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Abstract. Land use and land cover change can increase or
decrease landslide susceptibility (LS) in the mountainous ar-
eas. In the hilly and mountainous part of southwestern China,
land use and land cover change (LUCC) has taken place
in the last decades due to infrastructure development and
rapid economic activities. This development and activities
can worsen the slope susceptible to sliding due to mostly the
cutting of slopes. This study, taking Zhushan Town, Xuan’en
County, as the study area, aims to evaluate the influence
of land use and land cover change on landslide susceptibil-
ity at a regional scale. Spatial distribution of landslides was
determined in terms of visual interpretation of aerial pho-
tographs and remote sensing images, supported by field sur-
veys. Two types of land use and land cover (LUC) maps,
with a time interval covering 21 years (1992–2013), were
prepared: the first was obtained by the neural net classifi-
cation of images acquired in 1992 and the second by the
object-oriented classification of images in 2002 and 2013.
Landslide-susceptible areas were analyzed using the logis-
tic regression model (LRM) in which six influencing fac-
tors were chosen as the landslide susceptibility indices. In
addition, the hydrologic analysis method was applied to op-
timize the partitioning of the terrain. The results indicated
that the LUCC in the region was mainly the transformation
from the grassland and arable land to the forest land, which
is increased by 34.3 %. An increase of 1.9 % is shown in
the area where human engineering activities concentrate. The

comparison of landslide susceptibility maps among different
periods revealed that human engineering activities were the
most important factor in increasing LS in this region. Such
results emphasize the requirement of a reasonable land use
planning activity process.

1 Introduction

Landslide constitutes one of the most hazardous geomor-
phic processes in the mountainous areas (Harris et al., 2001;
Karsli et al., 2009), which can result in serious injuries,
human casualties, and cause environmental and economic
damages every year (Fell et al., 2008; García-Ruiz et al.,
2010). It is, therefore, necessary to take landslide hazard
into account for public safety and the realization of safe
engineering projects (Fell et al., 2008; Gioia et al., 2015).
Because landslides are the result of the complex spatial–
temporal interaction of many factors (Pisano et al., 2017),
numerous environmental factors (e.g., topography, lithology
and hydrology) have been defined as the main criteria in
the literature (Guzzetti et al., 2006a; Nandi and Shakoor,
2009; Pourghasemi and Rossi, 2017). Moreover, some stud-
ies have indicated that human-induced land use and land
cover change (LUCC) contributes significantly to the ini-
tiation and reactivation of landslides (Guillard and Zêzere,
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2012; Galve et al., 2015; Meneses et al., 2019), especially in
populated regions, where landslides represent a major risk to
infrastructure, human settlements and people (Pinyol et al.,
2012; Abancó and Hürlimann, 2014). So this factor should
not be ignored in the landslide risk reduction process, par-
ticularly against the background of adaptation to sustainable
natural hazard risk management (Promper et al., 2015; Wang
et al., 2018).

LUCC often implies modifications in both the natural and
social systems (Promper et al., 2015; Lopez-Saez et al.,
2016), in particular to changes in vegetation cover (Tasser
et al., 2003; Schmaltz et al., 2017), undercutting of slopes
(Scalenghe and Marsan, 2009), surface sealing or changes of
drainage system (Ghestem et al., 2011, 2014), all of which
can potentially influence landslide hazard processes – for ex-
ample, the phenomenon that mountainous areas with forest
cover typically appear to be less susceptible to shallow land-
slides than unforested mountain slopes as described in many
studies such as Cruden and Miller (2001), Beguería (2006)
and Galve et al. (2015). Similarly, deforestation as a result of
human activities, e.g., road and/or railway construction, un-
dercutting of slopes and development of settlement areas in
steep mountainous areas increases the vulnerability to land-
slide hazards (Glade, 2003; Bruschi et al., 2013). All these
modifications may lead to an increase in landslide events
(Cervi et al., 2010; Piacentini et al., 2012; Reichenbach et al.,
2014). Thus, it is of utmost importance to link land use plan-
ning activity with landslide risk assessment (Glade, 2003;
Van Westen et al., 2006; Fell et al., 2008). For single slopes
and at local scales, the impact of the plant root or the spa-
tial distribution of LUC on landslides have been evaluated
using various methods, including digital photogrammetric
techniques (Karsli et al., 2009), microstructure analysis (Gh-
estem et al., 2011), laboratory shear tests (Ghestem et al.,
2011), numerical modeling approaches (Mao et al., 2014)
and so on. From the perspective of the regional scale, within
an effective hazard mitigation planning, the landslide suscep-
tibility (LS) is usually considered as the initial work (Chen et
al., 2016; Zhou et al., 2018) which can be used to reflect the
degree to which a terrain unit can be affected by future slope
movements (Van Westen et al., 2008; Lombardo and Mai,
2018). The importance of the influence of LUCC in landslide
susceptibility analysis at a regional scale has been noted by
several authors (Reichenbach et al., 2014; Pisano et al., 2017;
Meneses et al., 2019).

During the past decades, various techniques incorporat-
ing Geographic Information System (GIS) along with re-
mote sensing (RS) technologies have been widely used to
map slope stability, e.g., quantifying landslide hazards in re-
lation to LUCC (Meneses et al., 2019), use of the spatial
statistical analysis (Kayastha, 2015), aerial photogramme-
try (Karsli et al., 2009; Bruschi et al., 2013), use of space-
borne optical sensors data (Taubenböck et al., 2011; Li et al.,
2019) and time-lapse photography for soil aggregate stability
(Ymeti et al., 2017). For such studies, in general, the selec-

tion of meaningful mapping units is a basic step because it
is of great importance for susceptibility zonation. A mapping
unit refers to a portion of land surface with analogous geo-
logic and/or geomorphic properties (Guzzetti et al., 2006b),
which can broadly be summarized into four categories: grid
cells, slope units (SU), terrain units (TU) and unique condi-
tion units, of which grid cells and SU are the most widely
used (Van Den Eeckhaut et al., 2009; Rotigliano et al., 2012;
Chen et al., 2016). Each category of mapping units presents
advantages and disadvantages. Despite the long-term efforts
by researchers, the adoption of the best mapping unit still
remains a conceptual problem and an operational challenge
(Guzzetti et al., 2000; Alvioli et al., 2016). In addition to
the extensive discussions about this subject (Guzzetti et al.,
1999; Aleotti and Chowdhury, 1999; Brenning, 2005), sev-
eral authors have provided examples where different map-
ping units were tested for the same area (Van Den Eeckhaut
et al., 2009; Rotigliano et al., 2012). We can see that mostly
the current trend of using grid cells is unjustified (Schlögel
et al., 2018), especially considering that single-cell values
are less representative for phenomena involving a portion or
whole slopes (Camilo et al., 2017); rather, slope unit consid-
ers the totality of the slopes where the landslides occurred,
which can forecast the locations of future independent land-
slides.

In Zhushan Town, land use and land cover change have
been taking place in the last decades due to infrastructure
development and rapid economic activities. These processes
have also caused changes in the geological environment,
mainly in three aspects: (i) steepening of slopes by under-
cutting and backfilling during construction of infrastructures
and residential structures on the hill slopes, (ii) destruction
of cultivated and forest lands due to local mining activities,
and (iii) construction of a hydropower facility near the ur-
ban area (the Shuanglong Lake Reservoir built in 1992). The
change in the seepage conditions along the reservoir bank
slopes’ water level fluctuations has a great impact on the sta-
bility of the slopes on both sides of the reservoir. The aim of
this study is thus to explore the relationship between LUCC
and regional landslide susceptibility. It is of utmost impor-
tance to know the land cover and land use processes, which
are responsible for landslide susceptibility so that preventive
measures can be implemented from the beginning. Landslide
inventory was carried out, and influencing factors were de-
termined. Different LUC maps for three periods with a time
interval covering 21 years (1992–2013) were prepared using
remote sensing techniques. Finally, landslide susceptibility
assessment was carried out in GIS and subsequently com-
pared to evaluate the impact of the LUCC during this period.
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2 Materials

2.1 Study area

2.1.1 General description

Xuan’en County in the southwest of Hubei Province (China)
was selected as the study area, which is about 45 km away
from the Enshi city (Fig. 1). The study area lies within
longitude 109◦11′–109◦55′ E and latitude 29◦33′–30◦12′ N.
Zhushan Town is located in northwestern Xuan’en County
with an area covering approximately 49 km2. The region be-
longs to the extension of the Wuling and Qiyue mountains
and is surrounded by middle and low mountains. The ele-
vation ranges between 350 m and 2015 m a.s.l. (above sea
level), which is characterized as higher in the northwest and
lower in the southeast. The region is situated at the end
of the syncline core, which extends along the NE–SW di-
rection. The geological formation presents the sedimentary
rocks from Cambrian to Cretaceous and the loose Quaternary
deposits. The outcrop of the strata in Xuan’en County largely
consists of the Badong formation of middle Triassic (T2b),
sandstone, claystone and limestone, and the Quaternary de-
posits. At this geological structure, there is a joint system of
NE and NW directions which affected the integrity of the
rock mass.

The climate of the study area is a subtropical monsoon.
Precipitation varies locally due to elevation differences. In
the town with an elevation below 800 m, the average annual
rainfall is about 1500 mm, which gradually increases with
an increase in altitude. When the elevation is above 1200 m,
the average annual rainfall exceeds 1800 mm. The Gong-
shui River is the mainstream which drains the area, with the
Shuanglong Lake Reservoir built across the river.

2.1.2 Urbanization and human engineering activities

Before the 1980s, there were small numbers of settlements in
Xuan’en County. With the rapid development of the economy
in the last two decades, expansion of settlement areas took
place very quickly, such as the construction of highways, and
nearly doubled the number of industrial and civil structures.
By the earlier 1990s, Zhushan Town had increased signifi-
cantly, of which the urban area mainly concentrated on the
northern side of the Gongshui River valley. Most parts of the
area surrounding settlements were deforested, bare or cul-
tivated. With the constructions of infrastructures, especially
along the No. 209 national highway, the traffic condition has
been significantly improved. Tourism has gradually become
an important economy. Currently, Zhushan Town has become
the political and economic center of the county, and the set-
tlement area has expanded not only on both the sides of the
river but also on the mountainous areas outside the valley.
The urban area has grown from the initial 0.5 km2 to nearly

7 km2 with a recent estimate of 75 000 residents, making it
the most densely populated center.

During the process of urbanization in recent decades,
many engineering activities carried out in the area have
changed the original topography. Although the urbanization
process has improved the local economy, the LUCC caused
by construction activities has also become one of the main
factors influencing slope deformation and failure.

2.2 Data sources

The data used in the study mainly include (i) a topographic
map, (ii) a geological map, (iii) landslide reports, (iv) aerial
photographs and (v) remote sensing images. Details of data
sources are shown in Table 1.

3 Methodology

3.1 Land use and land cover mapping

Satellite remote sensing techniques are generally used to ob-
tain land use and land cover information. The key step in this
process is image classification (Shrestha et al., 2019). For
land cover change analysis, it is more logical to use the same
analysis method for processing the images from different
years. However, the quality of the RS data, which is mainly
associated with the spatial resolution of the data, should also
be taken into account to have better results. In the 1990s the
highest spatial resolution of multispectral images was 30 m
(Landsat TM), which allows optimal pixel-based classifica-
tion. With the development of high-resolution RS images,
object-oriented techniques, using a polygon entity as the ba-
sic unit, provide a widely used method for information pro-
cessing (Blaschke, 2010; Bayramov et al., 2016; Ymeti et al.,
2017). Therefore, for the present study, both the pixel-based
and the object-oriented methods were chosen for the classifi-
cations of images obtained in 1992, 2002 and 2013.

Three sets of RS images were prepared to obtain the LUC
maps of different years: Landsat 4–5 TM images from 1992,
and SuperView-1 images from 2002 and 2013. For the Land-
sat 4–5 TM images, the normalized difference vegetation in-
dex (NDVI) (Huang et al., 2018) and normalized difference
water index (NDWI) (Li et al., 2019) were obtained using
ENVI software. After this, the first five spectral bands (wave-
length ranges of 0.45–0.52, 0.52–0.60, 0.63–0.69, 0.76–0.90
and 1.55–1.75 µm, respectively), as well as the NDVI and
NDWI, were used for neural net classification. For classifica-
tion, the training samples were taken using the regions of in-
terest determined by visual interpretation. The logistic func-
tion was determined as the activation. The number of hidden
layers was set to 1, and the training rate was set to 0.5. The
termination condition was set to 10−4, and the number of
training iterations was set to 500. For the SuperView-1 im-
ages, the multiscale segmentation was performed based on
eCognition software (http://www.ecognition.com/, last ac-
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Figure 1. The location of the study area. (a) The location of Hubei Province in China. (b) The location of Xuan’en County in Hubei Province.
(c) The digital elevation model (DEM) showing the basic terrain conditions.

Table 1. The sources and characteristics of the data used in the paper.

No. Data Scale Resolution Source Purpose

1 Topographic map 1 : 50000 10 m
China Geological Survey (Wuhan Center)

Landslide influencing
2 Geological map 1 : 100000 20 m factor maps

3 Landslide reports – – China Geological Survey (Wuhan Center)
4 Aerial photographs – 2048× 1536 dpi DJI drone Landslide inventory
5 Google Earth images – 30 m Google map

(https://google-earth.en.softonic.com/,
last access: 25 June 2019)

6 RS images – 30 m Landsat 4–5 TM (28 August 1992)
LUC maps

7 RS images – 2 m
SuperView-1 (25 September 2002
and 20 September 2013)

cess: 3 July 2019). The parameters were set as follows:
(i) scale parameter – 200; (ii) band weight – blue 1, green 1
and red 1; (iii) shape – 0.6; and (iv) compactness – 0.4. Then,
considering the average brightness, length–width–height ra-
tio, and shape index of the object as the features, the nearest-
neighbor classification was carried out, where the way to ob-
tain the region of interest (ROI) was similar to that used for
the classification of Landsat images.

3.1.1 Pixel-based analysis: neural network (NN)
classification

The neural network algorithm compares pixels to one an-
other and those of known identity and then assigns groups
of identical pixels into classes that match the informational
categories of user interest (Abdul-Qadir, 2014). Among
numerous NN models developed for pattern recognition
(Berberoglu et al., 2000; Aitkenhead et al., 2008), BP neu-
ral network (BPNN) is the most commonly used. The basic
element of a BPNN is the processing node and the intercon-
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nections between each node, which has an associated weight
(Lee et al., 2004). These nodes are organized into layers, and
each layer is fully interconnected to the following layer in
general. Each BPNN consists of three or more interconnected
layers: input layer (i.e., the first layer), output layer (i.e., the
final processing layer) and hidden layer (between the input
layer and output layer). The user defines the number of hid-
den layers as well as the nodes within each layer.

Each pixel in the image has its own specific LUC informa-
tion. Although it is impossible to state the clear LUC charac-
teristics of all pixels, we can still determine the LUC proper-
ties using statistics or fieldwork data which are used in defin-
ing the region of interest, and their LUC information are ex-
tracted directly from the image as the training dataset of the
BPNN. This dataset is input into the nodes of the first layer,
and each processing node sums the values of its weighted
inputs. The summed input signals are then transformed and
passed to the nodes in the next layer in a feed-forward man-
ner. After each training process, the output results are com-
pared with the actual LUC values, and the errors are returned
to the input layer for correction. Therefore, with the constant
iteration of the training process, the final classification accu-
racy is improved gradually.

3.1.2 Object-oriented analysis: multiscale
segmentation and nearest-neighbor classification

The high-resolution satellite imagery has a higher spatial res-
olution, but with a lower spectrum number, so the phenom-
ena “some objects with different spectra and different objects
with same spectrum” exist (Zhang and Tang, 2019). In such
images, pixels are smaller than the object, so the grouping of
pixels is possible to obtain real-world homogeneous features
(Blaschke, 2010; Ymeti et al., 2017). After the grouping, the
smallest unit of the image in the classification process is not
a pixel but the image object. It should be noted that spectral
information, as well as the geometric and structural infor-
mation, should be all considered for subsequent analysis and
processing.

Multiscale segmentation is a bottom-up image segmenta-
tion method based on two–two region merging techniques.
It can perform multiple and continuous merging of pixels
and ensure good homogeneity of all pixels in the same ob-
ject in the image. Three important parameters are influenc-
ing the segmentation results: scale, band weight and shape.
The scale factor can determine the size of the object after the
segmentation, as well as the final accuracy of the extracted
information. The band weight can determine whether a spe-
cific band in the image is considered in the segmentation and
the degree of the influence of this band. The shape factor can
ensure the shape integrity of the object.

The eCognition software was selected as the tool for mul-
tiscale segmentation in this study, and the supervised clas-
sification based on the nearest-neighbor method was used.
Similar to pixel-based analysis, this method allows selecting

the region of interest for taking training samples. In addition,
it allows the description of samples in terms of the shape and
texture of the objects in the feature space. The classification
of the test object is determined by the nearest neighbor. The
distance between the test and sample objects can be calcu-
lated as follows:

l =

√√√√√∑
f

(
v
(t)
f − v

(s)
f

σf

)2

, (1)

where f is the order of the feature, v(t)f represents the feature
values of the test object, v(s)f represents the feature values
of the sample object, and σf is the standard deviation of the
feature.

3.2 Logistic regression model

Numerous models have been developed to perform landslide
susceptibility assessment, including heuristic, deterministic,
statistical and machine learning models (Huang et al., 2017).
Considering the objective of the study is to observe the im-
pact of LUCC in terms of their propensity to landslide ini-
tiation, a single multivariate statistical classification model
is suitable. Therefore, we prepared the logistic regression
model (LRM) to link the dependent variable expressing land-
slide probability with the independent variables (landslide in-
fluencing factors).

For landslide susceptibility assessment, the logistic regres-
sion model is a commonly used statistical technique that in-
volves one or more independent explanatory variables to ex-
tract the empirical relationships from observations (Zhou et
al., 2018). In particular, through the addition of a suitable link
function to the usual linear regression model, variables in the
model may be either continuous or discrete, or any combina-
tion of both types, and they do not necessarily have normal
distributions (Lee, 2005), which gives it an advantage over
linear and log-linear regressions. Ozdemir and Altural (2013)
and Lee (2005) have explained the detailed formula in the
case of landslide susceptibility studies, which is denoted as
follows:

Y = a+ b1X1+ b2X2+ b3X3+ ·· · + bmXm, (2)

Y = log it (P )= ln
(

P

1−P

)
, (3)

p =
eY

1+ eY
, (4)

where X1, X2, . . . ,Xm are predictor variables, and Y is a lin-
ear combination function of these variables that represents a
linear relationship. If Y is used as a binary variable (0 or 1),
then the value 0 or 1 represents the absence or presence of
a landslide, respectively. The parameters a, b1, b2, . . . , bm
are the regression coefficients that must be estimated, among
which is the intercept, and b1, b2, . . . , bm are the coefficients
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that measure the contribution of the independent variables
(X1, X2, . . . ,Xm) to the variations in Y ; P is the probability
that the target variable (Y ) is 1; P/(1−P) is the so-called odd
or frequency ratio. Through this process, the model can es-
tablish a functional relationship between binary-coded land-
slide events and the different factors used for landslide sus-
ceptibility assessment (Yalcin et al., 2011).

After the analysis of the relationship between the landslide
and the predictor variables, the value of P can be consid-
ered as the landslide susceptibility index (LSI). In this study,
the LSIs were divided into four classes, e.g., very high, high,
moderate and low, according to the reasonable thresholds of
LSI determined by the natural break method.

3.3 Receiver operating characteristic (ROC) curve

Although the statistical methods can evaluate the model per-
formance effectively, such as the frequency ratio (FR) index,
they require reclassification of landslide susceptibility index
values, and the change in the different breakpoint values can
result in different evaluation results. To remedy this, the re-
ceiver operating characteristic (ROC) curve is more com-
monly used to evaluate landslide susceptibility results due
to the cutoff independence of it.

Several indices can be used to evaluate landslide-prone
area classification in the ROC method, including the true pos-
itive (TP) rate, true negative (TN) rate, false positive (FP)
rate, false negative (FN) rate, sensitivity and specificity
(Fig. 2a). In simple terms, if a model predicts a positive value
of a given variable (event forecast) and the value of the vari-
able is actually positive (event), a false positive prediction is
obtained. In contrast, if the value of the variable is actually
negative (no event), a FP prediction is obtained (Corsini and
Mulas, 2017). TN and FN predictions are classified follow-
ing similar logical combinations. Based on this, the sensitiv-
ity (Sen), i.e., the percentage of correctly classified landslide
cases, and the specificity (Spe) can be determined as follows:

Sen=
“Number of TP”

“Number of TP”+ “Numberof FN”
, (5)

Spe=
“Number of FP”

“Number of FP”+ “Number of TN”
. (6)

The Sen is also considered the true positive rate, and the
value (1−Spe) is the rate of false positives (Melchiorre et
al., 2008). Generally, high sensitivity indicates a high number
of correct predictions, whereas high specificity (low 1−Spe
difference) indicates a low number of false positives (Mo-
hammady et al., 2012). Hence, the Sen of the model is plotted
against 1−Spe to obtain the ROC curve, and in most cases
the area under the curve (AUC) is utilized to evaluate the
prediction ability of models. The model is considered better
if the value of AUC is larger (Fig. 2b).

3.4 Slope unit

The slope unit is defined as one slope part, or the left/right
part of a watershed, representing the region of space delim-
ited between ridges and valleys under the constraint of ho-
mogeneous slope aspect and steepness distributions. It can
avoid the shortcomings of low geomorphological representa-
tiveness of grid-based susceptibility mapping (Camilo et al.,
2017). Hence, we adopted the slope unit as the mean of land-
slide susceptibility in this study.

The slope unit can be drawn manually from topographic
maps or can be delineated automatically using specialized
software (Alvioli et al., 2016). According to the prevalent
methods provided by the literature (Xie et al., 2004; Reichen-
bach et al., 2014; Schlögel et al., 2018), the slope units of the
study area were partitioned using a ArcGIS-based hydrologic
analysis method. Slope units were generated in steps as fol-
lows: (i) preparing the reverse digital elevation model (DEM)
by subtracting the original DEM from the highest elevation
of the study area; (ii) filling the original and the reverse DEM,
respectively; (iii) extracting the surface water flow direction
to distinguish areas with extremely rapid changes in surface
morphology; (iv) establishing the stream link for obtaining
the valley lines and ridge lines; (v) delineating the slope units
based on the valley and ridgelines. One of the advantages of
adopting slope units is that the computational burden is re-
duced due to a lower number of units compared with the
grid-based method (Camilo et al., 2017). Moreover, the slope
units make it possible to maximize the internal homogeneity
and the external heterogeneity of the slope aspect (Mashim-
bye et al., 2014; Schlögel et al., 2018).

3.5 Landslide mapping and analysis

3.5.1 Landslide mapping

In the simplest form, landslide inventory plays an essential
role in its susceptibility mapping (Kayastha, 2015), espe-
cially in the initial phase because it provides its spatial dis-
tribution (Tian et al., 2019). It can be done in a region us-
ing different techniques such as field surveys, satellite im-
age/air photo interpretation, and literature search for histor-
ical landslide records (Yalcin et al., 2011). The inventory
was carried out from a combination of (i) detailed reports
obtained from management institutes, (ii) visual interpreta-
tion of aerial photographs and remote sensing images, and
(iii) field surveys carried out in the period during April and
May 2013. To clarify their detailed information, we link the
landslide property database to the map, which includes the
descriptions of some data that cannot be digitized, e.g., the
amount, area and occurrence time of landslides.

3.5.2 Factors influencing landslides

The spatial distribution of landslide hazards is the combined
effect of different factors, including not only internal geolog-
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Figure 2. (a) Some indices used to evaluate the landslide-susceptible area classification in the ROC method; (b) the example of ROC and
AUC (source: Corsini and Mulas, 2017).

ical structures but also their external environmental settings.
In this study, six influencing factors were determined, i.e.,
slope gradient, aspect, slope shape, lithology, distance to the
reservoir and LUC. The thematic data were collected from
different sources. For example, topographic factors were
generated from elevation contour lines (1 : 50000 scale), and
lithology information was derived from the geological map
(1 : 100000 scale) obtained from the China Geological Sur-
vey. The urban planning map, which indicates the location of
the Shuanglong Lake Reservoir, was collected from the ad-
ministration department of Zhushan Town. The LUC maps
were obtained from RS images.

The study of the relationship between landslide events and
their triggering factors is a key step in landslide susceptibil-
ity assessment. In this study, this relationship was determined
by calculating the ratio of the number of units with land-
slide occurrence to the total amount of units in each class,
namely the distribution curve of the ratio. However, it should
be noted that the continuous variables (slope, aspect, etc.)
cannot be used directly as input data into the applied model in
this study. It is necessary to classify the continuous variables
into discrete classes to understand the effects of each variable
on landslide occurrence. This was done according to the dis-
tribution curve of the frequency ratios (Huang et al., 2017).
After the selection and preliminary analysis of these factors,
their independence test was performed. The results showed
that all the variables were highly uncorrelated to each other
(correlation coefficient of less than 0.2), and thus they were
considered very appropriate to take into account for landslide
susceptibility assessment.

Topographic factors

A digital elevation model was prepared by interpolating con-
tour lines at 10 m intervals from which topographic factors

including slope gradient, aspect, and slope shape were ob-
tained.

Slope angle (Fig. 3a), defined as the steepness of a sur-
face, is the major parameter of slope stability analysis which
can help us in understanding the characteristics of a basin for
runoff and erosion processes (Vasu and Lee, 2016). The slope
gradient of the study area varies in the range of 0–73.6◦ and
an average value of 21.3◦. The slope gradients were divided
into four categories: (i) flat to gentle (< 15◦), (ii) moderate
(15–25◦), (iii) steep (25–40◦), and (iv) very steep (> 40◦).
From the perspective of the spatial distribution, the flat-to-
gentle slope class is mainly situated along the banks of the
Gongshui River, while the surrounding mountainous areas
have steep to very steep slopes (slope gradients of 20 to 45◦).
Based on the statistical results of LRM, the locations where
landslides generally occurred are in the moderate slope class.
This can be explained by the fact that steeply sloping areas
are generally in high elevation areas where human activities
are minimal and nearly no landslide activities have been de-
tected in the inventory (Cervi et al., 2010; Zhou et al., 2018).

Aspect (Fig. 3b) is considered an important factor in land-
slide susceptibility assessment because of the role it plays in
microclimate and hydrology due to differences in exposure
to sunlight, winds, rainfall (degree of saturation) and discon-
tinuities (Yalcin et al., 2011). The slope aspect was divided
into eight categories. Statistical results using three years of
data in the study area revealed that landslides generally oc-
cur on the slope aspect within the range of 40–100◦.

Defined along the line of maximum slope, profile curva-
ture (Fig. 3c) affects the acceleration and deceleration of flow
and, therefore, influences subsequent erosion and deposition
(Regmi et al., 2010). However, the geological meaning of
the profile curvature is not clear. To remedy this, this study
classified the profile curvature map into three categories ac-
cording to the values of the slope profile curvature: (i) con-
vex, (ii) concave and (iii) straight (planar). These categories
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Figure 3. Influencing factors used in the landslide susceptibility modeling: (a) slope angle; (b) aspect; (c) profile curvature; (d) lithology;
(e) distance to reservoir.

represent different slope shapes. In general, concave slopes
are considered to be potentially landslide prone areas as they
concentrate water at the lowest point that can generate ad-
verse hydrostatic pressure, whereas convex slopes are more
stable than concave slopes because they disperse the runoff
more equally down the slope (Kayastha, 2015). This point
can be confirmed by the model used in this study.

Lithology

The landslide event has a close relationship with lithologi-
cal characteristics because different rock types have different

mechanical and hydrological properties (Van Westen et al.,
2008). The lithology map (Fig. 3d) of the study area was ex-
tracted from the geological map (1:100000 scale), which in-
dicated that the main strata consist of the Jialingjiang forma-
tion (T1j) of the lower Triassic (northwest of the urban area),
Badong formation (T2b) of the middle Triassic (most areas of
the region) and the Quaternary deposits (banks of the Gong-
shui River). From the perspective of the material types, the
T2b is a kind of clastic rock composed of marine-terrigenous
interdepositional mudstone, siltstone and marl (Deng et al.,
2017), and the T1j is a kind of carbonate rock composed of
marine depositional dolomite, dolomitic limestone and mi-
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crocrystalline limestone. Similarly, the Quaternary deposits
also have several components, such as alluvium, proluvium
and so on. According to the characteristics of engineering ge-
ological properties, these strata were differentiated into three
lithological units: (i) the Quaternary deposits; (ii) layered
clastic rocks and (iii) layered carbonate and clastic rocks. The
layered clastic rock types show the strongest positive impact
on the occurrence of landslides. More than 80 % of the to-
tal landslides occurred in the stratum of layered clastic rock,
although the amount of units of this category only accounts
for 38.3 % of the total units, which indicates that the Badong
formation is a landslide-prone stratum.

Distance to reservoir

The large-scale engineering infrastructures can change the
initial geological conditions, which can influence slope sta-
bility. In areas with abundant runoff, reservoir construction
is the most common infrastructure development activity to
utilize water resources, which significantly affects landslides
(Iqbal et al., 2018), such as in the case of the Three Gorges
Reservoir in China (Huang et al., 2017; Wang et al., 2018;
Zhou et al., 2018). To see the effect of the Shuanglong Lake
Reservoir construction on landslides, we prepared the dis-
tance to the reservoir (Fig. 3e), with a buffer distance of
200 m. The study area was divided into three categories of
distances to the reservoir: (i) < 200 m, (ii) 200–400 m and
(iii) > 400 m. Although the area belonging to the category
of (i) and (ii) only accounts for about 5 % of the whole re-
gion, the ratio of the units with landslide occurrences is larger
than the category of (iii).

Land use and land cover

Different LUC types may affect the stability of slopes be-
cause LUC can change the hydrological functioning of hill-
slopes, rainfall partitioning, infiltration characteristics, and
runoff production, and furthermore the shear strength of the
soil (García-Ruiz et al., 2010). Meanwhile, in contrast to sev-
eral environmental factors such as geological structure and
lithology, the LUC can change seasonally or in a short time
because of the influence from nature and human activities
(Reichenbach et al., 2014). Hence, for a region where the
LUC types can change quickly over a short period, the corre-
lation between LUC type and landslides should be defined to
assess the effect of LUC on the occurrence of landslides. For
the LUC maps, the evolution must be extracted through the
comparison from at least two different periods (Pisano et al.,
2017). In this study, a time interval covering 21 years (1992–
2013) was considered, which were divided into two ranges:
1992–2002 and 2002–2013. It should be noted that the maps
before 1992 were not provided because of the availability of
the RS images needed for the mapping procedure and the un-
developed urbanization at that time.

Table 2. The classification accuracies of LUC maps corresponding
to different years.

Year LUC PA UA OA Kappa
(%) (%) (%) (%)

1992

HEAL 98.4 99.5

95.6 93.9
Forest land 95.8 97.2
GAL 91.5 85.2
Barren land 94.5 97.5

2002

HEAL 87.8 90

92.3 88.8
Forest land 88.1 94.9
GAL 100 96.4
Barren land 83.3 62.5

2013

HEAL 87.5 87.5

89.3 83.4
Forest land 100 100
GAL 89.2 97.1
Barren land 91.7 73.3

4 Results

4.1 Land use and land cover maps

Classification results show various LUC types, but some of
the land cover types had to be combined for statistical anal-
ysis. For example, settlement areas, roads, and mining ar-
eas were combined and named human engineering activ-
ity land (HEAL). Since the land cover types, e.g., grass-
land and arable land (GAL) are covered by vegetation types
with a shallow root system, they were grouped into the same
LUC type. The area covered by trees was considered for-
est land. The remaining areas are classified as barren land.
Hence, the final LUC map of the study area has four classes:
(i) land with human engineering activities, (ii) forest land,
(iii) grassland and arable land, and (iv) barren land (Fig. 4).
The data were then integrated into an ArcGIS environment
where 2870 slope units have been delineated according to the
method described in Sect. 3.4. Finally, the characteristics of
the spatial distribution of different LUC types were indicated
based on slope units (Fig. 4d–f). The classification results
show an overall accuracy of more than 89 % for the LUC
classification in all the years (Table 2). The highest overall
classification accuracy of 96 % was obtained for 1992 with
the lowest (89 %) being in 2013. The LUC classification re-
sults provided a solid base for landslide susceptibility assess-
ment.

As shown in Fig. 5, barren land has decreased from 1992
to 2013, mainly because of the continued urbanization pro-
cess, leading to the conversion of barren land into construc-
tion activities, e.g., buildings, roads and so on. Similarly, the
area covered by grassland and arable land also shows a rapid
reduction. On the contrary, the areas by the category of (i)
and (ii) increased in this period, especially the forest land
from 34 % in 1992 to 68.3 % in 2013. Even though most stud-
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Figure 4. (a) The LUC map of 1992; (b) the LUC map of 2002; (c) the LUC map of 2013; (d) the LUC map of 1992 based on SU; (e) the
LUC map of 2002 based on SU; (f) the LUC map of 2013 based on SU.

Figure 5. The change in the area of different land use and land cover
types.

ies have revealed that regional forest degradation was more
likely to occur in the past decades (Karsli et al., 2009; García-
Ruiz et al., 2010; Galve et al., 2015), this was not the case in
this area. However, some studies show the increase in forest
land mainly due to migration of people and land abandon-
ment (Beguería, 2006) or due to strict management (Pisano
et al., 2017) and so on. Our study shows that deforestation
was severe before 1992, causing the disappearance of a large
number of natural forest lands. Because of the awareness of
environmental protection in the area since 2000, the environ-
mental problems have gradually been the focus point of the
decision-makers in China. The national policy of “returning
farmland to forest land”, which started in 1999, has resulted
in very positive outcomes. Besides, the development of the
tourism industry in the area also calls for better environmen-
tal management.
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Figure 6. The spatial locations of the landslides and the photos of different types of landslides in the study area. (a) The spatial locations
of the landslides. (b) The photo of the rock slide. (c) The photo of the composite soil slide–debris flows. (d) The photo of the shallow earth
slide.

4.2 Landslide inventory

The landslide inventory of the area (Fig. 6) revealed 53 land-
slides, among which 1 occurred in the period 1992–2002
and 10 occurred from 2002 to 2013. The total area occupied
by these landslides is 201.6× 104 m2, with a volume of ap-
proximately 1000× 104 m3. The depths of landslides range
from 1 to 15 m, among which more than 30 landslides have
a depth of less than 5 m and only 5 landslides have a depth
of larger than 10 m. Hence, shallow landslides are the most
important in the area. According to the type of movement,
material and estimated depth, most of the landslides are shal-
low earth slides, as well as composite soil slides and debris
flow (Cruden and Varnes, 1996). The deformation of many
landslides is characterized by cracks (Fig. 7), including ten-
sional ground cracks and bulging cracking. In the urban area,
the front undercutting of slopes caused the small-scale slid-
ing on the toe of landslides. For example, the Huanghexiang
landslide (HHXL, Fig. 6a), located 500 m northwest of the
Qingshui River, is a shallow earth slide, which occurred on
the slide-prone strata of the Badong formation (Deng et al.,
2017). Under the combined effects of strata and slope cut-
ting, the landslide was partially reactivated, causing cracks
and becoming a severe threat to residents.

4.3 Landslide susceptibility zonation

Results of the landslide susceptibility assessment are shown
in Fig. 8. The maps obtained by the logistic regression model

are shown in Fig. 8a, c and e, and the results of the weight-
of-evidence model (WEM; Regmi et al., 2014; Razavizadeh
et al., 2017) utilized as the comparative model are shown
in Fig. 8b, d and f. The ROC curves were applied to show
the accuracies of different models quantitatively, by plotting
the cumulative percentage of observed landslide occurrence
against the cumulative percentage from very high to low sus-
ceptibility with decreasing LSI values. As shown in Fig. 9
and Table 3, in all six cases, the AUC values are larger than
80 % (except for the result of 2002), showing high accuracies
of the landslide susceptibility assessment. By comparing the
results of different models in the same year, the logistic re-
gression model is better than the weight-of-evidence model
in our study. In particular, the change in the ROC curves,
sensitivity and specificity values of the weight-of-evidence
model in different periods is significant – e.g., the sensitiv-
ity values are 83.0 %, 70.8 % and 79.9 % for the years 1992,
2002 and 2013 respectively, while for the logistic regression
model the sensitivity values are 74.6 %, 75.0 % and 78.4 %
– which indicates that the performance of the logistic regres-
sion model is more stable than that of the weight-of-evidence
model.
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Figure 7. The deformation of the landslides in the study area. (a) The topography of the landslide (see Fig. 6a for location). (b) The cracks
on the road. (c) The uplift of the ground. (d) The topography of the landslide (see Fig. 6a for location). (e) The tension cranks on the ground.
(f) The cracks on the building.

Table 3. The accuracies of different models.

Model Year True True False False Sensitivity Specificity AUC
positive negative positive negative (%) (%) (%)
rate (%) rate (%) rate (%) rate (%)

Weight-of- 1992 1.4 66.2 32.1 0.3 83.0 67.3 81.3
evidence model 2002 1.2 76.7 21.6 0.5 70.8 78.0 78.8

2013 1.7 73.9 24.0 0.4 79.9 75.5 82.0

Logistic 1992 1.2 74.1 24.3 0.4 74.6 75.3 81.8
regression model 2002 1.3 75.9 22.4 0.4 75.0 77.2 84.0

2013 1.6 72.8 25.1 0.5 78.5 74.7 81.8

4.4 Evolution of LUC and landslide susceptibility

Maps of the LUC and landslide susceptibility in different pe-
riods were placed together to compare and clarify the tempo-
ral evolution of LUC and LS during the 21 years. It should be
noted that the logistic regression model shows a better perfor-
mance for landslide susceptibility assessment in this study, so
the subsequent analysis was carried out in the framework of
this model.

As seen in Fig. 10, during the period 1992–2002, the main
trend of LUCC is the arable land becoming forest land and
the barren land becoming arable land and forest land; in
particular, the area of barren land decreased, from 19.8 %
in 1992 to 0.2 % in 2002. In contrast, forest land increased
by 33.6 %. Except for the reasons stated in Sect. 5.1, data
quality should also be considered: the low-resolution images
of Landsat 4–5 TM result in poor classification between bar-
ren land and grassland covered by sparse vegetation. On the
contrary, the land with human engineering activities did not

change noticeably in terms of surface area and the number of
units. This is mainly because the urbanization process during
this period had concentrated mainly on the plain areas on the
banks of the river, which always belonged to one slope unit
class (flat terrain). Compared to 1992, the landslide suscepti-
bility in 2002 did change – 632 units increased their suscep-
tibility while 595 units decreased, accounting for 22.0 % and
20.7 %, respectively (Fig. 11). Further, if the magnitude of
the landslide susceptibility changes are subdivided into five
classes – visible increase (LS has increased by at least two
levels, e.g., from low to high), increase, constant, decrease
and obvious decrease (LS has decreased by at least two lev-
els) – it is clear that the number of the units of obvious in-
crease is also larger than that of obvious decrease, similar
to the overall change in landslide susceptibility. Such char-
acteristics of LS change indicate that the LUCC from 1992
to 2002 made Zhushan Town a more landslide-prone area.
The LUCC with obvious increase condition can be grouped
into three cases: (i) constant, (ii) areas with human engineer-
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Figure 8. The results of landslide susceptibility zonation: (a) LRM for 1992; (b) WEM for 1992; (c) LRM for 2002; (d) WEM for 2002;
(e) LRM for 2013; (f) WEM for 2013.

Figure 9. The ROC curves of (a) WEM and (b) LRM.
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Figure 10. (a) The transformation of LUC from 1992 to 2002;
(b) the transformation of LS from 1992 to 2002; (c) the transfor-
mation of LUC from 2002 to 2013; (d) the transformation of LS
from 2002 to 2013.

ing activities, and (iii) grassland and arable land. The cor-
responding number of units are 24, 36 and 40, respectively.
Two important LUC types for increasing LS in this period
would be the increase in human engineering activities and
the transformation from forest land to grassland and arable
land. Moreover, it should be mentioned that among these
units with an obvious increase in LS, no unit transfers from
the human engineering activities to other types. This indi-
cates that the impact of human engineering activities on the
LS is essential.

During the period from 2002 to 2013, the trend of LUCC
may be concluded as two aspects (Fig. 10): the first is the
slight increase in human engineering activities, mainly from
the transformation of grassland and arable land. Different
from the previous period, human engineering activities dur-
ing this period were no longer confined to the plain areas
but also to the other areas, e.g., the northwestern and south-
east part of the county, which was mainly covered by forest
land, or grassland or arable land before. The second is the in-
crease in forest land. Interestingly, the mutual transformation
between the category (ii) (forest land) and the category (iii)
(grassland and arable land) can also be seen in the northeast
of the region. This indicates that reasonable land use plan-
ning gradually developed in this region. In other words, the
residents were not interested in the increase in forest land
anymore but more in the location where reforestation should
take place. This shows the increase in people’s awareness of
environmental protection. As a result, the increase in forest
area can be seen around the town in 2013, unlike in 2002
when the area covered by arable land was larger. Such land

use planning can effectively protect the town from harsh-
environment problems (e.g., sandstorm, flood). As a result,
the landslide susceptibility of 441 units increased (15.4 %)
and that of 506 units decreased (17.6 %) in 2013. Compared
with 2002, these numbers are smaller, indicating that the in-
fluence of the LUCC during this period was lower than that
during 1992–2002. The units of obvious increase and ob-
vious decrease for landslide susceptibility in 2013 were 59
and 23, respectively, also smaller than that in 2002. The LS of
most units was constant during this period. This is mainly
because of the increase in human engineering activities be-
ing smaller and because of the limited impact of forest land,
grassland and arable land on the slope stability. Despite this,
the change in landslide susceptibility influenced by human
engineering activity land still existed. During that period,
a total of 195 units were transformed from other types of
LUCC to human engineering activity land, of which the land-
slide susceptibility of 161 units increased. Among the total
59 units with an obvious increase in LS, the LUCs of 46 units
were transformed into human engineering activity land, ac-
counting for 78.0 % of the total units. Therefore, the trans-
formation to this type of LUCC played an important role in
the increase in the landslide susceptibility in the region.

4.5 Typical landslide events influenced by LUCC

During the period of 2002–2013, nine landslide events oc-
curred in the study area, among which two were located
on the bank of the river, mainly triggered by the fluctuating
reservoir water level. The remaining landslides were taken as
examples to study the impact of the engineering activities. A
25 m buffer of each landslide was established, and the change
in the engineering activities in the buffer zone was counted.
The area of the engineering activities around all landslides
has expanded since 2002. On average, the area of engineer-
ing activities around the landslides has increased by about
20 %, and the change mainly closed to the toe of the land-
slides resulting from undercutting of slopes for buildings.

4.5.1 The Qili Bridge landslide

The Qili Bridge landslide (QLQL) is located at Qili Bridge
Village of Zhushan County, on the right slope of the No. 209
national highway (Fig. 12). The elevation of landslide ranges
from 520 m to 762 m a.s.l., and it has a gulley with a strike
direction of 340◦ along the front of the slope. The landslide
occurred on the lower part of the slope, covering an area of
9000 m2 with a volume of 0.27×104 m3. The landslide mate-
rials are mainly composed of cataclastic marl rock of Triassic
and Quaternary deposits including silty clay and rubble soil.

In 2007, at the lower part of the slope, where the eleva-
tion was approximately 520 m, a platform began to be con-
structed, and then six brick-and-concrete buildings with three
to four stories were built on the platform without any pro-
tective measures. The slope was a consequent bedding rock
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Figure 11. (a) The change in the landslide susceptibility of each slope unit between 1992 and 2002; (b) the scatter plot showing the change in
the landslide susceptibility between 1992 and 2002; (c) the change in the landslide susceptibility of each slope unit between 2002 and 2013;
(d) the scatter plot showing the change in the landslide susceptibility between 2002 and 2013.

slope steeper than a 30◦ dip angle. The 3 m high cut slope
was artificially excavated, which worsened the stability of the
slope. Rainfall infiltrated rapidly into the sliding body along
many fissures, which softened the strength of the materials.
In July 2011, a continuous heavy rain initiated the landslide.
The back walls of the buildings were destroyed by the rock
mass, causing some injuries to people and severe economic
losses. As shown in Fig. 12, the natural slope was mainly
covered by the forest land, grassland and arable land before
the construction of the buildings. However, the subsequent
engineering activities disrupted the original geological con-
ditions, causing the instability of the slope. During the field
visit, some sliding materials still remaining on the slope were
noticed, being a big potential danger for the residents.

4.5.2 The Liangshuigou landslide

The Liangshuigou landslide (LSGL) is located at Lianhuaba
Village, on the left bank of the Gongshui River (Fig. 13).
The natural slope had a dip angle ranging from 25 to 35◦.

The landslide initiated at the lower part of the slope, with
an area of 6300 m2 and a volume of 0.1× 104 m3. The land-
slide materials are mainly composed of Quaternary deposits,
including silty clay and rubble soil. The bedrock was argilla-
ceous siltstone of the Badong formation in Triassic deposits.
Joints and fissures cut the rock mass which formed the flow
way for rainfall infiltration.

Before 2010, the slope was covered by field crops and
citrus trees (arable land). However, the urbanization process
led to many human engineering activities, including the con-
struction of the building and the roads. The undercutting of
slopes caused a free surface with a height of about 10 m. In
June 2012, the landslide was triggered by heavy rainfall.

5 Discussion

Although the results highlight the significance of LUCC in
the susceptibility assessment of shallow landslides, it is ob-
vious that LUCC is not the only factor that can influence the
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Figure 12. The LUCC around the landslide. (a) The RS image of the landslide in 2002 (obtained from SuperView-1 RS data); (b) the
RS image of the landslide in 2013 (obtained from DJI drone); (c) the LUC type of landslide in 2002; (d) the LUC type of landslide in 2013.

Figure 13. The LUCC around the landslide. (a) The RS image of the landslide in 2002 (obtained from SuperView-1 RS data); (b) the
RS image of the landslide in 2013 (obtained from DJI drone); (c) the LUC type of landslide in 2002; (d) the LUC type of landslide in 2013.
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Figure 14. The relationship between rainfall and shallow landslides in the area: (a) the curve showing the monthly rainfall and temporal
distribution of landslides; (b) daily rainfall in June 2013; (c) the topography of landslide no. 1; (d) the topography of landslide no. 2.

landslide occurrence in the region. In most cases, the im-
pact of LUC on landslides is about the internal geological
conditions, such as topography features and drainage condi-
tions. Such impacts can worsen or improve the stability of
natural slopes, resulting in the increasing or decreasing fre-
quency of landslide events (Schmaltz et al., 2017; Galve et
al., 2015). For instance, Beguería (2006) reported in a case
study in the Spanish Pyrenees that the former arable fields
on the valley slopes facilitated landsliding, even after the
land was abandoned and revegetated by shrubs or trees. This
is due to water redistribution in the slopes after prolonged
rainfall periods. However, it should be noted that the shallow
landslides are directly triggered by the LUC, except for some
landslides which are induced by undercutting of slopes. The
statistical results of the temporal distribution of landslides
in this study area also support this assumption: the positive
correlation between the number of landslides and monthly
average rainfall (a statistical result of daily rainfall data be-
tween 1992 and 2013) is rather strong. The number of land-
slides occurring during the months of June and July are 18
and 12, respectively, accounting for 56.6 % of the total land-
slides, whereas only 10 landslides were initiated or reacti-
vated in the dry season, accounting for 18.9 % of the total
landslides. Analysis of 21-year data shows that the change in
the landslide susceptibility at a regional scale is associated
with rainfall conditions. As shown in Fig. 14, annual rain-
fall seems to be increasing from 1992 to 1998 and then de-

creasing from 1999 to 2013, although the magnitude of the
change is relatively small. Similar patterns are also shown
in the number of heavy rainfall events during this period. It
should be noted that this regulation is roughly the same as the
change in the high-susceptibility area. Thus, more exactly, it
is not that the LUCC can change the susceptibility directly
but that the natural slope conditions are influenced by vari-
ous LUC types and subsequently by different environmental
factors for initiating landslide. In general, most landslides in
the area, especially the shallow ones, were triggered not by
a single factor but by the combined results of external envi-
ronmental factors. For example, during the period from 6 to
26 June in 2013, the area received 149 mm of rain although
the number of rainy days was only three (6, 9 and 10 June).
Two landslides (i.e., landslide no. 1 and 2) were triggered
by this heavy rainfall event, which occurred on the 16th and
26th of June.

In addition, reservoir operation is another important trig-
gering factor, as shown in Fig. 7. Before the construction of
the reservoir (1992), the slope unit where the landslide is lo-
cated had moderate susceptibility, whereas the susceptibility
increased to a very high level in 2002 and 2013. Although
the reservoir is also a kind of human engineering activity,
the landslide was triggered by the reservoir impoundment.
The seasonal and periodic fluctuation of the reservoir water
level has changed the seepage and softened the geotechnical
properties, both of which can gradually destabilize the land-
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slide. During field survey, the appearance of a large num-
ber of cracks was noticed on the ground of the Shuanglong
Lake landslide (SLLL, Fig. 6a) after the construction of the
reservoir. Monitoring nearly a decade of deformation also in-
dicated the slow but continuous movement of the landslide,
with a velocity of approximately 1.6 m yr−1. In particular, the
landslide movement shows an obvious intermittent character-
istic: the movement accelerates in the rainy season in which
period the reservoir water level generally drops down, while
the movement often stops in other periods. Obviously, the
landslide is undergoing the creep deformation influenced by
the reservoir water level combined with rainfall. In the final
analysis, however, this kind of impact was not highlighted
because the reservoir area was considered a kind of HEAL.
The change in the susceptibility of this slope unit was incor-
porated into the results of LUCC.

In order to study the impact of LUCC on landslide occur-
rence, the temporally and spatially differentiated information
for both the landslide inventory and LUC maps is particularly
important, while the other influencing factors were consid-
ered to be static. However, they have proven to be dynamic
because they changed significantly in a few decades. Espe-
cially, in populated areas, the topographic factors (i.e., slope
angle, aspect and profile curvature) can be altered by frequent
earth movement processes (landslides, soil erosion, under-
cutting of slopes, etc.) in a short time. Therefore, a more ac-
curate susceptibility result depends on good DEM data and
influencing factor maps. Moreover, in landslide susceptibil-
ity evaluation, the LUC data integrates the controlling fac-
tors group and are generally directed by another factor input
to the evaluation model. In some cases, LUC data are used
as a landslide conditioning factor (Meneses et al., 2019). For
instance, the CORINE Land Cover (CLC) data are widely
used for landslide susceptibility assessment in many regions
in Europe because they are the only LUC data available (Fer-
anec et al., 2007). A similar situation happens in the anal-
ysis of 1992 in this study. The RS data with low resolution
caused the inherent uncertainties of the obtained LUC maps,
which was subsequently taken into the landslide susceptibil-
ity model. Even though it has tried to reduce such uncertain-
ties by decreasing the amount of LUC categories and using
the classification method of images with better accuracy, the
final LS zonation results still have to deal with a considerable
amount of uncertainties. As a consequence, the comparison
between LRM and WEM does not seem to be important for
improving the accuracy of the landslide susceptibility evalu-
ation in this study. For example, Schmaltz et al. (2017) have
recommended applying an easily interpretable multivariable
model or generalized additive models, which is in accordance
with the model used in this study.

6 Conclusion

Land use and land cover change can alter the geological con-
ditions and affect the occurrence of the landslides. This study
revealed the evolution of LUC and how LUC change affected
landslide susceptibility at a regional scale. Through the anal-
ysis of different LUC maps with a 21-year time interval ob-
tained from remote sensing images, it documented the rapid
growth of the afforestation as well as the intense urbanization
process in the region since the 1990s: the areas of forest land
and human engineering activities between 1992 and 2013 in-
creased by 34.3 % and 1.9 %, whereas the areas of the grass-
land and arable land decreased by 15.7 % and those of the
barren land decreased by 20.5 %. Combined with the other
five factors (slope angle, aspect, profile curvature, lithology
and distance to the reservoir), the LUC was subsequently uti-
lized for landslide susceptibility analysis in different years
based on the logistic regression model and slope unit. The
zonation results have shown that the urban area on both sides
of the river valley is always the area with the largest land-
slide susceptibility. Along with the increase in engineering
construction activities, the susceptibility of many areas in-
creases. Even some small shallow landslides were directly
triggered by the transformation of the LUC type (i.e., from
forest land and GAL to HEAL).

In conclusion, the availability of high-resolution RS im-
ages and the selection of a suitable model for assessing land-
slide susceptibility are the keys to evaluate the impact of land
use and land cover change on landslide susceptibility. In ad-
dition, the study concluded that human activities play an im-
portant role in the change in landslide susceptibility. Engi-
neering activities on slopes could destabilize landslide haz-
ard if risk assessment and mitigation measures do not take
place in advance. Consequently, the method used in the study
is beneficial for landslide hazard mitigation due to the com-
bined use of GIS and RS techniques. Such results not only
call for a more reasonable land use planning in the urbaniza-
tion process in the future but also suggest a more systematic
inclusion of LUC change in hazard assessment.
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