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Abstract. Hurricanes, as one of the most devastating natural
hazards, have posed a great threat to people in coastal ar-
eas. A better understanding of the spatiotemporal dynamics
of human settlement in hurricane-prone areas largely bene-
fits sustainable development. This study uses the nighttime
light (NTL) data from the Defense Meteorological Satel-
lite Program’s Operational Linescan System (DMSP/OLS)
to examine human settlement development in areas with
different levels of hurricane proneness from 1992 to 2013.
The DMSP/OLS NTL data from six satellites were intercali-
brated and desaturated with the Advanced Very High Resolu-
tion Radiometer (AVHRR) and Moderate Resolution Imag-
ing Spectroradiometer (MODIS) optical imagery to derive
the Vegetation Adjusted NTL Urban Index (VANUI), a pop-
ular index that quantifies human settlement intensity. The
derived VANUI time series was examined with the Mann–
Kendall test and Theil–Sen test to identify significant spa-
tiotemporal trends. To link the VANUI product to hurricane
impacts, four hurricane-prone zones were extracted to repre-
sent different levels of hurricane proneness. Aside from geo-
graphic division, a wind-speed-weighted track density func-
tion was developed and applied to historical storm tracks
which originated in the North Atlantic Basin to better cat-
egorize the four levels of hurricane proneness. Spatiotempo-
ral patterns of human settlement in the four zones were fi-
nally analyzed. The results clearly exhibit a north–south and
inland–coastal discrepancy of human settlement dynamics.
This study also reveals that both the zonal extent and zonal
increase rate of human settlement positively correlate with
hurricane proneness levels. The intensified human settlement

in high hurricane-exposure zones deserves further attention
for coastal resilience.

1 Introduction

A hurricane, a specific type of tropical cyclone with a wind
speed of 74 mi h−1 (119 km h−1) or higher, is one of the
most devastating natural hazards in the world and is re-
curring more frequently than ever in coastal areas (Vec-
chi and Knutson, 2018). Based on the Saffir–Simpson hur-
ricane scale, a hurricane is categorized in five levels by
its wind speed: 74–95 mi h−1 (119–153 km h−1) as a Cate-
gory 1, 96–110 mi h−1 (154–177 km h−1) as a Category 2,
111–129 mi h−1 (178–208 km h−1) as a Category 3, 130–
156 mi h−1 (209–251 km h−1) as a Category 4, and above
157 mi h−1 (252 km h−1) as a Category 5. Hurricanes threat-
ening the conterminous US mostly originate in the North
Atlantic Basin that includes the North Atlantic Ocean, the
Caribbean Sea and the Gulf of Mexico, and the Eastern
Pacific Basin that covers the northeastern Pacific (east of
140◦W and north of the Equator) (Goldenberg et al., 2001).
Historically, more hurricanes from the North Atlantic Basin
have landed on the US territories, dramatically affecting peo-
ple living in the Gulf and Atlantic coasts. While storms that
originate in the Eastern Pacific Basin occasionally visited the
southwestern conterminous US, by the time they landed they
usually degraded to tropical cyclones due to the long travel
distance and cold water in coastal California (Chenoweth and
Landsea, 2004).
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Atlantic hurricane season usually runs from 1 June to
30 November, during which the North Atlantic Basin exhibits
significantly intensified tropical cyclone activity and gives
rise to many devastating hurricanes landing on the coasts.
In 2016, Hurricane Matthew, a Category 5 (the highest cate-
gory) hurricane, directly claimed a total of 34 lives in the US.
In 2017, Hurricane Harvey on the Gulf Coast caused a total
of USD 125 billion of damage, making it the second costli-
est hurricane in the US. In the same year, Hurricane Irma
on the Atlantic Coast caused a total of USD 50 billion of
damage, making it the fifth costliest hurricane in the US
(NOAA Earth Observation Group, 2018a). In 2018, the third
year in a consecutive series (2016–2018) of above-average
damaging Atlantic hurricanes, there were 15 named tropical
storms, 8 of which became hurricanes, including 2 major hur-
ricanes. Hurricane Florence, for example, a major hurricane
in 2018, caused severe economic damage to North Carolina
(USD 22 billion), South Carolina (USD 5.5 billion), and Vir-
ginia (USD 1 billion) (Krupa, 2018). The widespread storm
surge and extensive floods from extreme rainfall largely crip-
pled public infrastructures and impacted all segments of soci-
ety. A noticeable increase in the number of hurricanes from
the North Atlantic Basin since the late 1980s has been ob-
served (Vecchi and Knutson, 2018). Even though it is partly
due to improved monitoring (Villarini et al., 2011), the in-
creased intensity and duration of these hazards have posed
great threats to people residing in the US Atlantic and Gulf
coasts (Landsea et al., 2010).

Despite these threats, the US southeastern region has expe-
rienced significant population growth in recent decades. The
population in Florida, North Carolina, and South Carolina,
for instance, has increased by 61.2 %, 43.6 %, and 54.3 %,
respectively, since 1990 (US Census Bureau, 2018). The
densely populated coastal areas are receiving higher threats
than ever (Crossett et al., 2004). In these hurricane-prone ar-
eas, a better understanding of the temporal and spatial dy-
namics of human settlement is needed for better damage as-
sessment and sustainable urban planning.

Satellite-based observations have been widely applied in
investigating urban dynamics as remote sensing provides
spatially explicit information of the urbanization process. Ex-
tensive application has been made utilizing multispectral sen-
sors that record the reflectance of ground features to cate-
gorize different land covers, thus allowing the delineation
of urban extent (Xu, 2008; Zha et al., 2003). This type of
remotely sensed imagery, however, relies on the reflective
characteristics of all land objects on the ground, thus lacking
the perspective on human activities. In comparison, satellite-
derived nighttime light (NTL) data provide a unique and di-
rect observation of human settlement via night lights (Ceola
et al., 2014, 2015). Natural land covers are distinctively dark
in NTL imagery. Nighttime remote sensing has been increas-
ingly used for analyzing socioeconomic dynamics and urban-
ization processes at national and regional levels (Elvidge et
al., 1997; Ghosh et al., 2010), thanks to their light-only sen-

sitivity, large spatial coverage (Imhoff et al., 1997), easiness
to acquire (Lu et al., 2008), and consistency over a long term
(Elvidge et al., 1999).

Among all the satellite-derived NTL products, the NTL
data obtained by the Operational Linescan System (OLS)
via the US Air Force Defense Meteorological Satellite Pro-
gram (DMSP), hereafter referred to as the DMSP/OLS NTL,
are the most commonly used due to their long time span
(more details in next section). Extensive attempts have been
made to harvest the NTL observations from the DMSP/OLS
in applications including urban expansion and decay (Lu et
al., 2018), settlement dynamics (Elvidge et al., 1999; Yu et
al., 2014), socioeconomic development (Doll et al., 2000),
and energy consumption (Chand et al., 2009). Recent studies
enhanced the NTL products by fusing DMSP/OLS NTL data
with natural land cover characteristics such as the normal-
ized difference vegetation index (NDVI) to reduce the light
saturation problem. This fusion greatly increased the poten-
tial of the DMSP/OLS in discriminating against the human
settlement structures (Lin et al., 2014; Liu et al., 2015). The
improved DMSP/OLS NTL product serves as a valuable re-
source for monitoring large-coverage and long-term urban-
ization dynamics.

The goal of this paper is to illustrate the usage of
DMSP/OLS NTL data to monitor the urbanization process
and hurricane impacts on the US Atlantic and Gulf coasts
using nighttime artificial lights as a proxy. Hurricane-prone
areas were first derived by calculating the track density from
historical storm tracks in the North Atlantic Basin. An inter-
calibrated DMSP/OLS NTL time series was built in a yearly
interval. Assisted with the NDVI data, the Vegetation Ad-
justed NTL Urban Index (VANUI) was used to characterize
human settlement intensity in the study area. After that, a
trend analysis was conducted to identify areas with a sig-
nificant increase in human settlement intensity in different
zones, in which the potential hurricane impacts were statisti-
cally evaluated. The spatiotemporal changes of human settle-
ment revealed from nighttime remote sensing in hurricane-
prone zones provide valuable information to evaluate the
damage and to support the decision-making of urban devel-
opment.

2 Intercalibration and desaturation of the DMSP/OLS
NTL series

Due to the absence of onboard calibration and intercalibra-
tion, the annual DMSP/OLS NTL composites derived from
multiple satellites over a span of 22 years were not directly
comparable (Li and Zhou, 2017; Liu et al., 2012). This lack
of continuity and comparability has posed great challenges
for trend analysis based on DMSP/OLS NTL data (Tan,
2016). Elvidge et al. (2009) designed a three-step framework
to intercalibrate the DMSP/OLS NTL composites. Those
three steps are (1) selecting a reference region; (2) select-
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ing a reference satellite year; and (3) performing a 2nd-order
polynomial regression against the NTL reference data. This
simple framework has been proven efficient in reducing dis-
crepancies in digital number (DN) values of the DMSP/OLS
NTL time series (Pandey et al., 2013) and has been adopted
in many studies (Liu and Leung, 2015; Huang et al., 2016).

Another notable limitation of DMSP/OLS NTL is the sat-
uration of luminosity in the 6 bit (DN in a range of 0–63)
imagery (Letu et al., 2010). To retrieve the heterogeneity in
areas with high intensity of human settlement, numerous at-
tempts have been made to mitigate the saturation effect. A
commonly used vegetation index, NDVI, is a useful indicator
to reduce the saturation effect in DMSP/OLS data. Its practi-
cality has been confirmed by many studies (Zhou et al., 2014;
Liu et al., 2015). Lu et al. (2008) proposed a human settle-
ment index (HSI) by merging normalized DMSP/OLS NTL
data with the maximum NDVI in growing-season-derived
data from the Moderate Resolution Imaging Spectroradiome-
ter (MODIS). The HSI has been proven rather efficient for
settlement mapping in several testing sites in southeastern
China. Zhang et al. (2013) developed VANUI, which cap-
tures the inverse correlation between vegetation and lumi-
nosity. This simple index efficiently reveals the heterogene-
ity in regions with saturated DN values, which has been
recognized by Shao and Liu (2014). Following the original
design of NDVI that characterizes the inverse relationship
between the near-infrared band and red band in vegetation,
Zhang et al. (2015) designed a normalized difference urban
index (NDUI) that characterizes the inverse relationship be-
tween vegetation and luminosity in a similar way. The NDUI
was evaluated in five testing sites in the US and proved to be
effective in desaturating DN values in DMSP/OLS.

In this study, the intercalibration of DMSP/OLS data fol-
lows the method proposed by Elvidge et al. (2009), and
the desaturation of DMSP/OLS data is achieved by using
VANUI (Zhang et al., 2013).

3 Datasets

3.1 Historical storm tracks

The historical storm tracks were retrieved from the Inter-
national Best Track Archive for Climate Stewardship (IB-
TrACS), hosted by NOAA (https://www.ncdc.noaa.gov/
ibtracs/, last access: 11 November 2018). The IBTrACS pro-
vides a globally best-track dataset by merging storm infor-
mation from multiple centers into one product. As the major-
ity of the storms on the conterminous US are formed in the
North Atlantic Basin (Fig. 1), we only examined the storms
from the North Atlantic Basin along the US Atlantic and Gulf
coasts. A total of 655 storm tracks containing 18 929 line seg-
ments (with an attribute of wind speed) were used in this
study.

3.2 DMSP/OLS NTL series and NDVI series

The DMSP/OLS satellites are operated by the US Air
Force (USAF) and are composed of six satellites (F10, F12,
F14, F15, F16, and F18) using data from the period of 1992
to 2013. With a 3000 km orbit swath, they acquired the OLS
imagery from −65 to 65◦ in latitude at a nominal resolution
of 30 arcsec (around 1 km at the Equator) (NOAA Earth Ob-
servation Group, 2018b). The temporal coverages of the six
satellites are summarized in Table 1.

The DMSP/OLS NTL products used in this study
are the version 4 “stable lights” series in a 22-year
span (1992–2013). The DMSP/OLS NTL data were
obtained from the website of the National Centers
for Environmental Information (https://ngdc.noaa.gov/eog/
dmsp/downloadV4composites.html, last access: 12 Novem-
ber 2018). The version 4 DMSP/OLS stable lights product
has already excluded sunlight, glare, moonlight, cloud cov-
erage, and lighting. Ephemeral events such as wildfires also
have been discarded. In this study, one composite each year
in the conterminous US was produced from each satellite.
When two satellites were available in certain years, a com-
bined composite in this year was derived using the method
described in Sect. 4.2. All DMSP/OLS NTL images were re-
sampled to a 1 km pixel size.

In the same period of 1992–2013, the NDVI products
in the conterminous US from two satellite sensors were
used in this study: the Advanced Very High Resolution
Radiometer (AVHRR) and Moderate Resolution Imaging
Spectroradiometer (MODIS). NDVI series from AVHRR
and MODIS span from 1992 to 2005 and 2003 to 2013,
respectively. These two products were further calibrated
in three overlaying years: 2003, 2004, and 2005 (de-
scribed in Sect. 5.1) to increase data comparability. The
AVHRR NDVI series is the annual maximum value compos-
ite (MVC) with a 1 km pixel size, provided by the United
States Geological Survey Earth Resources Observation and
Science (USGS/EROS) (https://phenology.cr.usgs.gov/get_
data_1km.php, last access: 11 November 2018). A number
of preprocessing steps have been performed in this prod-
uct to remove noise, which includes the removal of spurious
spikes, temporal smoothing, and interpolation. The MODIS
NDVI series was derived from the Oak Ridge National Lab-
oratory Distributed Active Archive Center (ORNL DAAC)
(https://daac.ornl.gov/, last access: 11 November 2018). The
data were generated from the Terra MOD13Q1 and Aqua
MYD13Q1 products and have been smoothed and gap filled
with a spatial resolution of 250 m (Spruce et al., 2016). To be
comparable with the AVHRR NDVI, the annual MVC prod-
uct was derived from the MODIS NDVI series by selecting
the maximum NDVI value in each year. It was also resampled
to a 1 km pixel size. Water bodies contained in both datasets
were masked out using the MODIS MOD44W product.
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Figure 1. Historical storm tracks from the North Atlantic Basin (in red) and from the Eastern Pacific Basin (in green). Basemap sources: Esri,
DigitalGlobe, GeoEye, i-cubed, the US Department of Agriculture Farm Service Agency (USDA FSA), the USGS, Aerials Express (AEX),
Getmapping, Aerogrid, Instituto Geográfico Nacional (IGN), Instituto Geográfico Português (IGP), swisstopo, and the GIS User Community.

Table 1. DMSP/OLS satellites and overlays in corresponding years.

Satellites

Year F10 F12 F14 F15 F16 F18

1992 F101992
1993 F101993
1994 F101994 F121994
1995 F121995
1996 F121996
1997 F121997 F141997
1998 F121998 F141998
1999 F121999 F141999
2000 F142000 F152000
2001 F142001 F152001
2002 F142002 F152002
2003 F142003 F152003
2004 F152004 F162004
2005 F152005 F162005
2006 F152006 F162006
2007 F152007 F162007
2008 F162008
2009 F162009
2010 F182010
2011 F182011
2012 F182012
2013 F182013

Note that bold terms indicate the years with two satellites available in a given year.
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4 Methods

4.1 Delineation of hurricane-prone zones

The delineation of hurricane-prone zones is based on the
retrieved 655 storms from the North Atlantic Basin which
landed on the conterminous US. An area with a higher num-
ber of historical storms is expected to be more hurricane-
prone. We assume a generally positive relationship between
the wind intensity of a storm and its impact. At a given lo-
cation (i, j ), a circular neighborhood (R) centered at this lo-
cation was assigned. For all line segments of storm tracks
falling in this neighborhood, the storm track density was cal-
culated as the line density of all segments weighted by their
wind speeds.

ρi,j =
∑
r∈R

Lri,j ×W
r
i,j , (1)

where ρi,j denotes the weighted line density at the loca-
tion (i, j ). Lri,j andW r

i,j denote the length of a line segment r
and corresponding wind speed, respectively. The radius of
R is set as 100 km in this study.

The storm track density was then normalized to a range
of [0, 1], with a higher value indicating higher hurricane
proneness. To simplify the process for zonal analysis, we
categorized the normalized storm track density into four
zones from low to high hurricane proneness: Zone 4 (0–0.2),
Zone 3 (0.2–0.5), Zone 2 (0.5–0.7), and Zone 1 (0.7–1.0).

4.2 Intercalibration (the DMSP/OLS NTL series and
NDVI series) and VANUI calculation

We adopted the Elvidge et al. (2009) procedure to intercal-
ibrate the DMSP/OLS NTL time series. Serving as the ref-
erence site (Fig. 3a), the geographic area of metropolitan
Los Angeles and city of San Diego, California, maintains
high conformity of NTL values throughout the 22-year pe-
riod (Kyba et al., 2017; Hsu et al., 2015), which satisfies the
“pseudo invariant” rule for calibration site selection (Elvidge
et al., 2009). The year 2007 (satellite F16) has been com-
monly selected as the reference year in many studies (Yi
et al., 2014; Ma et al., 2014). Therefore, we extracted the
DMSP/OLS NTL data in this year at the same site as our
reference. With all lit pixels (DN> 0) in the reference site,
a 2nd-order regression model was performed to calibrate the
NTL data in each year.

DNn,cal = c+ b×DNn+ a×DN2
n, (2)

where DNn,cal is the calibrated DN value in year n, DNn is
the original DN value in year n, and a, b, and c are the coef-
ficients. The non-lit pixels (DN= 0) are not calibrated.

As shown in Table 1, two DMSP/OLS NTL data layers
are available in overlapping years. For lit pixels (DN> 0 in
both years), the calibrated DN values in this year are calcu-
lated as the average of two calibrated datasets. The value of

a pixel remains 0 if its original DN value in any year is 0.
Finally, the calibrated DMSP/OLS NTL images were nor-
malized (DNnor) to [0, 1].

Similarly, the annual maximal NDVI (NDVIMVC) prod-
ucts from the AVHRR (NDVIMVC

AVHRR from 1992 to 2005) and
MODIS (NDVIMVC

MODIS from 2003 to 2013) were intercali-
brated to maintain the continuity and comparability in the
NDVIMVC annual series. Stratified sampling was applied to
pixels with an NDVI value above 0.1 to ensure that land cov-
ers in different NDVI ranges were equally sampled. Thirty
thousand samples were collected within four hurricane-prone
zones in the years 2003–2005, respectively. It has been re-
ported that MODIS maintains higher spectral sensitivity than
the AVHRR (Tucker et al., 2005). Here, a linear regres-
sion was applied to correct AVHRR NDVIMVC to MODIS
NDVIMVC.

NDVIMVC
MODIS = α×NDVIMVC

AVHRR+β, (3)

where α and β are regression coefficients.
The calibrated NDVIMVC

AVHRR series from 1992 to 2002 was
merged with the NDVIMVC

MODIS from 2003 to 2013 to form a
22-year NDVI MVC series (NDVIMVC

cal ). Negative NDVI val-
ues are usually associated with non-living environments such
as water bodies, and NDVI values above 1 are not meaning-
ful. Therefore, we limited all NDVI values in the NDVIMVC

cal
series to a range of 0 to 1.

Finally, with the normalized DMSP/OLS NTL and the cal-
ibrated NDVI data series, the VANUI series was extracted
(Zhang et al., 2013).

VANUI=
(

1−NDVIMVC
cal

)
×DNnor, (4)

where DNnor denotes the normalized DMSP/OLS NTL
value and NDVIMVC

cal denotes the calibrated NDVIMVC value.
VANUI has a range of [0, 1]. In general, a higher proportion
of human settlements in a pixel leads to higher NTL and a
lower NDVI, both contributing to a higher value of VANUI.
Therefore, VANUI serves as a proxy for the intensity of hu-
man settlement.

4.3 Trend analysis of human settlement

The VANUI series over a 22-year span sheds light on the
spatiotemporal development of human settlement. We per-
formed the trend analysis by applying the Mann–Kendall test
(Mann, 1945) coupled with the Theil–Sen slope estimator
(Sen, 1968). The Mann–Kendall test statistically assesses if
there is a significant monotonic upward or downward trend
in a time series. Given the 22-year VANUI series, the Mann–
Kendall test first computes S statistics (Mann, 1945).

S =

n−1∑
k=1

n∑
j=k+1

sgn
(
xj − xk

)
, (5)
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where n denotes the total number of observations in a series
(22 in this study) and xj and xk are the data values at dif-
ferent points, i.e., the VANUI in different years in this study.
sgn(xj − xk) denotes an indicator that takes on the values 1,
0, or−1, respectively, according to the signs of (xj−xk). The
variance of S (VarS) is further computed as

VarS =
1
18

[
n(n− 1)(2n+ 5)−

g∑
p=1

tp
(
tp − 1

)(
2tp + 5

)]
, (6)

where g denotes the number of tied groups and tp denotes the
number of observations in the pth group. Finally, a Z value
is calculated as

Z =


S−1
√

VarS
, S > 0

0, S = 0
S+1
√

VarS
, S < 0

. (7)

The Z value in Eq. (7) represents the monotonic tendency
of a time series. A positive Z indicates an increasing trend,
while a negative Z indicates a decreasing one. A stable trend
exists when the value of Z equals 0. The absolute value of Z
indicates the intensity of the trend. The significance of Z
was examined through a two-tailed test with a significance
level of α = 0.05. If a significant trend exists, the Theil–Sen
slope estimator was further applied to estimate its slope. As a
non-parametric indicator, it has low sensitivity to outliers and
high robustness in short-term series, and it has been widely
applied in remote sensing fields (de Jong et al., 2011; Fer-
nandes and Leblanc, 2005). Given a VANUI time series, the
slope at any point i (Qi) can be calculated as

Qi =
xj − xk

j − k
, i = 1,2,3, . . .Nj > k. (8)

The Theil–Sen slope (Qmed) is the median of all Qi values
in the time series. It indicates the steepness (change rate) of
a certain trend. Therefore, pixels with high Qmed values rep-
resent a rapid increase in human settlement intensity during
the investigated time period.

With the 22-year VANUI image series, clusters of geo-
graphic areas in the study region with a significant increase
of human settlement were extracted. The summed slope per
unit in a cluster represented the rapidness of human settle-
ment growth in the 22 years. The spatiotemporal patterns of
this growth in different hurricane-prone zones were further
analyzed.

5 Results and discussion

5.1 Hurricane-prone zones

The 655 storms from the North Atlantic Basin that landed
on the conterminous US (mostly along the Atlantic and Gulf
coasts) are presented in Fig. 2a. The derived wind-speed-
weighted track density in the study area is presented in

Fig. 2b. Based on the density levels, we divided the track
density map into four hurricane-prone zones that represent
different levels of hurricane proneness with the highest rate
of impacts in Zone 1 and the lowest in Zone 4. The study
area contains all the US states covered in the hurricane-prone
zones (Fig. 2c): Maine; Massachusetts; New Jersey; New
York; North Carolina; New Hampshire; Pennsylvania; Rhode
Island; Tennessee; Texas; Maryland; Alabama; Arkansas;
Connecticut; Delaware; Washington, DC; Florida; Georgia;
Kentucky; Louisiana; Mississippi; South Carolina; Vermont;
Virginia; and West Virginia. Some of these states, such as
Florida, Texas, and North Carolina, have been well recog-
nized as fast-growing regarding both their population and
economy in recent years (Milesi et al., 2003; Klotzbach et
al., 2018), leading to higher threats and recovery costs from
hurricanes.

5.2 Intercalibration results of the DMSP/OLS NTL
series and NDVI series

The reference site for intercalibration is composed of an ur-
ban strip from Los Angeles to San Diego, California, in
the southwest end of the United States (Fig. 3a). Agreeing
with Elvidge et al. (2009), the histograms of all NTL im-
ages in this area exhibit a sharp, bimodal distribution (ur-
ban vs. non-urban) with limited temporal variation. This con-
firms that it is a valid reference site for the intercalibration of
NTL images. Among the three example scatterplots between
the NTL data for 3 years and the F162007 reference, the
F162006 data show the highest agreement with the reference
as they were acquired by the same satellite (Fig. 3b1). The
F101992 data (Fig. 3b2) exhibit less agreement due to their
different satellite origin and a long time interval from 2007.
However, an R2 of 0.949 still warrants a decent agreement
for calibration. Figure 3b3 demonstrates the necessity of a
2nd-order regression instead of a linear one. The regression
equations and intercalibration coefficients for all years are
listed in Table 2.

The intercalibration of NDVIMVC in the 3 overlaying years
is shown in Fig. 4a (AVHRR) and Fig. 4b (MODIS). Via
visual interpretation, the MODIS product has a higher peak
NDVI than the AVHRR. The regression shows a linear rela-
tionship between the two NDVIMVC products (R2

= 0.934)
with α = 1.1835 and β =−0.1037 (Fig. 4c). The histograms
(Fig. 4d) demonstrate that the calibration process has shifted
the AVHRR histogram to the right, making it more compara-
ble with MODIS.

5.3 The VANUI time series

An example VANUI map (1992) for the entire study area is
shown in Fig. 5a, in which red represents a high VANUI
value (high human settlement intensity), while blue repre-
sents the opposite. Several subsets of the VANUI maps in
years 1992, 2002, and 2013 are displayed to demonstrate

Nat. Hazards Earth Syst. Sci., 19, 2141–2155, 2019 www.nat-hazards-earth-syst-sci.net/19/2141/2019/



X. Huang et al.: Understanding the spatiotemporal development of human settlement in hurricane-prone areas 2147

Figure 2. (a) Historical storm tracks from the North Atlantic Basin; (b) normalized storm tracks density weighted by wind speed;
(c) hurricane-prone zones: Zone 4 (with track density 0–0.2), Zone 3 (0.2–0.5), Zone 2 (0.5–0.7), and Zone 1 (0.7–1.0). Basemap sources:
Esri, HERE, Garmin, OpenStreetMap contributors, DigitalGlobe, GeoEye, i-cubed, USDA FSA, USGS, AEX, Getmapping, Aerogrid, IGN,
IGP, swisstopo, and the GIS User Community. © OpenStreetMap contributors 2019. Distributed under a Creative Commons BY-SA License.

more details in densely populated urban clusters: Philadel-
phia (Fig. 5b), Charlotte (Fig. 5c), Atlanta (Fig. 5d), Hous-
ton (Fig. 5e), and Orlando (Fig. 5f). Interestingly, the city
of Philadelphia (Fig. 5b) experienced slightly decreased hu-
man settlement intensity, especially in the 1992–2002 pe-
riod. This observation agrees with the population dynamics
of Philadelphia in the past decades: 1990–2000 (−4.3 %),
2000–2010 (+0.6 %). Similar trends of population decrease
have been observed in other big northeastern cities such
as Pittsburgh, in which its population dramatically changed
by −9.5 % during 1990–2000 and −8.6 % during 2000–
2010 (US Census Bureau, 2018). The population loss is also
recorded in a large number of small cities in the northeast-
ern region, including Johnstown and Rochester in New York,

Weirton in West Virginia, and Harrisburg in Pennsylvania
(US Census Bureau, 2018).

Oppositely, the southern and southeastern cites have ex-
perienced intensified human settlement characterized by ex-
panded city perimeters and intensified urban cores. Houston
(Fig. 5e), for instance, has dramatically increased its human
settlement. Again, this observation is well supported by the
population boost per the census records, with an increas-
ing rate of 19.8 % in 1990–2000 and 7.5 % in 2000–2010.
Other cities, including Charlotte (Fig. 5c), Atlanta (Fig. 5d),
and Orlando (Fig. 5f), also have seen significantly intensified
human settlement supported by their increasing population
records. In general, the opposite trends of human settlement
between the north and south of the study area match well
with the “Snow Belt-to-Sun Belt” population shift trend doc-
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Figure 3. (a) DMSP/OLS NTL intercalibration in the Los Angeles metropolitan area and the city of San Diego; (b1) correlation between
F162006 and reference year F162007; (b2) correlation between F101992 and reference year F162007; (b3) correlation between F152003
and reference year F162007. Basemap sources: Esri, HERE, Garmin, OpenStreetMap contributors, and the GIS user community. © Open-
StreetMap contributors 2019. Distributed under a Creative Commons BY-SA License.

Figure 4. (a) NDVIMVC series from AVHRR in the overlaying years; (b) NDVIMVC series from MODIS in the overlaying years; (c) linear
regression between AVHRR and MODIS using stratified sampling; (d) comparison of histograms between MODIS and AVHRR (before and
after calibration). Basemap sources: Esri, HERE, Garmin, OpenStreetMap contributors, and the GIS user community. © OpenStreetMap
contributors 2019. Distributed under a Creative Commons BY-SA License.
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Figure 5. (a) The VANUI distribution in the study area in 1992. The subfigures demonstrate the VANUI variations in 1992, 2002 and 2013 in
five selected urban cities: (b) Philadelphia, (c) Charlotte, (d) Atlanta, (e) Houston and (f) Orlando. The white clusters are water bodies
masked out of the analysis.

umented in past studies in the last decades (Hogan, 1987;
Iceland et al., 2013).

It could be noted that the VANUI maps in 2013 provide
much finer details than those in 1992 and 2002. Given the
unaltered spatial resolution of the DMSP/OLS sensors, it can
be explained by the different resolutions of the raw NDVI
products from the AVHRR (1 km) and MODIS (250 m). Al-
though images have been resampled to the same pixel size
(1 km) and carefully calibrated in their time series, the intrin-
sic sensitivity of those two sensors still affects the VANUI
outputs.

5.4 Spatiotemporal patterns of human settlement and
hurricane impacts

In each hurricane-prone zone, the yearly percentage of lit
pixels (VANUI> 0) sheds light on annual land develop-
ment, leading to a better understanding of the process of
human settlement facing different degrees of hurricane im-
pacts. The interannual fluctuation of total lit-pixel numbers
exists in all zones, presumably due to the uncertainties in-

troduced from the calibration of the DMSP/OLS NTL se-
ries and NDVI series. Bearing this noise, Fig. 6 presents
the general trends of the lit-pixel percentage in each zone.
The lit-pixel percentage varies in different zones, revealing
a ranking of Zone 1 (48.5 %) followed by Zone 2 (45.4 %),
Zone 3 (41.6 %), and Zone 4 (31.6 %). Urban development
was favored and prioritized in coastal regions, which were
also the zones facing higher hurricane impacts.

As Fig. 6a (Zone 1) and Fig. 6b (Zone 2) suggest, the
extent of human settlement in both zones increased signifi-
cantly from 1992 to 2013, indicating consecutive land devel-
opment in these highly hurricane-prone zones. The trends in
both zones follow a logarithmic relationship that increased
sharply in earlier years then slowed down. Located on the
frontmost land–sea border, Zone 1 receives the most frequent
and intense hurricanes, yet its degree of fitness (coefficient
of determination R2

= 0.898) was higher than that of Zone 2
(R2
= 0.791) in logarithmic regressions. With increased land

development, we can conclude that the hurricane impacts
on human settlement in these two zones are becoming more
severe due to their higher hurricane exposure. Zone 3 and
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Figure 6. Yearly statistics of percent area with VANUI values larger than 0 in (a) Zone 1, (b) Zone 2, (c) Zone 3 and (d) Zone 4. In (a)
and (b), the independent variable x in the logarithmic regression model denotes the year sequence starting from 1992, meaning that x = 1
denotes the year 1992, x = 2 denotes 1993, and so on.

Figure 7. Maps of the 22-year Mann–Kendall trend and Theil–Sen slope in the study area. Two subsets are selected: Dallas (trend map in b1
and slope map in b2) and Atlanta (trend map in c1 and slope map in c2).
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Table 2. DMSP/OLS NTL intercalibration coefficients.

Satellite Year c b a R2

F10 1992 −0.3712 1.0953 −0.0015 0.949
F10 1993 −1.4938 1.4753 −0.0072 0.955
F10 1994 −0.9394 1.4923 −0.0077 0.951
F12 1994 −0.0430 1.2057 −0.0033 0.954
F12 1995 −0.6145 1.2354 −0.0037 0.955
F12 1996 −0.3298 1.2840 −0.0045 0.945
F12 1997 0.0253 1.1669 −0.0029 0.934
F12 1998 0.2550 1.0688 −0.0013 0.949
F12 1999 −0.3859 0.9984 −0.0001 0.967
F14 1997 0.1852 1.5516 −0.0090 0.936
F14 1998 −0.1074 1.4379 −0.0071 0.959
F14 1999 −0.5429 1.4508 −0.0070 0.967
F14 2000 −0.4461 1.3396 −0.0053 0.969
F14 2001 −0.2633 1.4454 −0.0071 0.974
F14 2002 0.3598 1.3926 −0.0065 0.961
F14 2003 −0.0390 1.3677 −0.0059 0.979
F15 2000 −1.0303 1.1837 −0.0027 0.967
F15 2001 −0.8264 1.1821 −0.0027 0.977
F15 2002 −0.6087 1.1485 −0.0022 0.981
F15 2003 −1.2553 1.6417 −0.0099 0.978
F15 2004 −0.6269 1.6067 −0.0095 0.981
F15 2005 −0.8131 1.5621 −0.0086 0.980
F15 2006 −0.4824 1.3515 −0.0054 0.989
F15 2007 −0.4583 1.4299 −0.0066 0.983
F16 2004 −0.0440 1.3285 −0.0053 0.968
F16 2005 −1.0392 1.5749 −0.0088 0.986
F16 2006 −0.6923 1.2201 −0.0033 0.988
F16 2007 0.0000 1.0000 0.0000 1.000
F16 2008 −0.0982 0.9931 0.0002 0.989
F16 2009 −0.1023 1.1478 −0.0024 0.979
F18 2010 0.1369 0.7924 0.0030 0.972
F18 2011 0.0081 1.0310 −0.0006 0.980
F18 2012 0.5943 0.8498 0.0021 0.988
F18 2013 0.5167 0.8549 0.0021 0.991

Note that bold indicates the reference satellite in 2007.

Zone 4 are located further away from the coastal front. Al-
though a slight increase in lit-pixel percentage could be vi-
sually observed for Zone 3 (Fig. 6c) and Zone 4 (Fig. 6d),
their logarithmic trends are not statistically significant at con-
fidence level α = 0.05, and, therefore, the regression lines
are not marked in these figures. Figure 6 reveals a more sig-
nificant increase in human settlement in areas closer to the
coast front than inland during the 22-year period. The find-
ing coincides with current literature in which studies have re-
ported the ever-growing population in coastal counties since
the 1990s (Crossett et al., 2004; Stewart et al., 2003).

The Mann–Kendall trend test coupled with a Theil–Sen
slope estimator extracted the areas with a significant change
(increase or decrease) in human settlement in the 22-year pe-
riod (Fig. 7). Zonal statistics were also summarized for the
four hurricane-prone zones (Table 3). The net increase area
is defined as the area difference between pixels with a signif-

icant increasing and decreasing trend. The net increase zonal
percentage represents the percentage of a net increase area in
each predefined hurricane-prone zone. As Table 3 suggests,
4.22 % of the area in Zone 1 experienced a significant in-
crease in human settlement, followed by 2.34 % in Zone 2,
2.08 % in Zone 3, and 1.65 % in Zone 4. The statistics above
suggest a noticeably positive relationship between the hur-
ricane proneness of each zone and the percent area with a
significant increase in settlement. The sum of the Theil–Sen
slope, on the other hand, established the relationship between
hurricane proneness and the increase rate of settlement in
each zone. Zone 1 receives the most hurricanes, but it has
the strongest increase of settlement intensity, followed by
Zones 2–4.

Figure 7a demonstrates the Mann–Kendall trend map in
the study area, where red, blue, and yellow in the figure rep-
resent a pixel with a significant increasing trend, a significant
decreasing trend, and an insignificant trend, respectively. Ur-
ban expansion in major cities in the south (the US southeast-
ern region), for example, Atlanta, Houston, and Dallas, can
be clearly observed as their city cores are surrounded by ex-
tensive areas with a significant increasing trend. A decrease
in human settlement intensity was observed mostly in the
north (the US northeastern region; blue ellipse in Fig. 7a),
where several cities in the state of New York stand out, in-
cluding Albany, Troy, and Johnstown.

Two city clusters were selected to demonstrate the spa-
tial distributions of the Mann–Kendall trend and Theil–Sen
slope: the metropolitan areas of Atlanta, Georgia (Fig. 7b1
and b2), and Dallas, Texas (Fig. 7c1 and c2). For both
cities, urban areas in 1992 were extracted from the En-
hanced National Land Cover Data 1992 (NLCDe 92) re-
leased by the US Geological Survey (USGS) (https://water.
usgs.gov/GIS/metadata/usgswrd/XML/nlcde92.xml, last ac-
cess: 7 January 2019), in which all classes (low-
intensity residential, high-intensity residential, commer-
cial/industrial/transportation, and forest residential) were
counted as urban areas in 1992. From Fig. 7, significant ur-
ban expansion can be observed in both cities. The growth
of human settlement was also observed in small towns sur-
rounding urban clusters.

For areas with a significant Mann–Kendall trend, the
Theil–Sen slope indicates the change rate of human settle-
ment (either upwards or downwards). In Fig. 7b2 and c2,
the development of the areas of metropolitan Atlanta and
metropolitan Dallas followed obvious radial patterns: areas
close to the urban core show a high increase rate of settle-
ment (i.e., a high Theil–Sen slope), while areas away from
the urban core show a low increase rate. Since the VANUI
has been normalized to [0, 1] and the temporal period covers
22 years (1992–2013), a pixel would have a Theil–Sen slope
of 0.045 (1/22), under the assumption that its settlement in-
tensity had steadily increased from 0 in 1992 to 1 in 2013.
The maximum Theil–Sen slope reached 0.037 in both cities,
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Table 3. Hurricane-prone zonal summary of the Mann–Kendall and Theil–Sen tests.

Hurricane-prone Zone size Net increase Net increase Sum of
zones (km2) area (km2)∗ zonal percentage Theil–Sen

(%) slope (per
100 000 km2)

Zone 1 312 453 13 178 4.22 9.02
Zone 2 507 285 11 889 2.34 6.11
Zone 3 620 108 12 907 2.08 5.42
Zone 4 1 047 424 17 255 1.65 4.16

Study area 2 487 270 55 229 2.22 5.48

∗ Net increase area in each hurricane-prone zone denotes the area difference in this zone between pixels with
a significant increasing trend and pixels with a significant decreasing trend in their VANUI series.

indicating a significant boost of human settlement intensity
during the investigated period.

Metropolitan statistical areas (MSAs) in the study area
were selected for further analysis. Defined by the US Office
of Management and Budget (OMB), an MSA represents a
contiguous area of relatively high population density. From
a total of 383 predefined MSAs in the study area, the top
5 most populated MSAs in each part were selected. The lit-
pixel counts within the administrative boundary of each MSA
in 1992, 2002, and 2013 were extracted. As Table 4 suggests,
all selected MSAs in the north had decreased settlement
intensities in two temporal periods (1992–2002 and 2002–
2013). The only exception is the Washington–Arlington–
Alexandria MSA in 2002–2013, during which its settlement
intensity slightly increased by 2.5 %. On the contrary, all of
the top five most populated MSAs in the south witnessed
a significant increase in settlement intensity. The MSA of
Dallas–Fort Worth–Arlington, for instance, experienced a
23.8 % increase of settlement intensity in 1992–2002, and
the increase rate has slowed down to 4.6 % in the next pe-
riod (2002–2013). The MSA of Miami–Fort Lauderdale–
West Palm Beach, however, is believed to have a continuous
boost of human settlement as its sum of VANUI increased
12.6 % in 1992–2002 and 11.3 % in 2002–2013. Although
four out of the five biggest MSAs in the south saw reduced
growth rate in 2002–2013 period (Table 4), Frey (2019)
pointed out that southern metropolitan areas have picked up
their population increase rate since 2015, and this could be
a sign that southern metropolitan areas are heading back to
the growth levels they experienced prior to the US recession
in 2007 to 2009.

The ongoing intensification of human settlement in high
hurricane-exposure areas, especially in the US southeastern
region, potentially leads to an escalation in flood-induced
losses. Despite the fact that the driving factors are complex
and unclear, they reflect the micro to macro levels of so-
cioeconomic development that has been prioritized in high
hurricane-exposure areas in the last decades. Additionally,
the intensification of human settlement always couples with

anthropogenic environmental changes (deforestation, wet-
land destruction, etc.), potentially resulting in more severe
impacts during hurricanes and floods (Viero et al., 2019).
Although the investigated period of this study stops at the
year 2013 due to the termination of DMSP/OLS satellites,
the intensification of human settlement in areas with high
hurricane exposure (like Zone 1) is expected to continue and
might even accelerate. In alignment with economic recovery,
studies have shown an escalated population shift towards the
Atlantic and Gulf coasts after the stalling during the reces-
sion (Neumann et al., 2015).

Coastal resilience becomes more complicated when the in-
creasing pressure of human settlement in coastal zones is
coupled with the more frequent and costly hurricanes. The
last 3 years (2016–2018) have seen consecutive Atlantic hur-
ricane seasons producing above-average damage. The eco-
nomic damage in the conterminous US in 2017 was among
the costliest ever recorded on a nominal, inflation-adjusted,
and normalized basis (Klotzbach et al., 2018). Even worse,
2018 was the most recent hurricane season to feature four
simultaneously named storms (Florence, Isaac, Helene, and
Joyce) after 2008. Although the future trend of hurricane sea-
sons cannot be easily predicted, the implication of greater
losses stands as the sizable growth of human settlement con-
tinues along the Atlantic and Gulf coasts.

With the launch of the Suomi National Polar-orbiting Part-
nership (NPP) satellite in October 2011, NTL data from the
onboard Visible Infrared Imaging Radiometer Suite (VIIRS)
have become available. Its onboard calibration capacity and
saturation-free merit have made NPP–VIIRS a new genera-
tion system of nighttime light observations (Elvidge et al.,
2013). This new NTL data source will provide improved
monitoring of human settlement and land development in
hurricane-prone regions for advanced disaster assessment.
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Table 4. Sum of VANUI value and change percentage in the top five most-populated MSAs in the north and south of the study area.

MSAs∗ Sum of Sum of Sum of Percent of change Percent of change
VANUI VANUI VANUI (1992–2002) (2002–2013)
in 1992 in 2002 in 2013

North

New York–Newark–Jersey City 3744.0 3307.2 3217.2 −11.67 % −2.7 %
Washington–Arlington–Alexandria 1673.5 1611.4 1651.6 −3.7 % +2.5 %
Philadelphia–Camden–Wilmington 2279.2 2068.1 1928.5 −9.3 % −6.8 %
Boston–Cambridge–Newton 1498.9 1289.4 1182.3 −14.0 % −8.3 %
Baltimore–Columbia–Towson 1035.5 961.2 831.2 −7.2 % −13.5 %

South

Dallas–Fort Worth–Arlington 3115.4 3857.1 4034.12 +23.8 % +4.6 %
Houston–The Woodlands–Sugar Land 2687.0 3028.8 3143.9 +12.7 % +3.8 %
Miami–Fort Lauderdale–West Palm Beach 1985.4 2262.7 2518.9 +12.6 % +11.3 %
Atlanta–Sandy Spring–Roswell 2085.8 2398.8 2546.2 +14.0 % +6.1 %
Tampa–St. Petersburg–Clearwater 1387.7 1511.9 1598.8 +9.0 % +5.7 %

∗ All administrative boundaries of the selected MSAs were derived from US Census Bureau data available at
https://www.census.gov/geo/mapsdata/data/cbf/cbf_msa.html (last access: 7 January 2019). MSAs in the south were selected from the southeastern and
southern Gulf region of the US, and therefore, Washington–Arlington–Alexandria and Baltimore–Columbia–Towson were regarded as northern MSAs in this
study.

6 Conclusion

This study examined the spatiotemporal dynamics of night-
time satellite-derived human settlement in 1992–2013 in
four zones at different levels of hurricane proneness on the
US Atlantic and Gulf coasts. The hurricane-prone zones
were delineated based on historical storm tracks from the
North Atlantic Basin during 1851–2016 via a wind-speed-
weighted track density function. A three-step intercalibration
framework was applied to intercalibrate the multi-satellite
DMSP/OLS NTL series, and the NDVI-desaturated NTL
products were extracted to derive VANUI, a popular index
representing human settlement intensity. The Mann–Kendall
trend and Theil–Sen slope were further applied to identify
the existing trend in the 22-year period.

Zonal statistics indicate that in the frontmost zones along
the coast, i.e., Zone 1 and Zone 2 (receiving the most hur-
ricanes), human settlement intensity has dramatically in-
creased, although the change rate has slowed down since the
early 2000s. The increase was not significant in areas far-
ther away from the coasts (Zone 3 and Zone 4). Via trend
analysis, 4.22 % of the area in Zone 1 experienced a signif-
icant increase in settlement intensity, followed by 2.34 % in
Zone 2, 2.08 % in Zone 3, and 1.65 % in Zone 4, revealing
higher pressure of human settlement and thus impacts from
hurricanes in the frontmost coastal areas. Different from the
zonal partitions, opposite trends of human settlement were
observed from the north (decreasing) to the south (increas-
ing) of the study region, which are supported by decadal
census records. These opposite trends agree with the Snow
Belt-to-Sun Belt US population shift reported in other stud-
ies. Along the Atlantic and Gulf coasts, the ongoing intensifi-

cation of anthropogenic environmental changes coupled with
more frequent and severe hurricanes is likely to cast more se-
vere pressure on coastal resilience.
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