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Abstract. Flood forecasting in semiarid regions is always
poor, and a single-criterion assessment provides limited in-
formation for decision making. Here, we propose a mul-
ticriteria assessment framework called flood classification–
reliability assessment (FCRA) that combines the absolute
relative error, flow classification and uncertainty interval esti-
mated by the hydrologic uncertainty processor (HUP) to as-
sess the most striking feature of an event-based flood: the
peak flow. A total of 100 flood events in four catchments of
the middle reaches of the Yellow River are modeled with hy-
drological models over the period of 1983–2009. The ver-
tically mixed runoff model (VMM) is compared with one
physically based model, the MIKE SHE model (originat-
ing from the Système Hydrologique Européen program), and
two conceptual models, the Xinanjiang model (XAJ) and the
Shanbei model (SBM). Our results show that the VMM has
a better flood estimation performance than the other models,
and the FCRA framework can provide reasonable flood clas-
sification and reliability assessment information, which may
help decision makers improve their diagnostic abilities in the
early flood warning process.

1 Introduction

Arid and semiarid regions account for approximately one-
third of the global land surface and half of China’s land sur-
face. A trend towards a warmer climate has increased the
global incidence of intense precipitation events. Arid and
semiarid regions, i.e., areas where the annual rainfall is less
than 250 and 250–500 mm a−1, respectively, are particularly

vulnerable to this change in climate (Khomsi et al., 2016;
Yatheendradas et al., 2008). More than 50 % of flood-related
casualties occur in these regions worldwide (Brito and Evers,
2016).

Hydrological models play an important role in flood simu-
lation and forecasting (Devia et al., 2015). Many studies have
focused on the improvement and estimation of hydrologic
models in humid catchments, although there are fewer simi-
lar studies for semiarid catchments (Jiang et al., 2015). The
runoff generation mechanisms for semiarid catchments are
complex and may be simultaneously dominated by infiltra-
tion excess and saturation excess mechanisms (Beven, 1983;
Beven and Freer, 2001).

Modeling semiarid catchments is a difficult task due to
the strong spatial variability in rainfall and complexity of
landscape characteristics (vegetation, soil, etc.) (Pilgrim et
al., 1988). Compared with humid catchments, the rainfall of
semiarid catchments is characterized by high intensity and
short duration (Andersen, 2008). In certain areas with devel-
oping economies and small populations, the rain gauge net-
works are generally sparse. Rainfall data are important inputs
for hydrologic models, and the high temporal–spatial rainfall
variability combined with sparse rain gauges make modeling
runoff more difficult (Hao et al., 2018; Li and Huang, 2017;
Mwakalila et al., 2001).

Satellite technology has the possibility to solve the issue of
low rain gauge densities, although the low spatial and tempo-
ral resolutions of the products limit their applicability to sub-
daily rainstorms (Dinku et al., 2007). Weather radar has high
spatial resolution (1 m) and temporal resolution (15 min).
However, the radar costs are too high to be used for large-
scale semiarid areas (Young et al., 1999).

Published by Copernicus Publications on behalf of the European Geosciences Union.



2028 D. Li et al.: Multicriteria assessment framework of flood events simulated with vertically mixed runoff model

Literature on the subdaily modeling of rainfall runoff is
limited in semiarid catchments. Due to rapid times to peak
and scarce rainfall data, capturing rainstorm flood responses
is more difficult than estimating daily, monthly or annual
runoff (Andersen, 2008; McMichael et al., 2006). Flood
simulation results in semiarid catchments are often poor.
Michaud and Sorooshian (1994) used 24 severe rainstorms
that produced the largest peak flows from 1957 to 1977
to compare three hydrologic models, i.e., the lumped Soil
Conservation Service (SCS) model, the simple distributed
SCS model, and the distributed kinematic runoff and ero-
sion (KINEROS) model, in the Walnut Gulch catchment,
and none of them were able to accurately simulate flood
events. McIntyre and Al-Qurashi (2009) analyzed 27 flood
events with three hydrologic models, the lumped Identifica-
tion of Hydrographs and Components from Rainfall, Evap-
oration and Streamflow (IHACRES) model, the distributed
IHACRES model, and a two-parameter regression model in
a catchment in Oman. The average absolute relative errors in
the flow peak and flow volume were 53 % and 36 %, respec-
tively, for the best performing models. Under current techni-
cal conditions, it seems difficult to achieve an acceptable sim-
ulation/forecasting result for flood events in semiarid catch-
ments. Therefore, determining how to use modeling results
with limited accuracy to provide guidance for early flood
warnings is important.

In this study, a multicriteria assessment framework that
combines the absolute relative error, flow classification and
uncertainty interval estimated by the hydrologic uncertainty
processor (HUP) is proposed to provide more information
for engineers’ decision making. Four hydrological models,
the vertically mixed runoff model (VMM), the MIKE SHE
model (originated from the Système Hydrologique Européen
program), the Xinanjiang model (XAJ) and the Shanbei
model (SBM), are compared based on the performance of the
modeling results in four catchments in the middle reaches
of the Yellow River. The global sensitivity analysis (GSA)
method PAWN (derived from the authors’ names) is used
to analyze the parametric sensitivity of the VMM. The rest
of the paper is organized as follows. Section 2 describes the
study area and the data set used. Section 3 presents the VMM
methodology, model set, model calibration and validation,
multicriteria assessment framework, and parameter sensitiv-
ity analysis. Section 4 describes the results and discussion
of model comparison, sensitivity analysis and analysis of the
multicriteria assessment framework for the VMM. The final
section presents the conclusions of the study.

2 Study area and data

The four selected study catchments are all key tributaries
located in the middle reaches of the Yellow River, China
(Fig. 1). The maximum and minimum areas of the catch-
ments are 1989 and 8706 km2, respectively. The average an-

Figure 1. Locations and rain gauging nets of the Qingjian River
catchment, Qiushui River catchment, Tuwei River catchment and
Kuye River catchment.

nual temperature ranges from 6 to 14 ◦C. The average an-
nual precipitation ranges from 1010 to 1150 mm, and 65 %
to 80 % is concentrated in summer (Li et al., 2019; Li and
Huang, 2017; Xiao et al., 2019). The rainfall is generally
characterized by high intensity and short duration. The av-
erage annual evaporation ranges from 1010 to 1150 mm. All
selected catchments are semiarid based on an aridity index
between 2.31 and 2.78 (UNEP, 1992). This catchment infor-
mation is listed in Table 1.

The lack of vegetation in these catchments leads to severe
soil erosion, and the average sediment concentration reaches
126 kg m−3 according to Li et al. (2019). Some hydrolo-
gists have studied daily and monthly rainfall runoff, although
few studies have modeled hourly floods. With the rapid in-
crease in population and economic development, flood disas-
ters have received increasing attention. Hence, it is important
for decision makers to know how to evaluate the flood risk
when a flood is approaching.

The period used in the model was from 1983 to 2009.
Continuous streamflow and rainfall data were collected from
streamflow gauging stations and rain gauging stations at a
daily time step, respectively; streamflow and rainfall data
for each of the flood events were collected at an hourly
time step. Nine rainfall gauging stations in the Qiushui River
catchment, 15 rainfall gauging stations in the Qingjian River
catchment, 12 rainfall gauging stations in the Tuwei River
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Table 1. Characteristics of the four catchments.

Catchment Area Outlet Area∗ Mean annual Mean Aridity
(km2) station (km2) precipitation evaporation index

(mm) (mm)

Qiushui River 1989 Linjiaping 1873 499 1150 2.31
Qingjian River 4080 Yanchuan 3468 451 1080 2.4
Tuwei River 3294 Gaojiachuan 2095 377 1050 2.78
Kuye River 8706 Wenjiachuan 8645 410 1010 2.46

∗ The area of the catchment controlled by the outlet station indicated in the table.

and 41 rainfall gauging stations in the Kuye River were se-
lected. The Thiessen polygon method was used to interpolate
the rainfall data for each catchment.

3 Methodology

3.1 Vertically mixed runoff model

The VMM is a lumped, continuous hydrologic model and has
been used in many areas in China, especially in semiarid and
subhumid catchments (Bao and Zhao, 2014; Li, 2018; Wang
and Ren, 2009). Compared with other conceptual models,
such as the XAJ model (Zhao, 1992) and the Sacramento Soil
Moisture Accounting (SSMA) model (Burnash et al., 1973),
among others, the VMM is capable of simulating the satu-
ration excess and infiltration excess runoff generation mech-
anisms simultaneously. As shown in Fig. 2, the VMM com-
bines the infiltration capacity curve and tension water content
storage capacity curve in the vertical direction. Net rainfall
(observed rainfall after removal of evaporation, PE) is parti-
tioned into surface runoff (RS) and infiltration flow (FA) by
the infiltration capacity curve in the VMM. FA is regulated
by the tension water storage capacity curve, part of which
supplements the tension water storage (W ), with the remain-
der of the rainfall forming groundwater flow (RB) (including
unsaturated flow and saturated flow). Here, the calculation
of runoff generation is described briefly. More detailed infor-
mation about the VMM is contained in Bao and Zhao (2014).

The improved Green–Ampt infiltration curve (Bao, 1993)
is applied in the VMM as the infiltration capacity curve, and
the equation is as follows:

FM = FC

(
1+K

WM −W

WM

)
, (1)

where FM is the average point infiltration capacity of the
catchment, and the descriptions of WM,K , and FC are shown
in Table 2.

FA is calculated using Eq. (2):

FA=

{
FM −FM

(
1− PE

(FMM)1+BF

)
PE < FMM

FM PE ≥ FMM
, (2)

Figure 2. Runoff generation module in the VMM. (a) Infiltration
capacity curve and (b) tension water content storage capacity curve.
α is the fracture area that is saturated and F represents the point
infiltration capacity.

where

FMM = FM(1+BF), (3)

in which FMM is the maximum point infiltration capacity of
the catchment and BF is defined in Table 2.

The part that exceeds the average point infiltration capac-
ity of the catchment FM forms RS. RS can be calculated with
Eq. (4).

RS = PE−FA (4)

RB can be calculated using Eq. (5):

RB ={
FA−WM +W +WM

(
1− W ∗+FA

WMM

B+1)
FA+W ∗ <WMM

FM −WM +W FA+W ∗ ≥WMM
, (5)
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Table 2. Parameter values of the VMM.

Symbol Definition Range∗

KC Ratio of potential evapotranspiration to pan evaporation [0.5, 1.5]
WM Mean areal maximum possible soil moisture, mm [50, 200]
FC Stable infiltration capacity, mm h−1

[5, 100]
K Infiltration index related to soil permeability [0.05, 1]
BF Index of the watershed infiltration capacity curve [0, 0.5]
B Index of the watershed water storage capacity curve [1, 2]
KI Outflow coefficient of interflow, d [0.1, 0.5]
KG Outflow coefficient of groundwater, d [0.5, 2]
CS Confluence coefficient of surface flow [0.05, 0.9]
CI Recession coefficient of interflow, d [0.5, 0.95]
CG Recession coefficient of ground flow, d [0.90, 0.99]
KE Residence time of Muskingum, h [0.5, 5]
XE Muskingum coefficient [0.01, 0.49]
IM Impermeable area [0, 1]

∗ In [a, b], a and b represent the lower and upper bounds of the parameters, respectively.

where

W ∗ =WMM

[
1−

(
1−

W

WM

)]( 1
B
+1
)

WMM =WM(1+B), (6)

in which WMM is the maximum point tension water stor-
age capacity of the catchment, W ∗ is the ordinate of Fig. 2b,
which represents the point tension water content capacity in
the catchment, and B is defined in Table 2.

The outlet runoff R can be calculated as follows:

R = RS+RB. (7)

3.2 Model set of the VMM

The VMM was run continuously from 1983 to 2009 for each
catchment. Rainfall data were available only at an hourly
time step over the periods of flood events, and for other peri-
ods, they were available at a daily time step. Hence, the time
step of simulations was set as daily between flood events and
hourly within flood events for each catchment. To consider
the spatial variation in rainfall, the subcatchments were di-
vided according to the stream networks, and each subcatch-
ment contained at least one rainfall gauging station. The
areal mean rainfall of each subcatchment was calculated us-
ing the Thiessen polygon method. Because streamflow data
were only available in the outlet streamflow gauging sta-
tion for each catchment, the spatial variation in each catch-
ment’s parameters could not be determined by calibration.
Thus, the parameters (Table 2) were set uniformly in all sub-
catchments. Two initial values, the initial tension water stor-
age (W0) and the initial free water storage (S0), were used
to describe the initial catchment moisture condition. The ini-
tial values are smaller for drier catchments, and the minimum
values are zero. In this study, the initial values were assumed

to be zero uniformly due to the dry conditions at 00:00:00 LT
on 1 January 1983 for each catchment. It should be noted
that continuous simulations for each catchment eliminate the
need to set the initial values for each flood event in a catch-
ment.

3.3 Model calibration

The 14 parameters (Table 2) of the VMM were calibrated us-
ing the Shuffled Complex Evolution (SCE-UA) global opti-
mization algorithm (Duan et al., 1993). The ranges of param-
eters were determined based on previous literature and prior
knowledge (Bao and Zhao, 2014; Li et al., 2018). Due to the
rapid rise and fall of floods (usually less than 24 h) in semi-
arid catchments, accurate simulations of the full hydrograph
are not needed and cannot be achieved. The Nash–Sutcliffe
efficiency (NSE) (Nash and Sutcliffe, 1970) is widely used
as an objective function of calibration in humid catchments;
however, it may not be suitable for semiarid catchments be-
cause a good fit is not required between the simulated and
observed streamflows. McIntyre and Al-Qurashi (2009) and
Sharma and Murthy (1998) used the absolute relative error
to evaluate model outputs (flow peak and flow volume) for
semiarid areas, and the calibrated results indicated that the
peak flow results are more accurate than the suggested re-
sults based on the NSE. Thus, the simulated hydrograph is
reasonable for the majority of flood events. The equations
are as follows:

Ep =
1
n

n∑
i=1

∣∣∣Qi
p−Q

i
pm

∣∣∣
Qi

pm
, (8)

Ev =
1
n

n∑
i=1

∣∣Qi
v−Q

i
vm
∣∣

Qi
vm

, (9)
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where Ep and Ev are the average performances (in terms of
absolute relative error) for peak flows and flow volumes in
each catchment, respectively; n is the number of events; the
index i denotes each event; Qp and Qpm are the simulated
and measured values of peak flow per event, respectively;
and Qv and Qvm are the simulated and measured values of
flow volume per event, respectively.

Constraining the model output with peak flows and flow
volumes can be expressed as follows:

Epv =
Ep+Ev

2
, (10)

where Epv is the objective value. The model outputs become
better as the value of Epv approaches 0. The number of iter-
ations was set to 2000 in the calibration process.

3.4 Model comparison

To achieve a better performance in rainstorm flood sim-
ulations, three hydrologic models, including two concep-
tual models, XAJ and SBM, and one distributed model,
MIKE SHE, were used for comparison with the VMM. The
XAJ model was developed by Zhao (1992) and has a sin-
gle saturation excess runoff generation mechanism. The XAJ
model has been successfully applied in humid and subhumid
catchments (Cheng et al., 2006; Lü et al., 2013). The SBM
was developed by Zhao (1983) and has a single infiltration
excess runoff generation mechanism. The SBM is generally
used in semiarid or arid catchments in China (Bao et al.,
2017; Li and Zhang, 2008; Zhao et al., 2013). In addition,
the MIKE SHE model is a deterministic, physically based
distributed hydrologic model that can simulate surface water
flow, unsaturated flow and saturated flow (Jayatilaka et al.,
1998). The MIKE SHE model has been used to solve water
resources and environment problems at different spatiotem-
poral scales (Li et al., 2018; Rujner et al., 2018; Samaras et
al., 2016).

3.5 Multicriteria assessment framework: flood
classification–reliability assessment for flood events

Flood simulations and forecasting in semiarid catchments are
very difficult due to strong spatial variability of rainfall, com-
plex landscape characteristics, etc. Although some hydrolo-
gists improve flood simulations and forecasting by improv-
ing hydrologic models, the improvements are always lim-
ited or are suitable for only specific regions (Collier, 2007).
The flood peak is the most significant feature in semiarid
regions. Determining the extent to which the calculation of
flood peaks can be accepted is crucial. Generally, the ab-
solute relative error is used to measure the calculation of
flood peak accuracy; for example, 20 %, 30 % or similar
values are acceptable (Li et al., 2014; McIntyre and Al-
Qurashi, 2009). To provide more information for flood de-
fense management, the generalized likelihood uncertainty es-
timation (GLUE) and the Bayesian framework with Markov

chain Monte Carlo sampling are used to provide probabilis-
tic forecasting, such as the 95 % uncertainty interval (Chris-
tiaens and Feyen, 2002; Li et al., 2017), although these meth-
ods may not lead to clear decisions (Beven, 2007).

In this study, to obtain a better diagnostic and discrimina-
tory method for the decision maker, we propose a multicri-
teria assessment framework called the flood classification–
reliability assessment (FCRA) in the catchments of the mid-
dle reaches of the Yellow River. The FCRA framework con-
sists of two parts: (i) flood classification and (ii) flood reli-
ability assessment. The first part represents floods that are
classified with percentiles and the absolute relative error; the
other represents the reliability of flood modeling that is eval-
uated with the Bayesian method. Peak flows, as the most
prominent features of flood events, are assessed with the
FCRA framework. Detailed descriptions can be found as fol-
lows.

C1. The absolute relative error of peak flow should be less
than 20 %.

C2. The modeled and observed peak flows should be in the
same flow zone: the observed peak flowQp for all flood
events in a catchment is divided into three zones (low-
flow zone, medium-flow zone, high-flow zone), with
25th percentiles Qp25 and 75th percentiles Qp75 as the
boundary points; if Qp ≤Qp25, then the peak flow Qp
belongs to the low-flow zone; if Qp ≥Qp75, then the
peak flow Qp belongs to the high-flow zone; the re-
maining flow peaks belong to the medium-flow zone.
Both the 25th and 75th percentiles are commonly used
to distinguish zones.

C3. The observed peak flows should fall within 1 standard
deviation (σ ) of the mean (approximately 68.3 % un-
certainty interval) peak flow estimated by the hydro-
logic uncertainty processor (HUP), one component of
the Bayesian forecasting system detailed in Krzyszto-
fowicz (1999) and Biondi et al. (2010).

Conditions C1 and C2 are flood classification criteria. If the
observed and modeled peak flows meet one of the two con-
ditions, it is believed that they are the same types of floods.
The key of the FCRA framework is condition C2, and con-
dition C1 is used to avoid errors caused by flow zone bound-
aries. For example, when Qp75 = 200 m3 s−1, the modeled
peak flow equals 198 m3 s−1 and the observed peak flow
equals 201 m3 s−1. However, using only condition C2 may
lead to inappropriate model results; adding condition C1 can
help address the problem. Condition C3 is used to assess the
reliability of peak flow modeling; a small uncertainty interval
(68.3 %) is used that has narrow upper and lower limits. This
interval may reduce the numbers of observed peak flows that
fall within the confidence level. A modeled peak flow that
can be accepted should satisfy condition C1 or condition C2
and then condition C3.
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3.6 Parameter sensitivity analysis

A sensitivity analysis (SA) (Saltelli et al., 1989) was pro-
posed to assess the effects of inputs on the model output. The
SA can be classified into a GSA and local sensitivity analy-
sis (LSA). Compared with the LSA, the GSA is capable of
analyzing the effects of inputs within the entire input domain.
The Fourier amplitude sensitivity test (Cukier et al., 1973),
Sobol method (Sobol, 1993) and Morris screening method
(Morris, 1991) are the most widely used GSA methods in the
assessment of parameter sensitivity in hydrologic models. Pi-
anosi and Wagener (2015) proposed the novel GSA method
PAWN, which is based on the cumulative density function.
PAWN has advantages over the parameter ranking and time-
consuming nature of other GSA methods (Khorashadi et al.,
2017). In this study, we used the PAWN method to perform a
GSA on the VMM.

Considering xi,j (ij = 1, 2, . . ., where i and j represent
the ith input parameters and the j th sampling, respectively)
as sensitivity inputs, then the sensitivity of xi,j can be mea-
sured by the distance between F(yi |xi,j )(yi) (the cumulative
probability distribution function of yi when xi,j changes
between the upper bound and lower bound) and Fyi (yi)

(the cumulative probability distribution function of yi when

xi =
1
n

n∑
j=1

xi,j , where n is the number of samplings per in-

put parameter). The Kolmogorov–Smirnov statistic (Simard
and Ecuyer, 2011) is used to measure the distance between
F(yi |xi )(yi) and Fyi (yi):

KS
(
xi,j

)
=

∣∣∣Fyi (yi)−F(yi |xi,j ) (yi)∣∣∣ . (11)

As KS varies with xi,j , the maximum of all possible KS val-
ues is included in the PAWN index Pi :

Pi =KS
(
xi,j

)
. (12)

Pi ranges from 0 to 1 and xi becomes more sensitive as Pi ap-
proaches 1. A Pi value equal to 1 indicates that xi has no ef-
fect on the model. For more information about PAWN, please
refer to Pianosi and Wagener (2015). In this study, the num-
ber of evaluations was set to 500, as suggested by Pianosi
and Wagener (2018).

3.7 Model validation

The modeling period was between 1983 and 2009. In the
Qiushui River, 20 flood events were selected, with the first
15 events used for calibration and the remaining five events
used for validation. Similarly, in the Qingjian River, 29 flood
events were selected, with 24 events used for calibration and
the remaining five events used for validation. In the Tuwei
River, 23 flood events were selected, with 18 events used for
calibration and the remaining five events used for validation.
Finally, in the Kuye River, 28 flood events were selected,
with 23 events used for calibration and the remaining five
events used for validation.

Table 3. Performance (in terms of absolute relative error) for peak
flow Ev in each catchment in the four models. Values are given as a
percentage.

Qiushui Qingjian Tuwei Kuye Average∗

River River River River

VMM 26.52 58.50 40.20 30.80 39.01
MIKE SHE 40.50 60.70 45.30 38.20 46.18
XAJ 56.60 66.61 60.20 52.30 58.93
SBM 38.14 55.82 35.50 45.20 43.15

∗ The average Ev of the four catchments for each model.

4 Results and discussion

4.1 Comparison of model results

Boxplots of the absolute relative errors of the peak flows for
each model in the four catchments are shown in Fig. 3. In
terms of the median and average of the absolute relative er-
rors for peak flows, the VMM has the lowest values for both
calibration and validation in Fig. 3a–g except for the valida-
tion period in the Kuye River catchment in Fig. 3h; in most
cases, the MIKE SHE model has lower median and average
values than the XAJ and SBM, i.e., Fig. 3a–d, g and h. Low
median and average values indicate that more modeled flood
events have good performance in a catchment. Except for the
good performance in the Tuwei River catchment, the results
using the SBM are as poor as those using the XAJ model in
the other catchments. In terms of interquartile ranges (IQRs)
of the absolute relative errors for peak flows, the VMM and
MIKE SHE models have relatively small ranges (Fig. 3a, c,
d and g) and the SBM and XAJ models have large ranges in
most cases (Fig. 3a–d and g). This indicates that the VMM
and MIKE SHE models are more robust to reproduce the
peak flows in the middle reaches of the Yellow River.

Tables 3 and 4 show the average performance in terms of
the absolute relative error for flow volume Ev and the lag
time for the four models in each catchment, respectively.
Low Ev and lag time values indicate that the model is highly
capable of reproducing the flow volumes and time-to-peak
values. The VMM has the minimum averageEv and lag time,
with values of 39.01 % and 3.05 h, respectively (Tables 3
and 4). In contrast, the XAJ model has the maximum av-
erage Ev and lag time, with values of 58.93 % and 4.51 h,
respectively. The MIKE SHE and SBM have similar perfor-
mances in terms of average Ev and lag time.

The analysis of Fig. 3 and Tables 3 and 4 above indi-
cates that the VMM has the best performance to reproduce
the peak flows, flow volumes and lag times in the four stud-
ied catchments of the middle reaches of the Yellow River
and the XAJ model has the worst performance. In addition,
the MIKE SHE model is superior for reproducing the peak
flows but exhibits similar performance compared with the
SBM for reproducing the flow volume and lag time. Al-
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Figure 3. Boxplot of absolute relative errors of peak flows in the four catchments. Q1 and Q3 represent the 1st quantile and 3rd quantile,
respectively; interquartile range IQR=Q3−Q1. An outlier is defined as an extreme value that exceeds the range of Q1− 1.5 IQR and
Q3+ 1.5 IQR.

Table 4. Lag time of the peak flow in the four catchments in the
four models. Values are in hours.

Qiushui Qingjian Tuwei Kuye Average∗

River River River River

VMM 2.20 3.02 3.46 3.50 3.05
MIKE SHE 2.50 3.50 4.20 3.90 3.53
XAJ 4.10 3.81 5.62 4.50 4.51
SBM 4.00 2.95 3.46 4.20 3.65

∗ The average lag time in the four catchments for each model.

though the MIKE SHE model is a distributed hydrologic
model with more complex structures and more explicit phys-
ical meaning than the conceptual VMM, it does not achieve
better results than the conceptual VMM due to a lack of suffi-
ciently high-resolution data, and this is consistent with other
studies (Beven, 2002, 2011; Michaud and Sorooshian, 1994;
Seyfried and Wilcox, 1995). Both infiltration excess and sat-
uration excess can be simulated via the VMM; it may be the
reason why it performs better than the other two conceptual
models (XAJ and SBM), which have single runoff genera-
tion mechanisms (saturation excess and infiltration excess,
respectively).

4.2 Sensitivity analysis of the VMM

The GSA method PAWN is applied to estimate the influence
of parameter uncertainty on the model output results. Fig-
ure 4a and b show the average SA results of all study catch-
ments for the objective functionsEp (Eq. 9) andEpv (Eq. 11),
respectively. The parameters become more sensitive as the

ranking becomes higher. Parameters CS, IM and KE have the
highest rankings whether the objective function of the VMM
isEp orEpv. The rankings of other parameters are influenced
slightly by different objective functions, such as CG, except
for WM. WM ranks sixth when Epv is the objective function
and 12th when Ep is the objective function. This ranking is
because WM controls the tension water content in the soil,
which determines the amount of rainfall stored in the soil and
the generation of runoff. There may be a strong relationship
between flow volume and WM. Therefore, WM has a higher
ranking when the objective function considers the effect of
flow volume.

4.3 Flood classification–reliability assessment of the
VMM

The FCRA framework we propose is applied to assess the
ability of the VMM to model flood events in the four catch-
ments. FCRA requires that the accepted modeled peak flows
have the same flood types (high flow, medium flow or low
flow) as the observed peak flows; in addition, the modeled
peak flows should be reliable. Similar types of peak flows
that represent the modeled peak flows should meet one of
the requirements of conditions C1 and C2; the modeled peak
flows that are reliably represented need to meet condition C3.
The observed peak flows and the modeled peak flows under
condition C1, C2 or C3 are shown in Fig. 5. The percentages
of modeled peak flows that meet the conditions are presented
in Table 5. Although the percentages of the modeled peak
flows that meet condition C1 are less than 50 % (Table 5),
they reduce the boundary effects of flood classification. Tak-
ing the 13th flood event of the Kuye River catchment as an
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Figure 4. Sensitivity rankings of the VMM parameters based on the global sensitivity analysis method PAWN for different objective func-
tions. (a) Epv as the objective function and (b) Ep as the objective function. The value P is used to assess the sensitivity degree of the
parameter with the PAWN method, and a larger value corresponds to greater sensitivity. The numbers on the ordinate represent the sensitivity
rankings.

Table 5. The percentage of modeled peak flows that meet various
conditions for the VMM. Values are given as a percentage.

C1 C2 C3 C∗ C∗∗

Qiushui River 40.00 75.00 95.00 75.00 75.00
Qingjian River 41.38 44.83 100.00 58.62 58.62
Tuwei River 47.83 69.57 100.00 69.57 69.57
Kuye River 35.71 64.29 100.00 67.86 67.86

C∗ represents the modeled peak flows that meet condition C1 or C2; this means
modeled and observed peak flows are the same type; C∗∗ represents the modeled
peak flows that meet conditions C∗ and C3.

example, the observed and modeled peak flows are 1230 and
1510 m3 s−1, respectively. As shown in Fig. 5d, the absolute
relative error for peak flow is greater than 20 %. In addition,
for the Kuye River catchment, it is reasonable to believe that
the peak flows 1230 and 1510 m3 s−1 may have the same risk
according to the known flood peak data, which can be classi-
fied as the same flood type (medium flow) according to con-
dition C2.

From Table 5, we find that 95 % or more of modeled peak
flows meet condition C3; this indicates that almost all mod-
eled peak flows have less uncertainty and more reliability in
the selected catchments. Figure 5 shows more directly that
the majority of peak flows for the observations and modeling
fall between the 15.85th percentile and the 81.45th percentile
(68.3 % uncertainty interval) estimated by HUP, which is
consistent with Table 5. In addition, the percentages of mod-
eled flood events and observed peak flows that are the same
flood types (shown in Table 5 with C∗) equal the acceptance
rate (shown in Table 5 with C∗∗) for each catchment due to

the high reliability of modeled peak flows. Under the FCRA
framework, the acceptance rates (C∗∗) for the catchments are
more than 65 % except for the Qingjian River catchment.
This indicates that the FCRA framework may have the di-
agnostic capability to assess the modeled flood events in the
four semiarid catchments.

Under the FCRA framework, a modeled flood event could
be assessed to determine what flood type (high flow, medium
flow, low flow) it is and how reliable it is. This information
is meaningful in the early flood warning process in semiarid
catchments. Although FCRA is simple and even coarse, it
is convenient and beneficial in helping engineers make deci-
sions when a flood is approaching.

5 Conclusions

In this study, a multicriteria assessment framework of
flood events called the flood classification–reliability assess-
ment (FCRA) is proposed with the VMM in four semiarid
catchments of the middle reaches of the Yellow River. The
main conclusions are as follows.

Compared with the distributed model MIKE SHE and the
two conceptual models, XAJ and SBM, the VMM has a
better performance for modeling flood events in the middle
reaches of the Yellow River.

In the four catchments, the parameter confluence coeffi-
cient of surface flow (CS), impermeable area (IM) and res-
idence time of Muskingum (KE) in the VMM are the most
sensitive parameters based on an analysis using the global
sensitivity method PAWN; in addition, the sensitivity ranking

Nat. Hazards Earth Syst. Sci., 19, 2027–2037, 2019 www.nat-hazards-earth-syst-sci.net/19/2027/2019/



D. Li et al.: Multicriteria assessment framework of flood events simulated with vertically mixed runoff model 2035

Figure 5. Observed peak flows (red asterisk) and simulated peak flows (circles) with the VMM for each catchment under conditions C1–C3.
Flood peaks conforming to condition C1 are represented by solid circles and the others are empty; the three flow zones (low, medium and
high flow zones) classified by condition C2 are shown in gray, green and off-white, respectively; the 68.3 % uncertainty interval of peak flows
estimated by condition C3 is shown between the blue dashed line (81.45th percentile) and the red dashed–dotted line (15.85th percentile).

of the parameter WM related with the soil moisture capacity
is the most affected by the objective functions.

The FCRA framework combining flood classification and
reliability assessment may have the reliable diagnostic ca-
pability to assess flood events in the early flood warning pro-
cess. It should be noted that condition C2, which divides peak
flows into three flow zones, will be affected by the number
of observed peak flows when data availability is limited. The
framework is suitable for semiarid regions with poor model-
ing results and provides guidance for decision making.
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