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Abstract. The purpose of this study is to propose the
Bayesian network (BN) model to estimate flood peaks from
atmospheric ensemble forecasts (AEFs). The Weather Re-
search and Forecasting (WRF) model was used to simulate
historic storms using five cumulus parameterization schemes.
The BN model was trained to compute flood peak forecasts
from AEFs and hydrological pre-conditions. The mean ab-
solute relative error was calculated as 0.076 for validation
data. An artificial neural network (ANN) was applied for the
same problem but showed inferior performance with a mean
absolute relative error of 0.39. It seems that BN is less sen-
sitive to small data sets, thus it is more suited for flood peak
forecasting than ANN.

1 Introduction

Floods are the most threatening natural disaster across the
world (Hénonin et al., 2010). Studies show that over 80 % of
the cities of Iran are at the risk of flooding (Chitsaz and Bani-
habib, 2015). Flood warning is an efficient way to reduce the
flood damage. However, many flood forecasting systems in
the world rely on observed rainfall, and thus the lead time of
these systems is often short for small basins (Banihabib and
Arabi, 2016). Numerical weather prediction (NWP) models
can be used to increase the lead time of flood warning by
using in advance forecasts of rainfall. Although the combi-
nation of NWP and hydrological models can significantly
increase the flood warning lead time rather than using ob-
served rainfall, the deterministic weather prediction does not
reflect the existing uncertainties. Thus, in the last decades,
many operative and research on flood forecasting systems

around the world are increasingly employing ensembles of
NWPs instead of single deterministic forecasts, which have
considerable uncertainties (Goodarzi et al., 2019). Ensemble
methods are considered to be an effective way to estimate the
probability of future states of the atmosphere by addressing
uncertainties present in initial conditions and in model ap-
proximations (Tennant et al., 2007). Various approaches have
been developed to produce atmospheric ensemble forecasts
including perturbing the initial conditions, perturbing the in-
put parameters of the model, using multi-model ensembles
and using different parameterization schemes (Yang et al.,
2012).

One of the most important parameterization schemes is the
cumulus parameterization. NWP models often use cumulus
parameterization schemes (CPSs) to consider the effects of
cumulus clouds which are not represented in modelling as
they are much smaller than the model grid size (Pennelly et
al., 2014). Common CPSs are presented in Table 1.

Kerkhoven et al. (2006) compared various CPSs for a sum-
mer monsoon in east China and found that the Kain–Fritsch
scheme is the best scheme at simulating moderate rainfall
depths. Pennelly et al. (2014) applied the Weather Research
and Forecasting (WRF) model with diverse cumulus parame-
terization schemes for three flood events in Alberta, Canada,
and they showed that the Kain–Fritsch and explicit cumulus
parameterization schemes were the most accurate for simu-
lating the rainfall. Other studies indicated that ensemble fore-
casting is promising for predicting heavy rainfall (Deb et al.,
2008; El Afandi, 2013; Li et al., 2014).

Ensemble meteorological forecasting is widely coupled
with a hydrological model to predict stream flow ensembles.
Li et al. (2017) coupled the WRF model with a distributed
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Table 1. Common cumulus parameterization schemes.

Model Reference Software used

Kain–Fritsch (KF) Kain and Fritsch (1990) WRF version 3.8
Betts–Miller–Janjić (BMJ) Janjić (1994) WRF version 3.8
Grell 3D ensemble (GR3D) Grell (1993) WRF version 3.8
Multi-scale Kain–Fritsch (MSKF) Zheng et al. (2016) WRF version 3.8
Grell–Dévényi ensemble (GDE) Grell and Dévényi (2002) WRF version 3.8

hydrological model for flood forecasting in a large water-
shed in southern China. The results suggest that the sim-
ulated floods are rational and could benefit the flood man-
agement communities due to their longer lead time. Rogelis
and Werner (2018) assessed the potential of NWP models for
flood early warning in tropical mountainous watersheds. The
results showed that the streamflow forecasts resulted from a
hydrological model forced by post-processed rainfall using
the WRF, and added value to the flood early warning sys-
tems.

Only few case studies report how flood hydrographs de-
rived from atmospheric ensemble forecasts (AEFs) can be
converted into warning decisions during a flood event. Li et
al. (2017) and Abebe and Price (2005) used the exceedance
of critical thresholds. Dietrich et al. (2009a) used the quan-
tile of the predicted flow ensemble. Yang et al. (2016) in-
tegrated ensemble rainfall forecasts, rainfall thresholds and
a real time data assimilation method. Leandro et al. (2019)
reduced the ensemble to the upper and lower range of the
uncertainty band. Other concepts of deriving a single (deter-
ministic type) warning indicator from ensembles are weight-
ing of ensemble members, e.g., averaging by Bayesian model
average (Raftery et al., 2005), by machine learning (Doy-
cheva et al., 2017) or by reduction of members to create a
multi-model sub-ensemble (Dietrich et al., 2009b).

According to previous studies, converting the ensemble
forecasts into warnings and also deriving a single warning
indicator from ensembles are not yet adequately considered
and remain a challenging question in ensemble-based flood
warning. The main objective of this study is to propose the
Bayesian network (BN) model to estimate the flood peak
from a meteorological ensemble forecast without employ-
ing a hydrological model. BN has been widely used by re-
searchers in many water resources fields. Applications of BN
in water resources can be found in studies of Mediero et
al. (2007), Sharma and Goyal (2016) and Shin et al. (2016).
Phan et al. (2016) reviewed 111 BN applications in water
resources management but only four were in the domain of
river flow, five were in operational decision making context
and none in operational flood warning. BN application in en-
semble flood forecasting has not been reported yet to our best
knowledge.

In previous studies, meteorological ensemble forecasts are
coupled with a hydrological model to predict a set of flood

hydrographs with different peak discharge. Ensemble deci-
sion making according to a range of possible flood peaks is
a challenging issue especially in case of equal likelihood of
each ensemble member. In the present study, the hydrolog-
ical model is replaced by a Bayesian network for deriving
a single warning indicator from atmospheric ensemble fore-
casts.

The purpose of the present study is therefore to predict the
flood peak addressing the uncertainties and the probability
of occurrence of each ensemble member. Floods are rare ex-
treme events that occur with low frequency in the studied
area. Thus, one of the problems in flood modelling is small
data size. In the present study, we try to deal with small data
size by using Bayesian network, which is less sensitive to
small data size (Zhang and Bivens, 2007). As a case study,
flood peaks were forecasted in a relatively small mountain-
ous basin, Kan basin, Tehran, Iran. The Weather Research
and Forecasting (WRF) model was used to simulate 14 his-
toric precipitation events using five different cumulus param-
eterization schemes. Then atmospheric ensemble forecasts
were coupled to the BN to estimate the flood magnitude for
an ensemble forecasting, from which flood warnings could
be derived. Forecasting performance of the BN was com-
pared with the results obtained from an artificial neural net-
work (ANN), which is a widely used data-based model.

2 Data and methodology

2.1 Study area

The case study of this research is Kan basin, Tehran, Iran
with an area of 197 km2. The geographical limits lie between
35◦46′ to 35◦58′ N latitudes and 51◦10′ to 51◦23′ E longi-
tudes. Figure 1 shows the location of the study area. Average
elevation is 2428.7 m above sea level and the annual rainfall
is about 600 mm. The rainfall data were from Emamzadeh-
Davood rainfall station and the flow data were collected from
Sooleghan hydrometric station that is located downstream of
the basin as shown in Fig. 1. The time of concentration (Tc) of
the basin is about 3 h, so the NWP models can significantly
increase the lead time of flood warning compared to using
observed precipitation. Since the increasing of lead time de-
creases the accuracy of NWP forecasts (Sikder and Hossain,
2016), the forecasting was conducted 1 d before the observed
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Table 2. Precipitation and streamflow data.

Event Observed Observed Duration
cumulative peak (h)

precipitation flow
(mm) (m3 s−1)

27.03.2007 25.3 24.2 15
27.04.2007 33.5 57.1 2
07.12.2007 32.3 12.7 17
03.11.2008 37.3 20.9 17
30.04.2009 29 34.4 7
04.02.2010 68.1 11.6 11
08.04.2010 48.8 34.1 29
13.03.2011 32.6 20.9 14
05.04.2011 55.5 24.5 25
29.08.2011 56.4 26.4 11
28.10.2011 55.9 55.1 23
20.11.2011 48 44.7 31
14.04.2012 67.7 67.2 15
13.11.2012 78.9 25 41

event. Long lead time for flood forecasting is very important
in large watershed flood mitigation as it provides more time
for flood warning and emergency responses (Li et al., 2017).
A flow chart of the proposed flood forecast approach is pre-
sented in Fig. 2. The cumulative precipitation, peak flow and
duration of the events are presented in Table 2.

2.2 The Weather Research and Forecasting model
(WRF)

The Weather Research and Forecasting (WRF) model was
used to simulate 14 historic heavy precipitation events that
caused floods in the study area. In this study, WRF version
3.8 was employed with three domains and 1 h temporal res-
olution. The horizontal resolutions of the domains are 45,
15 and 5 km, respectively. Figure 3 shows the WRF domain
setup using an interactive nested domain inside the parent do-
main. The outer (the coarsest) domain covers Iran, the middle
domain covers the northern part of Iran and the inner domain
covers the study area, and only the meteorological informa-
tion from this domain was used for forecasting of flooding in
the study basin.

The NCEP Global Forecast System (GFS) final analysis
(FNL) data were used as the initial conditions of the WRF.
The model settings were based on the Noah land surface
model (Chen and Dudhia, 2001), the Rapid Radiative Trans-
fer Model (RRTM) longwave radiation scheme (Mlawer et
al., 1997), the Dudhia shortwave radiation model (Dud-
hia, 1989), the Yonsei University (YSU) planetary bound-
ary layer scheme (Hong et al., 2006) and the WRF Single-
Moment (WSM) three-class microphysics scheme (Hong et
al., 2004). Because of the importance of cumulus parame-
terization for hydrological purpose, an ensemble was created
by using five cumulus schemes including KF, BMJ, GR3D,

MSKF and GDE cumulus scheme. The atmospheric ensem-
ble forecasts were fed into the Bayesian network to estimate
flood peak flow.

2.3 Bayesian network

This study proposes a probabilistic model to generate the
flood forecasts and to estimate the flood magnitude based on
Bayesian networks (BN) for an ensemble forecasting. BNs
are a class of probabilistic graphical models composed by a
set of random variables and directed acyclic graphs (DAGs)
to show the potential dependence between variables (Scutari,
2017). The node at the start of an arrow is a casual or preced-
ing event that is called the parent node, and the node at the
head is an outcome event that is called the child node. Each
node is labelled with a conditional probability table (CPT)
based on prior information or statistically observed correla-
tions that show the strengths of the influences of the parent
nodes on the child node. In general, assuming random vari-
ables with domain size d , the conditional probability table of
a child node with n parents needs one to specify dn+1 prob-
abilities (Li et al., 2011).

The goal is to calculate the posterior conditional proba-
bility distribution of each of the possible unobserved causes
given the observed evidence, i.e. P [Cause |Evidence].

However, in practice we are often able to obtain only the
converse conditional probability distribution of observing ev-
idence given the cause, P [Evidence |Cause]. The whole
concept of Bayesian networks is built on Bayes’ theorem,
which helps us to express the conditional probability distri-
bution of cause given the observed evidence using the con-
verse conditional probability of observing evidence given the
cause as Eq. (1):

P [Cause |Evidence]= P [Evidence |Cause]

P [Cause]
P [Evidence]

. (1)

Any node in a Bayesian network is always conditionally in-
dependent of its all non-descendants given that node’s par-
ents. The conditional probabilities are represented in the
form of conditional probability distribution (CPD) if the
nodes represent a continuous variable or a conditional prob-
ability table (CPT) if the nodes represent a discrete variable.
The joint probability (Pb) can be defined as the product of
the local conditional distributions as given in Eq. (2):

Pb (x1 · x2 · . . . · xn)=

n∏
i=1

Pb(xi|xi+1 · . . . · xn). (2)

In a BN, a node xi is independent of all other nodes except its
parents (Sharma and Goyal, 2016). A simple example of BN
is presented in Fig. 4. The joint probability for this simple
network can be defined as Eq. (3):

p(a · b · c)= p(a)×p(b|a)×p(c|a · b) . (3)
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Figure 1. Location of study area, rainfall and flow stations.

The graph containing nodes and arrows is called BN struc-
ture (BS). Learning a Bayesian network includes two as-
pects: structure learning and parameter learning.

Structure learning. The purpose of structure learning is
to determine the best structure which maximizes the condi-
tional probability P (BS|D), where BS is the BN structure,
and D is the given data (Sharma and Goyal, 2016). Structure
learning consists of finding the DAG that encodes the con-
ditional independencies present in the data. This has been
achieved in the literature with constraint-based, score-based
and hybrid algorithms (Scutari, 2017). Some common struc-
ture learning techniques are the K2 algorithm (Cooper and
Herskovits, 1992; Amirkhani and Rahmati, 2015) and the
Markov chain Monte Carlo (MCMC) algorithm (Madigan et
al., 1995). However, BS can be easily defined if the relation-
ship between child nodes and parent nodes is known. In the
present study, the flood is influenced by atmospheric ensem-
ble forecasts, base flow of the river and antecedent rainfall,
so the BS is known.

Parameter learning. Bayesian network conditional prob-
ability tables (CPTs) can be learned when the BN struc-
ture is known. Different parameter learning algorithms have
been presented, including expectation maximization, Markov
chain Monte Carlo methods such as Gibbs sampling and gra-
dient descent methods (Reed and Mengshoel, 2014). In this
study, expectation maximization (EM) algorithm was used
for Bayesian network parameter learning. The EM algorithm

is an iterative method that performs a number of iterations,
each of which calculate the logarithm of the probability of
the data given the current joint probability distribution. This
quantity is known as the log likelihood, and the algorithm
attempts to maximize likelihood estimators (Bergmann and
Kopp, 2009). In the HUGIN software (further developed
from original work of Lauritzen and Spiegelhalter, 1988),
convergence is achieved when the difference between the log
likelihoods of two consecutive iterations is less than or equal
to the numerical value of a log-likelihood threshold times the
log likelihood. Alternatively, the user can specify an upper
limit on the number of iterations to ensure that the procedure
terminates.

Our proposed ensemble forecasting using a BN model has
the following four steps:

1. selecting relevant variables and spatial units,

2. creating training data set for the model,

3. learning the model using the HUGIN software (version
8.3) and

4. evaluating the performance and accuracy of the model.

In the present study, the flood peak is the response vari-
able that is influenced by some predictor variables including
ensemble rainfall forecasts, base flow of the river and an-
tecedent soil moisture. Base flow of the river is the normal
day to day discharge. Antecedent recharge flow was used as

Nat. Hazards Earth Syst. Sci., 19, 2513–2524, 2019 www.nat-hazards-earth-syst-sci.net/19/2513/2019/



L. Goodarzi et al.: Bayesian network model for flood forecasting 2517

Figure 2. Flow chart of the flood forecast approach in this research.

the base flow of the river. The catchment’s antecedent soil
moisture represents the relative wetness prior to the flood
event and can have an important influence on flood response.
Because of the lack of soil moisture data in the Kan basin,
antecedent rainfall was used to represent the soil moisture.
Antecedent rainfall is the total precipitation amount that oc-
curred in the 24 h before the start of the event. This study was
performed on 14 historical storms. It should be noted that
approx. 70 % of the available data (10 storm events) are allo-
cated for training and the remaining (4 storm events) data are
used for validation. The data sample is relatively small due
to the following reasons.

1. NCEP (GFS−FNL) data are not available for some his-
torical storms.

2. During the above-mentioned period, a small number of
actual flood events occurred in the study area, since the
basin is located in a semi-arid region.

3. There is a lack of flood data because of flood damage to
hydrometry equipment in some floods.

Considering the relatively small sample size, we proposed
using the BN that is less sensitive to small data set size in
comparison with ANN. Some advantages of BN are as fol-
lows.

1. Suitable for small and incomplete data sets. A very use-
ful advantage of BN is that there are no minimum sam-
ple data sizes needed to perform the analysis, and BN
takes into account the complete data set (Myllymaki et

www.nat-hazards-earth-syst-sci.net/19/2513/2019/ Nat. Hazards Earth Syst. Sci., 19, 2513–2524, 2019



2518 L. Goodarzi et al.: Bayesian network model for flood forecasting

Figure 3. WRF domain setup using an interactive nested domain
inside the parent domain.

Figure 4. An example of a graphical Bayesian network.

al., 2002). In addition, Kontkanen et al. (1997) demon-
strate that BN can show good accuracy of prediction
even with a rather small data set. Furthermore, Zhang
and Bivens (2007) showed that BN is less sensitive to
small data set size in comparison with ANN.

2. Structural learning possible. It is possible to use data
and also subject matter knowledge to learn the structure
of BN. This is an aspect of active research, and although
the statistical theory is well understood, the techniques
are still under development (Jensen, 2001).

3. Fast responses. Since BN is analytically solved, it can
provide fast responses to requests once the model is
compiled. The compiled form of a BN comprises a con-
ditional probability distribution for each combination of
variable values and thus can provide any distribution in-

stantly. This is in contrast to the other simulation mod-
els in which the results need to be simulated, which can
take very long (Uusitalo, 2007). Thus, BN are recom-
mended for operational ensemble forecasting in particu-
lar in fast-reacting basins, where a high number of fore-
casts must be simulated within a short time.

2.4 Artificial neural networks (ANNs)

Artificial neural networks (ANN) are used as an alterna-
tive of statistical models in different aspects including clus-
tering analysis, estimation, sample recognition etc. (Mam-
madov et al., 2005). An ANN model is basically an engineer-
ing method of biological neurons. It is constructed by input,
output and hidden layers. ANN consist of a large number of
simple processing elements, which are interconnected with
each other and also layered (Sharma et al., 2012).

Typically, there are four distinct steps in developing an
ANN model. The first step is data transformation or scaling.
The input and output variables are first normalized linearly
in the range of 0 and 1 using the following equation:

X =
X−Xmin

Xmax−Xmin
, (4)

where X is the normalized value of the X, and Xmin and Xmax
are the minimum and maximum of data, respectively. The
main purpose for standardizing the data is that the variables
are usually measured in different units. By normalizing the
variables in dimensionless units, the arbitrary effect of simi-
larity between objects is removed (Aichouri et al., 2015).

The second step is the network architecture definition in
which the number of hidden layers, the number of neurons in
each layer and the connectivity between the neurons are de-
termined. The number of neurons and hidden layers is prob-
lem dependent and is estimated by the trial and error tech-
nique or expert experience. A synaptic weight is allocated
to each link to represent the relative connectivity strength of
two nodes at both ends in predicting the input–output rela-
tionship (Raju et al., 2011). A typical ANN architecture is
presented in Fig. 5. In this study, the output from the model
is the flood peak, and the input variables are atmospheric
ensemble forecasts, base flow of the river and antecedent
rainfall. The third step is using a learning algorithm to train
the network with known data. There are several learning al-
gorithms. In the present study, the most widely used feed-
forward error back-propagation algorithm was used for train-
ing because of the good performance of this algorithm in
previous studies (Raju et al., 2011; Banihabib et al., 2015;
ASCE, 2000; Sarkar and Kumar, 2012). The success of an
ANN application depends on the quality and also the quan-
tity of the available data (Cheng et al., 2017). The final step is
the validation, in which the performance of the trained ANN
model is evaluated using statistical criteria (Sarkar and Ku-
mar, 2012).
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Figure 5. Typical ANN architecture.

2.5 Statistical criteria for validation

In the present study, mean absolute relative error (MARE),
mean relative bias error (MRBE) and the regression coeffi-
cient (r) were used for performance evaluation of the model
as given in the following equations:

MARE=
1
n

∑ |Oi −Fi |

Oi

, (5)

MRBE=
1
n

∑ Oi −Fi

Oi

, (6)

r =
n(

∑
OF)− (

∑
O)(

∑
F)√

[n
∑

O2− (
∑

O)2][n
∑

F 2− (
∑

F)2]
, (7)

where Oi is the observed value, Fi is the predicted value and
n is the total number of data sets.

3 Results and discussion

3.1 Rainfall verification using the WRF model

In this section, the comparison between the observed and
predicted precipitation obtained from the WRF model is ad-
dressed. As mentioned earlier, the WRF model was used to
simulate 14 historic precipitation events, and the results for
some events are presented here. Figure 6 illustrates the pre-
dicted cumulative rainfall and the observed cumulative rain-
fall for these events. In general, the results show that the
WRF model was able to capture the heavy rainfall events.
The uncertainties in the predicted rainfall lead to a large
spread of the ensemble members, and this is why the uncer-
tainty in rainfall forecasting becomes important.

The ensemble precipitation illustrates that both overes-
timation and underestimation of precipitation occurs using
various schemes. Overestimation is very noticeable for the
early hours of forecasting, while for the last period of the
event underestimation occurs in some schemes.

From the case study, the results of precipitation forecast
using different cumulus schemes by the WRF model can
be significantly different. Therefore, it is necessary to fore-
cast precipitation by implementing various physics schemes,
especially different microphysical schemes. Furthermore, it
can be inferred that the difference between observed and pre-
dicted rainfall is mainly caused by the initial condition in the
NWP models, thus the atmospheric ensemble forecasts can
be produced also by perturbing the initial conditions.

3.2 Bayesian network verification

The atmospheric ensemble forecasts were fed into the BN
to estimate flood peak flow. Ten various models were de-
veloped using various combinations of predictors. In all of
the combinations, flood-peak discharge is the predicting vari-
able. Table 3 shows the accuracy of the model for different
combinations of predictors to compare the performance of
the prediction. The performance of the model was evaluated
by MARE and R2. It is clear from Table 3 that maximum
hourly rainfall outperformed accumulated rainfall as the pre-
dictor variable (no. 2 in Table 4). It shows for the relatively
short concentration-time basin, the Kan basin, that cumula-
tive precipitation is not a good indicator to predict the flood
peak and that the maximum hourly rainfall provides better
results. Thus maximum hourly rainfall was used in combi-
nations of other predictor variables. This can also be seen
by comparing combination no. 5 and no. 9 that there is no
considerable decrease in accuracy by deleting the Multi-scale
Kain–Fritsch scheme; consequently it can be concluded that
MSKF is the least accurate cumulus scheme. It was also
found that by deleting the Kain–Fritsch scheme in combi-
nation (no. 6 in Table 3), the accuracy is significantly de-
creased. Thus, the Kain–Fritsch is the most efficient cumu-
lus parameterization scheme in the study area. Other studies
on precipitation prediction have also shown similar results.
Pennelly et al. (2014) showed that the Kain–Fritsch cumu-
lus parameterization scheme is the most accurate in simulat-
ing heavy precipitation across three summer events. Liang et
al. (2004) showed that the Kain–Fritsch scheme works better

www.nat-hazards-earth-syst-sci.net/19/2513/2019/ Nat. Hazards Earth Syst. Sci., 19, 2513–2524, 2019
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Figure 6. The ensemble forecasted precipitation and the observed cumulative precipitation.

in the southeast of United States, where convection is largely
governed by the near-surface forcing.

According to Table 3, the best results were obtained for
combination no. 5. The proposed structure of this combina-
tion is composed of eight nodes as shown in Table 4. At-
mospheric ensemble forecasts, base flow of the river and an-
tecedent rainfall are the parent nodes, and flood peak is the
child node. It can also be seen that the base flow is influenced
by antecedent rainfall. The mean absolute relative error was
calculated at 0.076 for the validation data set in the combi-
nation no. 5. The coefficient of determination (R2) is another
criterion for testing, and it is seen from Table 3 that it’s val-
ues are close to unity. We should compare our study to sim-
ilar studies to determine whether our R2 is in the right ball-
park. Khan and Coulibaly (2006) used a Bayesian learning
approach to train a multilayer feed-forward network for daily
river flow and reservoir inflow simulation. Their result also
showed a high R2 value. The results showed that the BN is
an efficient method for modelling and combining the ensem-
ble flood forecast prediction. The proposed BN approach in
this study predicts flood peak flow. Since the Kan River in the
studied reach is a mountainous river without any flood plain
storage, the peak discharge is almost not reduced by flood
routing along the river, and so we can use the peak flood in-
stead of routing the flood hydrograph. However, in our study,
we consider peak flow as the variable of interest. In other

fields of application, flow volume or time to peak might be
of interest.

Moreover, Bayesian cluster analysis could also provide
probabilistic results for flood early warning, but since the
data sample is relatively small in this study, cluster analysis
cannot be achieved. This method can be also tested in basins
with sufficient historical hydrological data in future works.

The performance of the BN model is compared with the
results obtained from an ANN model as a benchmark. The
comparison is conducted using the same data set for training
and validation. These results are presented in Sect. 3.3.

3.3 Artificial neural network verification

The first step in developing an ANN model is to determine
the input and output variables. The output of the model is
the magnitude of flood peak discharge. The input variables
are the same as those used for the BN with the best perform-
ing combination of predictor variables (Table 3, combination
no. 5). The feed-forward error back-propagation algorithm
has been employed as the training algorithm in this study.
A difficult task in working with ANN is the selection of pa-
rameters such as the number of hidden nodes. There is no
established algorithm until now to determine how many hid-
den nodes are required to approximate any given function.
Here, we use the common trial and error method to choose
the number of hidden nodes, which are varied from two to
six according to previous studies (Banihabib et al., 2015).
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Table 3. Performance of the Bayesian network for different combinations of predictor variables.

Combination no. predictor variables R2 MARE

1 Maximum hourly rainfall 0.99 0.16
2 Accumulated rainfall 0.74 1.06
3 Maximum hourly rainfall, base flow of the river 0.99 0.18
4 Maximum hourly rainfall, antecedent rainfall 0.99 0.12
5 Maximum hourly rainfall, base flow of the river, antecedent rainfall 0.99 0.076
6 Maximum hourly rainfall (deleting KF), base flow of the river, antecedent soil moisture 0.58 0.46
7 Maximum hourly rainfall (deleting BMJ), base flow of the river, antecedent rainfall 0.99 0.23
8 Maximum hourly rainfall (deleting GR3D), base flow of the river, antecedent rainfall 0.99 0.15
9 Maximum hourly rainfall (deleting MSKF), base flow of the river, antecedent rainfall 0.99 0.087
10 Maximum hourly rainfall (deleting GDE), base flow of the river, antecedent rainfall 0.99 0.10

Table 4. The cause–effect relationships among the variables in the proposed structure of the Bayesian network.

Parent ID Entity name Child ID Child name

n1 Predicted rainfall using KF cumulus parameterization scheme n8 Flood peak
n2 Predicted rainfall using BMJ cumulus parameterization scheme n8 Flood peak
n3 Predicted rainfall using GR3D cumulus parameterization scheme n8 Flood peak
n4 Predicted rainfall using MSKF cumulus parameterization scheme n8 Flood peak
n5 Predicted rainfall using GDE cumulus parameterization scheme n8 Flood peak
n6 Base flow n8 Flood peak
n7 Antecedent rainfall n6 and n8 Base flow and flood peak

Table 5. MARE and R2 of the artificial neural network in the veri-
fication phase.

Number of nodes in hidden layer MARE R2

2 1.14 0.44
3 0.74 0.92
4 0.39 0.77
5 0.51 0.93
6 1.23 0.12

Error index is usually used to select the best performance of
the network model compared to observed data. The accuracy
of the model for different numbers of nodes in the hidden
layer is presented in Table 5. It was found that four hidden
nodes give the best results. The mean absolute relative error
(MARE) was calculated as 0.39 for the validation data set
while this index was calculated 0.076 in BN. The compari-
son shows that BN offers better accuracy. Although our data
set was relatively small, the result of BN model was accu-
rate enough. Therefore, it seems that BN is less sensitive to
small data set size, so it is more suited for rare events such
as floods, where the available data are limited due to the high
return period of such events.

4 Conclusions

This study proposed a probabilistic model to address the un-
certainties of flood forecasts using the Bayesian networks
(BNs) and to estimate the flood peak in an ensemble flood
forecasting. This is the first attempt to use BN in ensem-
ble flood forecasting. The Weather Research and Forecasting
(WRF) model was used to simulate some historic precipita-
tion rainfall events using five various cumulus parameteriza-
tion schemes. The results showed that there is no consider-
able decrease in accuracy by deleting the Multi-scale Kain–
Fritsch scheme, thus it can be concluded that is the least accu-
rate cumulus scheme. It also was found that Kain–Fritsch is
the most efficient cumulus parameterization scheme. Atmo-
spheric ensemble forecasts were coupled with the Bayesian
network to estimate the flood magnitude in an ensemble fore-
casting. Results of the BN are compared with the results ob-
tained from an artificial neural network as a widely used
model to show the performance of BN. The comparison is
conducted using the same data set for validation and train-
ing. The results showed that the BN is an efficient method
for flood forecasting based on ensemble rainfall forecasts
and offers better accuracy than ANN. We showed that BN is
less sensitive to small data set size in comparison with other
models, thus it is more suited for rare events such as floods.
The results of this study indicate that BN might be a suitable
tool for a fast computation of peak flow and flood warnings
from numerical ensemble weather predictions. Our study is
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a proof of concept at the current stage that flood warnings
can be done by evaluating hydrological pre-conditions and
meteorological ensembles by a trained BN instead of a hy-
drological model. However, further studies are required to
confirm the applicability of BN. The present study was con-
ducted with a lead time of 1 d before the observed event in a
small basin. Future studies may test BN for other catchments
and for larger lead times.

Code and data availability. For this study, we used the soft-
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