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Abstract. A hypothetical Pan-European Indoor Radon Map
has been developed using summary statistics estimated from
1.2 million indoor radon samples. In this study we have used
the arithmetic mean (AM) over grid cells of 10 km× 10 km
to predict a mean indoor radon concentration at ground-floor
level of buildings in the grid cells where no or few data
(N < 30) are available. Four interpolation techniques have
been tested: inverse distance weighting (IDW), ordinary krig-
ing (OK), collocated cokriging with uranium concentration
as a secondary variable (CCK), and regression kriging with
topsoil geochemistry and bedrock geology as secondary vari-
ables (RK). Cross-validation exercises have been carried out
to assess the uncertainties associated with each method. Of
the four methods tested, RK has proven to be the best one for
predicting mean indoor radon concentrations; and by com-
bining the RK predictions with the AM of the grids with 30 or
more measurements, a Pan-European Indoor Radon Map has
been produced. This map represents a first step towards a Eu-
ropean radon exposure map and, in the future, a radon dose
map.

1 Introduction

Radon (Rn) is the major contributor to the ionizing radia-
tion dose received by the general population, which is the
second cause of lung cancer death after smoking (WHO,
2009). Worldwide radon exposure is linked to an estimated
222 000 out of the 1.8 million lung cancer cases reported
per year (Gaskin et al., 2018), and in Europe alone it has

been estimated that 18,000 lung cancer cases per year are
induced by radon (Gray et al., 2009). Since lung cancer sur-
vival rates after 5 years can be below 20 % (Cheng et al.,
2016), a reduction in radon exposure will have a signifi-
cant positive impact on the health of the general popula-
tion. In this context, the EU recently revised and consoli-
dated the Basic Safety Standards Directive (Council Direc-
tive 2013/59/EURATOM), which aims to reduce the number
of radon-induced lung cancer cases.

The main sources of radon indoors are the surrounding
subsoils on which buildings are located, the groundwater
used in the building, and the building materials (Cothern and
Smith, 1987). Consequently, radon is present everywhere.
The likelihood of having a high indoor radon concentration
may, however, be higher in some areas than others. Radon
maps are therefore an essential tool at a large scale and give
very good indications of the problem, helping policymakers
to design cost-effective radon action plans (Gray et al., 2009).
Importantly, because of high local variability, large-scale Rn
maps do not inform about Rn concentration in a particular
building. Instead, this requires measurements in that build-
ing.

In 2006, the EU’s Joint Research Centre (JRC) launched a
long-term project to map radon at the European level (Tollef-
sen et al., 2014). For more than 10 years now, the JRC has
been developing the European Atlas of Natural Radiation
(Cinelli et al., 2019). It includes maps of the natural ra-
dioactive levels of (i) annual cosmic-ray dose; (ii) indoor
radon concentration; (iii) uranium, thorium, and potassium
concentration in soil and in bedrock; (iv) terrestrial gamma

Published by Copernicus Publications on behalf of the European Geosciences Union.



2452 J. Elío et al.: A first version of a Pan-European Indoor Radon Map

dose rate; and (v) soil permeability. Digital versions of these
maps are available from a JRC website (https://remon.jrc.
ec.europa.eu/About/Atlas-of-Natural-Radiation, last access:
20 September 2019) and updated at irregular intervals when
new data become available. The objectives of this Atlas are
(1) to increase public knowledge of natural ionizing radia-
tion, (2) to analyse the level of natural radioactivity caused
by different sources, (3) to produce a better estimate of the
annual dose to which the general population is exposed, and
(4) to compare natural and artificial sources (Cinelli et al.,
2019).

The European Indoor Radon Map (EIRM) displays the an-
nual average indoor radon concentration (Rn; 222Rn) mea-
sured on the ground floor of buildings over 10 km× 10 km
grid cells (Dubois et al., 2010). Based on input-data speci-
fications stipulated by the JRC, European countries provide
summary statistics estimated over 10 km× 10 km grid cells
without communicating the original data, thus guaranteeing
data privacy confidentiality for the individual house owners.
As a result, the European indoor radon dataset contains the
following parameters: the arithmetic mean and standard de-
viation of the indoor radon measurements (AM_z and SD_z)
and the log-transformed data (AM_lnz and SD_lnz); the me-
dian (med), the minimum (min), and the maximum (max)
values; and the total number (N) of dwellings sampled in
each grid cell (Tollefsen et al., 2014).

The dataset underlying the EIRM represents a huge
amount of work. At the time of writing (end of 2018),
32 countries (EU and non-EU member states alike) had
contributed data, and information from almost 1.2 million
dwellings has been aggregated into 28 468 grid cells. Since
some cells overlap between countries, 28 203 of these grid
cells were filled by one country, while 262 and 3 grids were
filled by two and three countries, respectively (i.e. border ar-
eas which share the same grid) (version: 29-09-2018). How-
ever, there is still a large number of grid cells over European
territory with no data, and the number of measurements per
grid cell varies widely, from many with only one measure-
ment up to a single one with 23 993 dwellings sampled (Ta-
ble 1). Evaluating the radon exposure to European citizens
would therefore require another 10 years, or more, if it had
to be done based on indoor radon measurements over each
grid cell.

Interpolation techniques are therefore essential at this
stage to predict a mean indoor radon concentration in the grid
cells for which no or few data are available, and thus develop
a Pan-European Indoor Radon Map. We have tested four
interpolation techniques: two that use solely indoor radon
concentration measurements, viz. inverse distance weight-
ing (IDW) and ordinary kriging (OK), and another two which
also take into account geological information, viz. collocated
cokriging with the uranium concentration in topsoil as a
secondary variable (CCK) and regression kriging with top-
soil geochemistry and bedrock geology as secondary vari-
ables (RK). Cross-validation exercises were carried out to as-

Table 1. Number of dwellings sampled by grid cells of
10 km× 10 km in the study area.

Dwellings Number of grids

N = 1 6643
1<N ≤ 5 9064
5<N ≤ 10 3306
10<N ≤ 20 3161
20<N ≤ 30 1896
30<N ≤ 23993 4398

Total 28 468

sess the uncertainties associated with each method. The map
generated here is a hypothetical indoor Rn map in the sense
that it estimates the mean per 10 km× 10 km grid cell un-
der the assumption that there are dwellings in the grid cell.
In some remote areas (mountains, extreme northern Europe),
however, this may not be the case in reality. The final map
represents a first step towards a European radon exposure
and, further on, a radon dose map. Furthermore, it may assist
European countries in developing their respective national
indoor radon maps.

2 Methods

2.1 Indoor radon data

The primary dataset used to predict the mean per grid cell
with no or few data is the one of arithmetic means (AM_z).
The AM was assigned to the centre of each grid cell, and pre-
dictions were carried out only in grid cells where U, Th, and
K2O concentrations were also available (46 000 grid cells;
version 28-05-2018, Pantelić et al., 2018). Data from grid
cells filled by more than one country (i.e. points with the
same coordinates) were merged and the summary statistics
recalculated according to Eqs. (1)–(10).

AM=
S

N
(1)

SD=

√
SQ− s2

N

N − 1
(2)

Med=

√√√√ n∏
i=1

medi (approximation) (3)

Min=min[mini] (4)
Max=max[maxi] (5)

N =

n∑
i=1

Ni (6)
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Figure 1. Arithmetic mean (AM_z) over 10 km× 10 km grid cells (Bq m−3) and relative standard deviation (RSD=AM/SD).

Figure 2. Histogram and q–q plot of average indoor radon concentration (AM_z) on the ground floor of dwellings.

S =

n∑
i=1

Si (7)

Si = AMi ·Ni (8)

SQ=

n∑
i=1

SQi (9)

SQi = SDi · (Ni − 1)+
Si

Ni
(10)

Here “i” is the number of countries that filled the grid.
The values for the log-transformed data (AM_lnz and
the SD_lnz) were estimated with the same equations as used
for the AM and the SD, but with the ln values provided by
each country (i.e. AM_lnz and SD_lnz).

In the study area (i.e. area with topsoil geochemistry
data) there are 25 367 grid cells with indoor radon mea-
surements (Fig. 1). The distribution of the AM is approxi-
mately log-normal (Fig. 2), with values ranging from 1 to
10 116 Bq m−3. The summary statistics are shown in Ta-
ble 2. Nominal concentrations below 10 Bq m−3 are unreal-
istic from the point of view of true occurrence and measure-
ment possibility, but this could not be verified in this context.
The impact of such errors on the result is probably negligible.

Table 2. Summary statistics of indoor radon data (AM_z) after
merged border grids (N = 25367).

Min Q1 Median Mean Q3 Max

AM (Bq m−3) 1 40 71 103 123 10 116
SD (Bq m−3) 0 20 47 89 100 6873
RSD (%) 0 45 67 72 92 370

2.2 Interpolation techniques

A mean (over a 10 km× 10 km grid cell) radon concentra-
tion at the ground-floor level was estimated at 1 m off the
grid centroid, to which the AMs in the input database are ref-
erenced. Predictions were therefore carried out at locations
slightly different from the ones of the data. The reason is
that we wanted to avoid exact interpolations. To some extent,
indoor radon variations at a small scale can be taken into ac-
count this way.

2.2.1 Inverse distance weighted (IDW) interpolation

The inverse distance weighting (IDW) interpolation tech-
nique estimates a weighted average at an unsampled
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Figure 3. Inverse distance weighting power (idp) optimization.

point (Ẑ0) according to its distance (di) to the sampled
points (Zi):

Ẑ0 =

n∑
i=1

1
d

p
i

Zi

n∑
i=1

1
d

p
i

if di > 0; otherwise (di = 0) : Ẑ0 = Zi, (11)

where “p” is the inverse distance weighting power (idp),
which represents “the degree to which the nearer points are
preferred over more distant points” (Bivand et al., 2008).
IDW assumes that, on average, nearby points are more sim-
ilar to each other than more distant points (Li and Heap,
2008), and therefore the weights for the closer ones are
higher than the weights for distant points.

The result is highly influenced by the inverse distance
weighting power chosen. An optimal value of p which min-
imizes a loss function L, popt= argminL (data, target lo-
cations; p), can be found for example by k-fold cross-
validation. The loss function has to be defined by the user,
and a common choice is the root-mean-square error (RMSE)
(Janik et al., 2018). In our case the optimal idp was found
to be 1.5 (Fig. 3), and interpolations of the AM were carried
out using the observations within a distance of 1000 km, and
a minimum and maximum number of nearest observations
were set to 5 and 75, respectively.

2.2.2 Ordinary kriging (OK)

Trans-Gaussian kriging using Box–Cox transforms (function
krigeTg in R software, packages “gstat” and “MASS”; Gräler
et al., 2016; Kendall et al., 2016; Pebesma, 2004; R Core
Team, 2018; Venables and Ripley, 2002) was performed with
the arithmetic mean. The normal transformation of data (X)
with the transformation parameter lambda (λ) follow Eq. (12)
(Box and Cox, 1964):

φ−1
λ =

{
Xλ−1
λ

λ 6= 0
log(X) λ= 0

. (12)

Figure 4. Model variogram (blue line; green dots are pairs of points
up to a distance of 50 km and red points up to 1500 km) and 100 var-
iograms from random permutations of the data (grey lines).

Predictions are carried out over the transformed data and then
unbiased back-transformed to the original scale using the La-
grange multiplier (Eqs. 13–15; Cressie, 1993; Varouchakis et
al., 2012):

Ẑ (S0)= φ
(
ŶOK (S0)

)
+φ′′(µ̂)

(
σ 2

OK (S0)

2
−m

)
, (13)

φ(x)=

{
(x · λ)

1
λ λ 6= 0

ex λ= 0
, (14)

φ′′(x)=

{
(1− λ)(x · λ+ 1)

1
λ
−2 λ 6= 0

ex λ= 0
, (15)

where Ẑ(S0) is the ordinary kriging predictor on the original
scale, ŶOK(S0) the ordinary kriging predictor on the trans-
formed scale data, σ 2

OK(S0) the ordinary kriging variance,
µ̂ the mean estimate at each location, and m the Lagrange
multiplier of the OK system for each location (Kozintsev et
al., 1999).

The variogram was modelled with two components:
a Matérn model (Minasny and McBratney, 2005; Pardo-
Iguzquiza and Chica-Olmo, 2008) up to a distance of 50 km
and an exponential model up to 1500 km (Fig. 4). The very
low kappa (0.15) points to high “roughness” of the field.
Predictions were then carried out with observations within
a distance of 1000 km and using a minimum and a maximum
number of nearest observations of 5 and 75, respectively.

2.2.3 Collocated cokriging (CCK) with uranium as
secondary variable

Collocated cokriging (CCK) is a special case of cokrig-
ing where only the direct correlation between the primary
(e.g. AM_z) and the secondary variables (e.g. U) is used,
ignoring the direct variogram of the secondary variable and
the cross variograms. It simplified the cokriging equations
although the secondary variable must be sampled at all pre-
diction points (Bivand et al., 2008). The method is a simpli-
fication of the physical reality because the dependence struc-
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Figure 5. (a) Uranium concentration in topsoil (max= 9.73 mg km−1; Tollefsen et al., 2016) and (b) scatterplot between indoor radon and
uranium concentration in topsoil.

ture between covariates is more complex, as they result from
different physical processes.

We performed the CCK with the uranium concentration
in topsoil as a secondary variable since radon is generated
in the uranium decay series (Cothern and Smith, 1987), and
a positive correlation between uranium and indoor radon is
therefore expected. The analysis was carried out with the
data log-transformed and then back-transformed to the orig-
inal scale (AM_z) with Eqs. (16) and (17) (where µ is the
kriging prediction and σ the kriging variance):

E[X] = e

(
µ+ σ

2
2

)
, (16)

var[X] = e
(
2µ+σ 2)

·

(
eσ

2
− 1

)
. (17)

The uranium map (Fig. 5a; Tollefsen et al., 2016), part of
the European Atlas of Natural Radiation, has been created
using approximately 5000 topsoil data from the GEMAS
and FOREGS datasets (i.e. GEMAS: Geochemical Map-
ping of Agricultural and Grazing Land soil in Europe,
GEMAS, 2008; and FOREGS: Geochemical Atlas of Europe
developed by the Forum of European Geological Surveys,
FOREGS, 2005). Uranium explains about 7.75 % of the to-
tal indoor radon variability (correlation coefficient= 0.2783;
Fig. 5b). As in the previous cases, a maximum distance of
1000 km and a minimum and maximum number of nearest
observations of to 5 and 75, respectively, were used in the
predictions.

2.2.4 Regression kriging (RK)

Regression kriging (RK) is a two-step interpolation tech-
nique: first, a regression estimation of the dependent vari-
able (e.g. AM_z) is performed against secondary variables
(e.g. geogenic factors), and, second, an analysis of the spatial
distribution of the residual is carried out using geostatistical
methods (i.e. OK; Pásztor et al., 2016). The final estimates

are the sums of the regression estimates and the ordinary
kriging estimates of the residuals (Di Piazza et al., 2015).
The analysis was also carried out with the log-transformed
data and directly back-transformed with the same equation
as in CCK.

The technique applied in the regression step can vary (Li
and Heap, 2008); here, we have performed a linear regres-
sion using topsoil geochemistry (i.e. U and K2O) and geol-
ogy (i.e. 1 : 5 Million International Geological Map of Eu-
rope – IGME 5000; Asch, 2003) as secondary variables. The
IGME 5000 has been developed by the German Federal In-
stitute for Geosciences and Natural Resources; this European
GIS project involved more than 40 European and adjacent
countries, covering an area from the Caspian Sea in the east,
to the mid-ocean ridge in the west, and from Svalbard Islands
in the north to the southern shore of the Mediterranean Sea.
The aim of the project was to develop a GIS underpinned
by a geological database. The original IGME map presents
178 lithostratigraphic units that were reduced to 28 lithologi-
cal units (Fig. 6). Based on ANOVA tests ran on an extensive
Italian geological database, Nogarotto et al. (2018) demon-
strated that lithology alone has a large effect on geochemical
variations in key elements (U, Th, K2O), regardless of the
tectonostratigraphic position of a given unit. It is therefore
assigned the prevalence unit to each grid of 10 km× 10 km
(Fig. 6).

The procedure is therefore (i) to fit a linear model to the
data (Fig. 7a and Table 3), where the total indoor radon vari-
ance explained by U, K2O, and simplified geology is 20.24 %
(7.75 %, 7.88 %, and 4.61 %, respectively); (ii) to analyse the
spatial distribution of residuals, ordinary kriging (Fig. 7b);
(iii) to predict a radon value (i.e. log(AM_z)) in each grid
using the linear model and add the residual predictions; and
iv) to back-transform to the original scale with the equations
described in the previous section (Eqs. 16 and 17; where µ is

www.nat-hazards-earth-syst-sci.net/19/2451/2019/ Nat. Hazards Earth Syst. Sci., 19, 2451–2464, 2019
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Figure 6. Simplified geology map with geological units defined on a lithology basis (Nogarotto et al., 2018). The base geological map is the
IGME (Asch, 2003).

Figure 7. (a) Linear model and (b) variogram of residuals.

the linear model prediction plus the ordinary kriging predic-
tion of the residuals, and σ is the kriging variance).

2.2.5 Cross-validation

The performances of the different methods were assessed by
5× 10-fold cross-validation and by moving-window cross-
validation (Kasemsumran et al., 2006). For the 5× 10-
fold cross-validation method, data were randomly split into
10 subgroups and predictions were carried out 10 times; each
time one group is used for validation and nine are used for
modelling the variable of interest (i.e. AM_z) at the vali-
dation locations. This process is then repeated five times,
obtaining a total of 50 realizations. The moving-window
cross-validation (MWCV) was carried out with cell sizes
of 200 km× 200 km (total number of windows= 197). Grid
cells within a window are removed, and an AM is predicted
with the rest, then errors are calculated and the process is re-
peated with another window until all windows are covered.
Some restrictions to the validation set were used to avoid

errors during kriging methods (i.e. number of grids in the
validation set higher than 1; var(log[U])> 0; and geological
units of the validation set must also be in the model set).

The accuracy of the different methods was assessed us-
ing six indicators: the mean absolute error (MAE), the root-
mean-square error (RMSE), the root-mean-square log er-
ror (RMSLE), the index of agreement (IA), the percentage
bias (PB), and the coefficient of determination (R2) (Eqs. 18–
23).

MAE=
1
n

n∑
i=1

|Zi −Xi | (18)

RMSE=

√√√√1
n

n∑
i=1

(Zi −Xi)
2 (19)

RMSLE=
1
n

n∑
i=1

(log(Zi + 1)− log(Xi + 1))2 (20)
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Table 3. ANOVA table for indoor radon concentration.

df Sum sq. Mean sq. F value Pr (>F )

log(U) 1 1457.8 1457.77 2461.303 < 2.2× 10−16,∗∗∗

log(K2O) 1 1483.6 1483.58 2504.891 < 2.2× 10−16,∗∗∗

Sim. geology 27 868.1 32.15 54.228 < 2.2× 10−16,∗∗∗

Residuals 25337 15006.5 0.59

Significance codes: ∗∗∗ denotes p values< 0.001; ∗∗ denotes p values< 0.01; ∗ denotes p values< 0.05; a
full stop denotes p values< 0.1; and for p values> 0.1 nothing is printed.

IA= 1−

n∑
i=1
(Zi −Xi)

2

n∑
i=1

(∣∣Xi −X∣∣− ∣∣Zi −X∣∣)2 (21)

PB= 100

n∑
i=1
(Zi −Xi)

n∑
i=1
Xi

(22)

R2
= 1−

n∑
i=1
(Zi −Xi)

2

n∑
i=1

(
Xi −X

)2 (23)

Here Zi and Xi are the predicted and measured values in the
validation location (Si), n the number of points in the vali-
dation group, and X the mean of Xi . MAE and RMSE are
commonly used for assessing model performance; however,
they may be influenced by outliers (Chen et al., 2017). RM-
SLE, on the contrary, is less sensitive to outliers and prefer-
able when there is a large range in the values (Janik et al.,
2018). These parameters are positive values, and the closer
they are to 0, the better the model fit is. IA is a standardized
measure of the degree of model prediction error; it varies
from 0 (no agreement at all) to 1 (perfect match). PB (%)
measures the average tendency of having larger/smaller pre-
dicted values than the observed ones. The optimal value is 0,
and positive/negative values indicate over/underestimation
bias (Janik et al., 2018). Finally, R2 is a measure of how well
the model fits a dataset; a perfect model has R2

= 1 (Alexan-
der et al., 2015).

3 Results and discussion

3.1 Cross-validation

The 5× 10-fold cross-validation (Fig. 8 and Table 4) shows
that geostatistical techniques (i.e. OK, CCK, RK), which take
into account the spatial autocorrelation of the data, generally
perform better (i.e. lower MAE and RMSLE and higher R2)
than IDW. However, they have a tendency to overestimate
bias (PB> 0). Then, geostatistical results are slightly im-
proved when geological information is added. The model

Figure 8. Box plot of the 5× 10-fold cross-validation results.

which has the highest R2 is RK (median= 0.2462), fol-
lowed by CCK (0.2460) and OK (0.2377). RK is also the
geostatistical technique with higher IA (0.6014) and lower
PB (2.513), and it has similar MAE and RMSLE as OK and
CCK (around 47 and 0.36, respectively).

Similar results are obtained in the MWCV exercise (Ta-
ble 5). Geostatistical techniques (i.e. OK, CCK, RK) also
have the highest R2 and the lowest MAE and RMSLE. How-
ever, in these cases the RK bias is close to 0 (PB=−0.98),
while OK and CCK overestimate the values. MWCV also
suggests that results are slightly improved when geogenic
factors are taken into account: e.g. R2 increases from
0.3457 (OK) to 0.3512 (CCK) and then to 0.3687 (RK); and
the highest IA is obtained with RK (0.4531). However, sim-
ilar MA, RMSE, and RMSLE were also found (around 54,
136, and 0.48, respectively), which indicates the difficulty of
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Table 4. The 5× 10-fold cross-validation results.

Method MAE RMSE RMSLE IA PB R2

IDW 50.07 113.44 0.4189& 0.5755 −0.346 0.2352
OK 46.98 112.10 0.3728 0.5680 4.785 0.2377
CCK 46.62 111.64 0.3711 0.5741 5.326 0.2460
RK 47.41 111.73 0.3744 0.6014 2.513 0.2462

Table 5. Moving-window cross-validation results.

Method MAE RMSE RMSLE IA PB R2

IDW 57.756 138.33 0.5457 0.4116 −1.899 0.1001
OK 53.926 136.60 0.4765 0.4142 3.758 0.3457
CCK 53.990 136.28 0.4870 0.4033 2.851 0.3512
RK 55.573 136.41 0.4863 0.4531 −0.980 0.3687

predicting an average indoor radon concentration even when
secondary variables are added.

3.2 Indoor radon predictions

Radon predictions with the different methods range from
minimum values of 1–4 Bq m−3 to up to 10 116 Bq m−3,
while the mean values are of the order of 95–105 Bq m−3

(Table 6). The very high value of an AM (i.e. 10 116 Bq m−3)
seems improbable, although the grid is in a region with ura-
nium deposits and former uranium mines (border region be-
tween Spain and Portugal). This cell has only two measure-
ments (i.e. 9726 and 10 507 Bq m−3), so that the level of
reliability of this extremely high AM is therefore low and
it would probably decrease if the number of data were in-
creased. In this sense, IDW interpolation, which gives an ex-
act interpolation when the distance between the predicted and
measured points is zero, estimates a value that is the arith-
metic mean (i.e. 10 116 Bq m−3). Nevertheless, when the
spatial autocorrelation between cells is considered (i.e. OK,
CCK, and RK), the predicted values, although also high, are
reduced to 2500–2800 Bq m−3. These latter values may be
more realistic and are similar to average values found in some
villages of the region (i.e. 1851 Bq m−3 in Villar de la Yegua,
Spain; Sainz et al.. 2010). However, this effect shows the dif-
ficulties with predicting an AM when the number of mea-
surements in a grid cell is low. Geostatistical techniques may
help to overcome some of these limitations, although the reli-
ability of data because of different numbers of measurements
(e.g. grids with only one or two and others with more than
20–30 measurements) is still a problem. It is also not clear
whether in an “anomalous area” such as the one cited above,
where the geological conditions are particular, the covariance
function (or the variogram), which has been estimated from
all data, still applies. One can assume that in such a region
2nd-order stationarity is violated. But the accuracy of local
prediction depends very much on the local covariance model.

Table 6. Summary of indoor radon predictions (AM, ground floor).

Method Min Q1 Median Mean Q3 Max SD

IDW 1 52 84 105 129 10 116 115.14
OK 4 52 80 95 120 2546 67.40
CCK 3 51 79 95 121 2768 69.33
RK 3 51 79 98 123 2661 73.81

Small differences may be appreciated in the predictions
of the different interpolation techniques (Fig. 9). IDW and
OK are methods that rely on the Rn data only, while CCK
and RK use additional predictors (i.e. geology, U and K2O
concentration in the ground) as secondary variables. The first
type is weak in areas with no conditioning data as it simply
interpolates between existing ones, ignoring physical reality
in these areas (e.g. south Italy, north-east Germany). Includ-
ing it is the rationale of the second type; practically, missing
conditioning data of the primary variable (Rn) are substituted
by functions of the secondary variables. Although certainly
more reasonable in the physical sense, this type is analyti-
cally more complicated.

The influence of geogenic factors on indoor radon is well
known and normally used for radon mapping (e.g. Casey et
al., 2015; Elío et al., 2017; Pásztor et al., 2016; Scheib et al.,
2013; Tondeur et al., 2014). In our cases, an ANOVA (Ta-
ble 3) shows that the total indoor radon variance explained
by U, K2O, and geology is about 20 % (7.75 %, 7.88 %,
and 4.61 %, respectively). Uranium is a source of radon in
soil, and thus a positive association with indoor radon is ex-
pected (e.g. Appleton et al., 2008; Ferreira et al., 2018). How-
ever, the Pearson’s correlation coefficient between indoor
radon and uranium concentration in topsoil is relatively low
(r = 0.2783), which implies that CCK estimations with U as
the secondary variable are still mainly based on the primary
variable (i.e. AM; Rocha et al., 2012). Therefore, although
CCK performs slightly better than OK, spatial predictions
are similar (Fig. 9).

Geology is associated with both uranium and radon
sources and with physical properties which permit the re-
lease of radon from the soil matrix and its transport in the
environment (e.g. mineralogy, porosity, permeability). The
total indoor radon variance explained by geology is normally
of the order of 5 %–25 % (Appleton and Miles, 2010; Bor-
goni et al., 2014; Miles and Appleton, 2005; Tondeur et al.,
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Figure 9. Indoor radon predictions (AM (Bq m−3), ground floor).

2014; Watson et al., 2017), although it depends on the geo-
logical scale map (i.e. increase with the scale; Appleton and
Miles, 2010). A 4.64% of indoor radon variation explanation
is therefore reasonable, taking into account that we used a
simplified 1 : 5 million geological map and that data are av-
eraged over grids of 10 km× 10 km.

The positive correlation between indoor radon and potas-
sium is, however, not evident. K2O may be related to clay
content in soils (e.g. Barré et al., 2008; Milošević et al., 2017;
Tarvainen et al., 2005), and although the permeability of wet
clays is low, it may increase when soils are dried (Petersell et
al., 2005) as a consequence of building a house (Barnet et al.,
2008). This hypothesis should be tested since clay soils are
normally considered low risk although its radium concentra-
tion may be high (Maestre and Iribarren, 2018). We have de-
cided, however, to include this parameter in the model since
previous studies have shown a positive association between
indoor radon and K2O/clay (Forkapic et al., 2017).

Back-transforming predictions to the original scale is
a critical point of log-normal and trans-Gaussian kriging.

OK as given in this study solves this problem by using the La-
grange multiplier in the back-transformation. However, the
E[X] and Var[X] for CCK and RK are biased, unless the
true mean is known (although for RK it should be zero by
definition). These equations should also use the Lagrange
multiplier which appears in the kriging system (Chilès and
Delfiner, 1999; Matheron, 1974); but unfortunately in com-
mon geostatistical packages this parameter is not accessible,
and it is not easy to estimate it. Another problem with log-
normal kriging is that ill assessment of the kriging SD leads
to large errors in E[X] and Var[X] due to exponentiation, so
that variogram parameters must be estimated very carefully
(Armstrong and Boufassa, 1988). Deviations from station-
arity and uni- as well as multivariate log-normality are also
critical (Cressie, 1993; Roth, 1998). On the other hand, in
highly skewed quantities (as is typical for Rn and in fact for
many positive-definite environmental quantities such as con-
centrations) there seems to be little choice but to work with
transformed (e.g. log, Box–Cox, N score) variables.
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Table 7. Summary of indoor radon at the European scale.

Min Q1 Median Mean Q3 Max SD

AM (Bq m−3) 2.8 50.8 78.7 97.1 122.2 2661.4 76.1
SD (Bq m−3) 1.1 28.0 45.0 61.7 73.4 3232.7 76.7
RSD (%) 2.9 44.9 60.9 60.3 67.2 1101.0 22.8

Finally, a theoretical problem, if using kriging-type inter-
polators, it may be that input data are actually cell or grid
means (blocks in geostatistical language), treated as point
samples. The change-of-support problem, which is partic-
ularly unpleasant in log-normal kriging, may be alleviated
since the target supports are also the same. We regard input
data as point data at the cell centre, and we estimate points at
other locations that again represent cells of the same size.
However, the theoretical aspect remains to be clarified in
more depth. Taking into account all of these limitations and
weaknesses, the solution demonstrated here, however, repre-
sents an acceptable compromise between mathematical ex-
actness, numerical tractability, and complexity of the physi-
cal realm.

4 A pan-European indoor radon map

We would like to produce the Pan-European Indoor Radon
Map by minimizing data processing, and therefore we pre-
fer to estimate the radon average directly by indoor radon
measurements carried out at each grid (i.e. AM_z). How-
ever, if the number of measurements were low, the uncer-
tainty of this value could be high. In this sense, if dwellings
were randomly selected and therefore representative, which
is the condition for unbiased estimates of the mean and other
statistics, and the sample size large, the mean value and the
confidence interval would be (Eq. 24)

x =
1
n

n∑
i

xi ± t(1− α2 ,n−1)
s
√
n
. (24)

An additional condition for the validity of the confidence in-
terval is statistical independence of the data. For large n, due
to the central limit theorem, t1−α/2;n−1 can be approximated
by the normal score x1−α/2.

The confidence interval decreases when the sample size
increases. In our cases (Fig. 10), the relative (to the mean)
CI95 % (α = 0.05) for sample size of about 30–40 data is
around ±5 % and generally lower than 15 %–30 %. There-
fore, although the assumption of data independence is not
valid (i.e. there is spatial correlation between indoor radon
measurements which can be modelled by the variogram),
30 measurements seems reasonable for obtaining a good es-
timation of the radon exposure in a specific grid (Fig. 11).
However, if sampled dwellings were highly clustered, the

Figure 10. Variation in the 95 % confidence interval of the arith-
metic mean according to the sample size (N ).

AM could be not representative of the radon exposure in a
grid even with high numbers of indoor radon measurements.

For the final Pan-European Indoor Radon Map (Table 7
and Fig. 12), we therefore use the AM of the grid cells with
30 or more measurements (Fig. 11) and the value predicted
by RK (Fig. 9) in the cells with fewer than 30 measurements.
Indoor radon concentration ranges from 3 to 2662 Bq m−3,
with a mean value of 98 Bq m−3. The standard deviation may
be calculated with the SD of the measurements carried out in
the grids with 30 or more data and with the kriging standard
deviation of the RK (i.e. grids with fewer than 30 measure-
ments). It ranges from 1 to 3233 Bq m−3, with a RSD from
3 % to up to 1101 %. The map appears “noisy” to varying de-
grees between different regions. The reason is that in regions
with more conditioning, Rn data, local variability of the es-
timate is higher than in regions with sparse or without data,
where the estimate is based essentially on geology and geo-
chemistry. These covariates are much smoother on the scale
available to us than Rn data, where available. Were we to dis-
pose of denser geochemical data and higher-resolution geo-
logical maps, these regions would also appear noisier.

5 Conclusions

After more than 10 years of collecting and processing Rn
data, with the support of 32 European countries, we could
cover approximately 50 % of the continent with 10 km× 10
km grids containing the mean indoor radon concentration in
ground floors of dwellings. However, completing the Euro-
pean Indoor Radon Map still requires a significant effort by
the participating countries since a robust estimation of the
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Figure 11. Grids with 30, or more, indoor radon measurements (N = 4173; AM: arithmetic mean in becquerels per cubic metre; RSD: relative
standard deviation in percent).

Figure 12. Final Pan-European Indoor Radon Map.

radon exposure in a grid of 10 km× 10 km involves at least
30 indoor radon measurements and, at the time of writing
this article, most of the grids cells sampled (78 %) have fewer
than 20 dwellings tested. Interpolation techniques which take
advantage of the contiguity of Rn seen as a spatially random
field may help to overcome some of the present limitations
and would permit estimation of radon exposure at the Euro-
pean scale until the coverage of all of Europe with indoor
radon measurements has strongly improved.

Of the four methods tested in this study, regression krig-
ing (RK), using a simplified geological map and the topsoil
concentration of U and K2O, has proven to be the best one for
predicting mean indoor radon concentrations over grids of
10 km× 10 km (i.e. arithmetic mean, ground floor). By com-
bining RK predictions with empirical average values (AM)
in grids with 30 or more measurements, a Pan-Europe In-

door Radon Map has been created. The map represents the
average value of indoor radon concentration on the ground
floor, and thus it is not representative of the radon exposure
to European citizens since most people do not live on the
ground floor (Cinelli et al., 2019). However, it is the first step
towards a radon exposure map and, in the future, a dose map.
Based on demographic and sociological databases, we plan
to develop models which allow correction from ground-floor
dwellings to the real situation, accounting for the building
stock (Bossew et al., 2018).

The Pan-European Indoor Radon Map is not a finished
map, and it will be upgraded as new data become available. In
future versions a larger scale of the geological map (e.g. scale
1 : 1 million), as well as other geogenic factors which may
influence the indoor radon concentration (e.g. soil units,
aquifer types), would be included in the model. Furthermore,
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the influence of anthropogenic factors and those which may
affect building characteristics and living styles (e.g. average
temperatures, annual precipitation, altitude) will be analysed.
Finally, machine-learning techniques are viewed as promis-
ing methods for modelling the AM since kriging-type pre-
dictions come to an end if many (intercorrelated) predictors
are involved.
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