimates of the dependence between the yield anoma-
lies and drought hazard were performed using the selected
drought indicators outlined in Table 2. This selection of
drought indicators highlights that the response of crop yields
to climate conditions varies according to the location, type
of crop, moment of the vegetative cycle and chosen tempo-
ral scale. While annual yield anomalies in cluster 1 are better
characterized by short-term responses to the drought condi-
tions based on the weekly values of TCI and VHI, the annual
yield anomalies in cluster 2 are better characterized by the
monthly response to the dry conditions based on the SPEI. In
terms of predictability, the effects of temperature (TCI) and
vegetation health (VHI) during late growth stages (weeks 23
and 22 correspond approximately to end of May and begin-
ning of June, respectively, for wheat and barley) are the most
influential conditions in the northern cluster. On the other
hand, the yields in cluster 2 are influenced by drought condi-
tions described by SPEI much earlier, in the beginning of the
intermediate growth stages (February and April with 5 and
1 month timescales, respectively, for wheat and barley). In
this way, the importance of including multiple drought re-
sponse timescales is evidenced for predictability purposes
and assessment of drought-related crop losses.

Figure 3 shows the non-parametric estimations of the CDF
of the individual variables from Table 2, here used to trans-
form the variables to the unit scale (pseudo-observations) for
the copula modelling. A good agreement with the ECDF is
suggested (Fig. 3) and the crop loss and drought thresholds
used in this study (−XSD and Yth-dr, respectively) are illus-
trated. A straightforward way of visualizing the association
between the cereal yields and drought conditions was first
carried out based on the scattering of the uniform pseudo-
observations of the margins (Fig. 3, bottom panels). Most of
the transformed data points are concentrated along the di-
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Figure 3. Empirical cumulative distribution functions (ECDF, blue points), kernel density estimation of the CDF (red line), crop loss and
drought thresholds (dotted black vertical line), respective marginal probabilities of crop loss and drought occurrence (dotted black horizontal
line), and pseudo-observations (scatter) of the margins on the interval [0, 1].

agonal line (Fig. 3, bottom panels), mainly due to the cor-
relations between the yield and selected drought indicators
(Ribeiro et al., 2019a). Most of the work based on copulas
has estimates of the marginal distribution functions (Afshar
et al., 2016; Bokusheva et al., 2016; Mirabbasi et al., 2012),
whereas this procedure has no requirement for prior knowl-
edge of the marginal distributions, therefore incurring less
significant assumptions.

The estimates of the dependence between the yield anoma-
lies and drought indicators were performed using the copula
functions from Table 1 (Gaussian, t copula, Clayton, Frank
and Gumbel). Table 3 indicates each copula dependence pa-
rameter estimate (ρ, df or θ ) and respective AIC values.
Based on the values of AIC, a Gaussian copula, a Clayton
copula and two Gumbel copulas were eligible to perform the
best fits (Table 3). In general, the Archimedean copulas are
better suited to estimate the joint distributions between crop
yield and drought indicators in most of the cases (Table 3),
with the exception of barley in cluster 1, which is better fit-
ted by a Gaussian copula. Given that AIC penalizes the num-
ber of estimated parameters (Wilks, 2006), t copulas are not
expected to be chosen, since they have two parameters that
control the tail dependence.

The selected copula functions (Table 3) suggest that, in
general, the relationship between yield and drought condi-
tions is described by an asymmetric dependence in the tails
of the joint distributions, except in the case of barley in clus-

ter 1. This feature is illustrated in Fig. 4, showing the dif-
ferent shapes and contours of the selected copula densities.
While wheat in cluster 1 and 2 shows a stronger dependence
in the upper tail of the joint distributions based on Gumbel
copulas (suggesting higher probability of observing a higher
value of yield anomalies given a high value of the drought
indicators), barley in cluster 2 shows stronger dependence
in the lower-left tail based on a Clayton copula, suggesting
higher probability of finding a lower value of yield anomalies
given a low value of the drought indicators. The randomly
generated yield and drought data were transformed back to
the original scales (Fig. 4, bottom row) and the respective
scatter plots indicate that more extreme values are generated
using the joint distribution relationships. In general, the mod-
elling of the joint distributions leads to results close to the
real observations (Fig. 4, bottom panel).

3.2 Probability of non-exceedance and conditional
probability of non-exceedance using copula
simulations

After estimating the joint distribution functions and sim-
ulating pairs of data preserving the modelled dependence
structures, we evaluate and compare the probability of
non-exceedance (PNE) and conditional probability of non-
exceedance (CPNE) as a function of the crop loss threshold.
In this way, we evaluate if distinguishing drought severity
leads to different risk values of crop loss in comparison to
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Figure 4. Selected joint probability distribution functions (PDFs) where u and v are scalar values on the interval [0, 1] (top row), contours
showing the two-dimensional view of PDFs (middle row) and observed (red triangles), and copula-based simulation (density squares) scatter
plots of crop yields and drought indicators (bottom row).

disregarding a drought threshold (using only simulations of
yield) and compare the probability of crop loss under drought
and non-drought conditions (by means of both simulations
of yield and respective drought indicator). One of the key
advantages of estimating the values of PNE and CPNE by
means of the copula simulations is the use of larger samples
that are comprised of more joint extreme values based on the
joint behaviour of crop yields and drought hazard.

Figure 5 shows the PNE curves and the distributions of
the simulations of yield anomalies, with the respective crop
loss area correspondent to the probability (%) of the yield
anomaly not exceeding −1 SD. The PNE curves indicate a
more than 19 % chance of having crop losses in all cases.
According to Fig. 5, wheat at cluster 1 is the cereal with
the highest risk level (22 %), followed by barley in cluster 1
(19.8 %), wheat in cluster 2 (19.4 %) and barley in cluster 2
(19.2 %) (Fig. 5). As mentioned before, the wheat’s left tail
area (negative yield anomalies) is slightly higher in cluster 1,
suggesting a higher risk of wheat loss in the northern sector
of the IP.

The following target was to compare the likelihood of
crop loss under drought and non-drought conditions. Figure 6
shows the simulated crop yield anomalies during drought (or-
ange boxplots) and non-drought (blue boxplots) events. As
expected, the boxplots show lower (and negative in average)
values of yield anomalies during drought events in compari-
son with non-drought episodes. Although the number of sam-

ples simulated under drought conditions is smaller than un-
der non-drought conditions (Fig. 6), the use of copula simu-
lations enhances the amount of simulated joint low extremes
(i.e. co-occurrence of crop loss and drought events).

The differences in terms of crop losses between cereals
and regions is much evident when differentiating the climatic
conditions (Fig. 7), particularly during drought conditions.
Figure 7 shows that the values of CPNE under drought (non-
drought) conditions are above (below) the values of PNE il-
lustrated in Fig. 5. In comparison with the distributions of
yield simulations without conditioning to specific thresholds
of the drought indicators shown in Fig. 5, in Fig. 7 the distri-
butions of the yield simulations during drought events show
a shift to the left towards negative values of yield anoma-
lies, while the distributions of yield simulations during non-
drought events show a shift to the right towards positive val-
ues of yield anomalies (Fig. 7). The case of barley in clus-
ter 1 is quite distinct exhibiting a drought-related barley loss
almost 3 times higher than the value illustrated in Fig. 5
(19.8 %), supporting the importance of conditional probabil-
ities for agricultural drought risk purposes. The conditional
probability of wheat loss (Fig. 7), is also higher when focus-
ing on drought conditions, although it is less than 2 times the
values shown in Fig. 5.

Regarding the drought-related barley loss, the distribution
of barley in cluster 1 is more shifted to negative yield anoma-
lies, stressing that the drought risk of barley loss is higher
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Figure 5. Probability of non-exceedance (PNE) function (%) of yield anomalies (top row) in both clusters based on the derived simulations
from the estimated copulas and respective probability density estimates (bottom row). In the bottom row, the red values indicate the proba-
bility of crop loss, which is also indicated in the top row by the intersected dashed lines, indicating the threshold of crop loss and respective
PNE value.

Figure 6. Wheat and barley yield simulations, differentiating
drought (orange) and non-drought conditions (blue) according to
the respective drought indicator denoted in parenthesis in the x tick
label. The numbers on top of the boxplots denote the sample size of
the simulations under the different climatic conditions.

on cluster 1 (59.2 %) than on cluster 2 (39.4 %), while it is
quite similar on both clusters in Fig. 5. While barley suggests
higher conditional probabilities of crop loss under drought
conditions in cluster 1, wheat suggests higher conditional
probabilities of crop loss under drought conditions in clus-
ter 2 (46.7 %) in comparison to cluster 1 (36.5 %). Among
all the cases, the highest level of drought-related crop loss is
59.2 %, observed in the case of barley in cluster 1, followed
by wheat in cluster 2 with 46.7 % chance of crop loss under
dry conditions.

The theoretical CPNE based on Eqs. (5) and (6) (Table 4)
agrees quite well with the estimates of the CPNE in Fig. 7,
thus corroborating the representativeness of the copula ex-
periment using 1000 simulations. Nevertheless, the use of
simulations allows us to increase the sample size and to gen-
erate more joint extreme values based on the dependence
structures characterized by the selected copulas. In addition,

the effect of the copula parameter (ρ or θ ) inaccuracy due to
the finiteness of available sample is considered in Table 4 in
terms of the 95 % confidence level interval of CPNE based
on the confidence interval of the copula parameters taken
from Table 3. Table 4 shows that the theoretical CPNE under
drought conditions still remains well above the CPNE un-
der non-drought conditions, with their difference taking the
smallest value at the lower bound of the copula parameter
confidence interval. In most cases, those differences are pos-
itive, as expected from the effect of drought on crop yield,
despite the relative finiteness of the sample to fit the copula
models.

The results show that CPNE based on simulations (Fig. 7)
and theoretical equations (Table 4) indicate that the proba-
bilities of crop loss increase when drought conditions occur,
even considering the two-sided confidence bound values of
the copula parameters. Moreover, the results indicate that the
CPNE using the simulations (Fig. 7) lies within the estimates
of CPNE using the two-sided confidence bound values of the
copula parameter at the 95 % level of confidence (Table 4).
The only exception is the case of barley in cluster 2 consid-
ering the lower bound of θ , which gives greater probabilities
of crop loss during non-drought conditions rather than during
drought conditions, suggesting that factors other than water
stress are the cause of crop failure. This result has to do with
the negative value of the copula parameter in the lower con-
fidence bound (θ =−0.38), thus suggesting a weak depen-
dence between crop loss and drought conditions in this case.
However, at the 80 % confidence level (θ ∈ [0.03, 1.55]) the
values of the copula parameter confidence bounds are both
positive and give higher CPNE under drought conditions.
This lack of accuracy of the CPNE at the 95 % in the case
of barley in cluster 2 may be the reason why the CPNE under
drought conditions are not the highest of all cases, as would
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Figure 7. Conditional probability of non-exceedance (CPNE) function (%) based on the derived copula simulations (top row) and respective
probability density estimates (bottom row) under drought (orange) and non-drought conditions (blue). In the bottom row, the orange and blue
values indicate the probability of crop loss under the different climatic conditions, which is also indicated in the top row by the intersected
dashed lines, which indicate the threshold of crop loss and respective CPNE value.

be expected from a Clayton copula (which is known for cap-
turing lower tail dependence).

4 Discussion

This study investigated the usefulness of copula methods in
estimating the likelihood of drought risk in wheat and bar-
ley cropping systems, when applied to two regions in the IP.
Here we proposed modelling the joint probability of yield
and drought hazard using copulas, based on a prior analysis
of the association between drought and crop loss (Ribeiro et
al., 2019a). The advantage of using a probabilistic approach
is to meet the ambitious challenge of helping farmers and
stakeholders in managing their operations by identifying the
probability of crop loss under specific drought conditions.
Hernández-Barrera and Rodríguez-Puebla (2017) and Fer-
rise et al. (2011) have shown that the projected warmer and
drier climate will lead to wheat yield shortfall over the IP
and Mediterranean, respectively, highlighting the importance
of establishing novel statistical approaches for agricultural
drought risk analysis. Other crops rather than rainfed cere-
als are also expecting significant losses during the next cen-
tury in the IP (Saadi et al., 2015; Resco et al., 2010; Quiroga
and Iglesias, 2009), and the here-proposed crop-specific ap-
proach could be applied to other agricultural systems under
drought conditions for different regions around the world.

The novelty of the presented models, in comparison to
other works addressing climate risk in the IP (e.g. Ribeiro
et al., 2019a; Resco et al., 2010; Iglesias and Quiroga, 2007),
is the focus on the impacts associated with droughts and on
the joint probability of rainfed yield anomalies and drought
hazards. Previous works using copulas in hydro-climatology
studies have tended to focus on the joint distribution of dif-

ferent characteristics of the hazardous events, such as fre-
quency, intensity, severity, and duration, among others (Li
et al., 2015; Chen et al., 2013; Mirabbasi et al., 2012). More-
over, the restriction to the bivariate case allowed for a simpler
interpretation of the results, in contrast to higher-dimension
copulas (Afshar et al., 2016; Ganguli and Reddy, 2013), for
instance by adding other factors influencing crop yield be-
yond drought as copula variables.

More recently, copulas have been applied to estimate the
joint behaviour of drought conditions and the associated im-
pacts in agricultural systems (Leng and Hall, 2019; Ribeiro
et al., 2019b; Madadgar et al., 2017; Bokusheva et al., 2016),
instead of using drought information only. We have adopted
a similar approach to reproduce time-, regional- and crop-
specific dependence of drought conditions, and the probabil-
ity distribution of crop yield anomalies under drought condi-
tions was estimated for risk analysis. In addition, the use of
different drought indicators in this study represents an advan-
tage since crops react differently to several factors at distinct
moments and locations, highlighting the importance of quan-
tifying the contributions of different drought indices on a re-
gional scale (Peña-Gallardo et al., 2019; Zarei et al., 2013).
A recent study by Peña-Gallardo et al. (2019) focused on the
responses of wheat and barley cropping systems to differ-
ent drought indices over Spain, have shown the different ef-
ficacies of several drought indices, stressing the importance
of the multiscalar character of droughts, in particular of the
SPEI. Similarly, and in accordance to previous work by the
authors (Ribeiro et al., 2019a), the present study shows the
adequacy of SPEI for the assessment of the agricultural risks
associated with droughts in the IP and advances the added
value of using the remote sensing of vegetation.
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Overall, the results of the estimated copula functions have
shown that Archimedean copulas are suitable to model the
joint behaviour of yield anomalies and droughts, suggesting
a dependence between extreme values of rainfed cereal yield
anomalies and drought indicators, and the subsequent simu-
lated distributions of crop yield anomalies are quite consis-
tent with the observations. The results highlighted that the
use of copulas for probabilistic assessment allows the esti-
mation of the dependence in the tails of the distribution and
was able to give the likelihood of crop loss under drought
conditions. This feature is of the most interest in risk anal-
ysis given that it models the joint probability of occurrence
of crop loss and drier events. Moreover, this study suggests
the relevance of impact-centric approaches (also referred to
the literature as “bottom-up” approaches; Zscheischler et al.,
2018) to identify and characterize the hazards that lead to the
larger impacts.

Moreover, it is important to stress that crop anomalies de-
cline much more when drought conditions are below the mild
or moderate threshold, suggesting a high agricultural drought
risk level of wheat and barley in both clusters. While val-
ues of PNE in the crop loss threshold were low and similar
for wheat in cluster 1 and barley in cluster 2, the values of
CPNE in the crop loss threshold during drought years are
considerably larger. The higher probability of crop loss ob-
tained when analysing only drought conditions agrees with
Páscoa et al. (2017b), which show a very high agreement be-
tween low wheat yield anomalies and drought conditions in
the IP, even on provinces where the linear correlation is not
significant.

Although there is a greater risk of crop loss during drought
conditions, some losses can still be expected during non-
drought events, particularly in cluster 2 (14.1 % and 7.77 %
in the cases of wheat and barley, respectively). In the north-
ern sector (cluster 1) the probabilities of crop loss under non-
drought conditions have the lower values, displaying 3.97 %
in the case of wheat and 3.65 % in the case of barley. Some
studies point to crop damage attributable to excessively wet
soils (Zampieri et al., 2017; Rosenzweig et al., 2002), due
to delayed planting or later harvest, nutrient runoff and de-
velopment of pests and diseases, among other factors, high-
lighting the complexity of quantifying agricultural risk lev-
els for management purposes and the non-linear relation be-
tween crop yield and climate conditions. The lower values
of CPNE under non-drought conditions in cluster 1 support
the fact that the slightly high values of PNE in cluster 1 are
mainly dominated by drought conditions.

With the present study it is not possible to establish sharp
conclusions about the adequacy of the copula models to a
specific type of drought indicator (remote sensing or hydro-
meteorological), since only one type of drought indicator
was considered for each cereal. In contrast, Bokusheva et
al. (2016) have found that Gumbel copulas provided bet-
ter fits representing the joint distribution of VCI and wheat,
while Frank copulas better described the dependence be-
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Table 4. Theoretical CPNE (%) during drought and non-drought conditions (Eqs. 9 and 10) and respective lower and upper bounds of
the 95 % confidence interval, where u−SD and vth-dr are the marginal probabilities of crop loss and drought occurrence and θ or ρ are the
estimated copula parameters with 95 % confidence limits (Table 3). The only exception that gives greater values of CPNE during non-drought
conditions rather than drought is denoted by “∗”.

Copula u−SD vth-dr θ or CPNE CPNE Lower confidence bound Upper confidence bound
ρ drought non- (95 %) (95 %)

drought θ or CPNE CPNE θ or CPNE CPNE
ρ drought non- ρ drought non-

drought drought

W1 Gumbel 0.22 0.51 2.34 39.3 4.00 1.72 35.4 8.44 2.96 41.2 1.98
B1 Gaussian 0.20 0.27 0.88 62.4 4.31 0.80 56.3 6.54 0.96 70.3 1.40
W2 Gumbel 0.19 0.25 1.81 42.5 11.2 1.24 27.8 16.1 2.38 51.5 8.17
B2 Clayton 0.19 0.29 0.79 41.1 9.99 −0.38 6.55∗ 24.1∗ 1.95 55.2 4.23

tween TCI and wheat yields in Kazakhstan. Madadgar et
al. (2017) modelled the conditional probability density func-
tions of crop yields under wet and dry conditions using SPI
and SSI and found that a Clayton copula was the best func-
tion to model the dependence structures. Similarly, Leng and
Hall (2019) have also used the same copula families and
found that from 10 countries studied 5 used Clayton copu-
las to fit the joint distribution between wheat production and
SPI. However, the referred studies were somehow more re-
strictive as they do not take advantage of using both remote
sensing and hydro-meteorological drought indicators and do
not select the most important one a priori.

To further the research, the application of SPEI method-
ology to climate projections of precipitation and tempera-
ture holds an added value to the estimation of drought risk
levels for the next century. Likewise, the use of seasonal
drought forecasts is also quite plausible in the approach pre-
sented in this study. Nevertheless, the presented results in-
dicated the likelihood of crop loss based on drought condi-
tions observed much earlier than the harvest time, particu-
larly in cluster 2 using SPEI (February and April with 5 and
1 month timescales). Hence, given the uncertainty associated
with the seasonal forecasts for regional drought predictability
in the IP, the use of past information for predictability studies
is still successfully used (Pires and Ribeiro, 2016) and con-
tinues to be a source of information from an operational point
of view. Another potential use of this methodology for future
research is the evaluation of its suitability at the province
level and the assessment of whether other hazards (such as
heat waves) are amplifying the impact of droughts on crop
harvests.

5 Conclusions

The agricultural drought risk levels estimated in the present
work aimed to improve the effectiveness of the agricultural
management of rainfed cereals in the major agricultural areas

of the IP. The main findings of this study are summarized
below.

– The dependence structure between crop yield anomalies
and drought conditions is mainly asymmetrical, sug-
gesting the existence of dependence among extreme val-
ues of yield anomalies and drought indicators.

– The differences between the unconditional and the con-
ditional probability suggest that the risk of wheat loss
and barley loss can be underestimated without condi-
tioning the probabilities of non-exceedance crop thresh-
olds to specific drought levels.

– The conditional probabilities of non-exceedance sug-
gest that the risk of wheat loss and barley loss increases
when drought events aggravate from normal or wet to
moderate or severe conditions.

– The values of conditional probabilities of crop loss un-
der dry conditions suggest that the risk of drought-
related barley loss is more likely to occur in the northern
sector, while the risk of drought-related wheat loss is
more likely in the southern sector, suggesting that sow-
ing in cluster 1 (cluster 2) could be more focused on
wheat (barley).

– The overall results show the importance of the concept
of conditional probability for distinguishing different
meteorological settings associated with crop losses and
the applicability of the copula theory. The use of cop-
ula simulations for the analysis of the co-occurrence of
dry and low-yield extreme events has shown the addi-
tional value of this methodology for the estimation of
drought-related crop failure.

– Nevertheless, minor wheat and barley losses can still
be expected during normal or wet conditions, stressing
the complexity of the interactions between the agricul-
tural systems and the climate. Particularly under the cur-
rent climate change context, further high-impact-centric
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analysis are required, involving the cascading effects of
different climate hazards.

Data availability. The Portuguese crop yield database is pub-
lished by the Portuguese National Statistics Institute and is avail-
able at https://ine.pt/xportal/xmain?xpid=INE&xpgid=ine_base_
dados (last access: 9 November 2019) by selecting “main crops
production (t) by geographic localization (Agrarian region) and
species; annual (1)” and afterwards by selecting the species of
wheat and barley. The Spanish crop yield is published by the Span-
ish Agriculture, Food and Environment Ministry in their Statisti-
cal Yearbook, which can be consulted at https://www.mapa.gob.es/
es/estadistica/temas/publicaciones/anuario-de-estadistica/ (last ac-
cess: 9 November 2019) by selecting the desired year, the chap-
ter entitled “surfaces and crop productions”, and the species wheat
and barley. The CORINE Land Cover datasets are publicly avail-
able at https://land.copernicus.eu/pan-european/corine-land-cover
(last access: 9 November 2019). The remote sensing indices
(VCI, TCI and VHI) database was accessed for the last time on
21 June 2018 at ftp://ftp.star.nesdis.noaa.gov/pub/corp/scsb/wguo/
data/VHP_4km/geo_TIFF/ and the webpage has recently been
updated to ftp://ftp.star.nesdis.noaa.gov/pub/corp/scsb/wguo/data/
Blended_VH_4km/geo_TIFF/. The precipitation- and temperature-
gridded values are publicly available from the Climate Re-
search Unit (CRU) TS3.21 dataset by Harris et al. (2014)
(https://doi.org/10.1002/joc.3711).
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