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Abstract. The run-up of random long-wave ensemble (swell,
storm surge, and tsunami) on the constant-slope beach is
studied in the framework of the nonlinear shallow-water the-
ory in the approximation of non-breaking waves. If the in-
cident wave approaches the shore from the deepest water,
run-up characteristics can be found in two stages: in the first
stage, linear equations are solved and the wave characteris-
tics at the fixed (undisturbed) shoreline are found, and in the
second stage the nonlinear dynamics of the moving shoreline
is studied by means of the Riemann (nonlinear) transforma-
tion of linear solutions. In this paper, detailed results are ob-
tained for quasi-harmonic (narrow-band) waves with random
amplitude and phase. It is shown that the probabilistic char-
acteristics of the run-up extremes can be found from the lin-
ear theory, while the same ones of the moving shoreline are
from the nonlinear theory. The role of wave-breaking due to
large-amplitude outliers is discussed, so that it becomes nec-
essary to consider wave ensembles with non-Gaussian statis-
tics within the framework of the analytical theory of non-
breaking waves. The basic formulas for calculating the prob-
abilistic characteristics of the moving shoreline and its veloc-
ity through the incident wave characteristics are given. They
can be used for estimates of the flooding zone characteristics
in marine natural hazards.

1 Introduction

The flooded area size, the water flow depth, and its speed
on the coast, and the coastal topography characteristics de-
termine the consequences of marine natural disasters on

the coast. The catastrophic events of recent years are well
known, when tsunami waves and storm surges caused signif-
icant damage on the coast and many deaths. It is worth saying
that only in 2018 two catastrophic tsunamis occurred in In-
donesia, leading to the deaths of several thousand people (on
Sulawesi in September and in the Sunda Strait in December).
The calculations of the coastal flooding due to tsunamis and
storm surges are mainly carried out within the framework of
nonlinear shallow-water equations, taking into account the
variable roughness coefficient for various areas of the coastal
zone (Kaiser et al., 2011; Choi et al., 2012). The characteris-
tics of the coastal destruction are determined either by using
fragility curves (Macabuag et al., 2016; Park et al., 2017) or
by using a direct calculation of the tsunami forces (Qi et al.,
2014; Ozer et al., 2015a, b; Kian et al., 2016; Xiong et al.,
2019).

The computational accuracy was tested on a series of
benchmarks, including the idealized problem of the wave
run-up onto the impenetrable slope of a constant gradi-
ent without friction (Synolakis et al., 2008). The nonlin-
ear shallow-water equations for the bottom geometry of this
kind are linearized by using the hodograph (Legendre) trans-
formations. This step makes it possible to obtain a number
of exact solutions describing the run-up on the coast. This
approach, first suggested by Carrier and Greenspan (1958),
was later on used to analyze the run-up of single and peri-
odic waves of various shapes (Synolakis, 1987; Pelinovsky
and Mazova, 1992; Carrier, 1995; Carrier et al., 2003; Tinti
and Tonini, 2005; Madsen and Fuhrman, 2008; Madsen
and Schaffer, 2010; Antuano and Brocchini, 2008, 2010;
Didenkulova, 2009; Dobrokhotov et al., 2015; Aydin and
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Kanoglu, 2017). Moreover, such an approach made it possi-
ble to determine the conditions for wave-breaking. The latter
means the presence of steep fronts (the gradient catastrophe)
within the hyperbolic shallow-water equation framework.
The Carrier–Greenspan transformation was further general-
ized for the case of waves in an inclined channel of an ar-
bitrary variable cross section (Rybkin et al., 2014; Peder-
sen, 2016; Shimozono, 2016; Anderson et al., 2017; Raz
et al., 2018). In a number of practical cases, its use proves
to be more efficient than the direct numerical computation
within the 2-D shallow-water equation framework (Harris et
al., 2015, 2016).

Due to the bathymetry variability and shoreline complex-
ity, diffraction and scattering effects lead to an irregular
shape of the waves approaching the coast. Moreover, very
often the leading wave is not the maximum one. Such typical
tsunami wave records on tide-gauges are well known and are
not shown here. It is applied even more often to swell waves,
which in some cases approach the coast without breaking
(Huntley et al., 1977; Hughes et al., 2010). As a result, the
statistical wave theory can be applied to such records and
nonlinear shallow-water equations in the random function
class can be solved. This approach was used to describe the
statistical moments of the long-wave run-up characteristics in
Didenkulova et al. (2008, 2010, 2011). Special laboratory ex-
periments were also conducted on irregular-wave run-up on a
flat slope, the results of which are not very well described by
theoretical dependencies (Denissenko et al., 2011, 2013). As
for the field data, we are acquainted with two papers: Hunt-
ley et al. (1977) and Hughes et al. (2010), where the statis-
tical characteristics of the moving shoreline were calculated
on two Canadian beaches and one Australian beach. They
confirmed the fact that the wave process on the coast is not
Gaussian. In our opinion, the main problem in the theoretical
model of describing the irregular-wave run-up on the shore is
associated with the use of two hypotheses: (1) that the small-
amplitude wave field (in the linear problem) is Gaussian and
that (2) waves run-up on the shore without breaking. It is
obvious, however, that in the nonlinear wave field some bro-
ken waves can always be present. They affect the distribution
function tails and thus the statistical moments of the run-up
characteristics.

The connection of the run-up parameters at the nonlin-
ear stage with the linear field at a fixed point is described
either in a parametric form or implicitly in the nonlinear
equation (Didenkulova et al., 2010). This does not allow
for using the standard methods of random processes. At the
same time, it is known that this implicit equation is equiva-
lent to a partial first-order differential equation (PDE), i.e.,
to the simple (the Riemann wave) equation (Rudenko and
Soluyan, 1977). In statistical problems, this equation arises
in nonlinear acoustics. This equation, or its generalization,
the nonlinear diffusion equation called the Burgers’ equa-
tion (Burgers, 1974), is the model equation in the hydrody-
namic turbulence theory (Frisch, 1995). It should be noted

that for the one-dimensional Burgers turbulence, as well as
its three-dimensional version, used for the model descrip-
tion of the large-scale universe structure (Gurbatov et al.,
2012), it is possible to give an almost comprehensive statisti-
cal description for certain initial conditions (Gurbatov et al.,
1991, 1997, 2011; Gurbatov and Saichev, 1993; Molchanov
et al., 1995; Frisch, 1995; Woyczynski, 1998; Frisch and Bec,
2001; Bec and Khanin, 2007). In particular, the single-point
and the two-point probability distributions of the velocity
field and even the N -point probability distributions and, ac-
cordingly, the multipoint moment functions were found. This
partially allows using a mathematical approach developed in
statistical nonlinear acoustics. An experimental study of the
nonlinear evolution of random quasi-monochromatic waves
and their probability distributions and spectra analysis have
been carried out in acoustics more than once. They confirmed
the theoretical conclusions; see, for example, Gurbatov et al.
(2018, 2019).

This paper is devoted to the analytical study of the proba-
bilistic characteristics of the narrow-band long-wave run-up
on the coast. Section 2 gives the basic equations of nonlinear
shallow-water theory and the Carrier–Greenspan transforma-
tion, with the latter making it possible to linearize the non-
linear equations. Section 3 describes the moving shoreline
dynamics when the deterministic sine wave approaches the
slope. The probability characteristics of the deformed sine
oscillations of the moving shoreline with a random phase
are described in Sect. 4. Section 5 contains the probabilis-
tic characteristics of the vertical displacement of the mov-
ing shoreline if the incident narrow-band wave has a random
amplitude and phase. The discussion of the wave-breaking
effects and their influence on the distribution of the run-up
characteristics is given in Sect. 6. The results obtained are
summarized in Sect. 7.

2 Basic equations and transformations

Here we will consider the classical formulation of the prob-
lem of a long-wave run-up on the constant-gradient slope in
an ideal fluid (Fig. 1). The wave is one-dimensional and prop-
agates along the x axis directed onshore. The basin depth is
a linear depth function: h(x)=−αx, where α is the incli-
nation angle tangent and point x = 0 corresponds to a fixed
unperturbed water shoreline. L(t) and r(t) describe the hori-
zontal and vertical displacement of the moving shoreline, and
R(t) is the water level oscillations at x = 0. The bottom and
the shore are assumed to be impenetrable. The long-wave dy-
namics are described by nonlinear shallow-water equations:

∂u

∂t
+ u

∂u

∂x
+ g

∂η

∂x
= 0, (1)

∂η

∂t
+
∂

∂x
[(−αx+ η)u] = 0. (2)
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Here, η(x, t) is the free surface elevation above the undis-
turbed water level, u(x, t) is the depth-averaged flow veloc-
ity (within the shallow-water theory, the flow velocity is the
same on all horizons), and g is the gravity acceleration. Ob-
viously, after introducing the total depth

H(x, t)=−αx+ η(x, t), (3)

Eqs. (1) and (2) are a hyperbolic system with constant coef-
ficients. This fact makes it possible to transform the system
into a linear equation one by using a hodograph (Legendre)
transformation, which was done in the pioneering work of
Carrier and Greenspan in 1958. As a result, the wave field
is described by a linear wave equation in the “cylindrical”
coordinate system

∂28

∂λ2 −
∂28

∂σ 2 −
1
σ

∂8

∂σ
= 0, (4)

and all variables are expressed in terms of an auxiliary wave
function 8(σ , λ) using explicit formulas

η =
1

2g

(
∂8

∂λ
− u2

)
, (5)

u=
1
σ

∂8

∂σ
, (6)

x =
1

2αg

(
∂8

∂λ
− u2
−
σ 2

2

)
, (7)

t =
1
αg
(λ− u). (8)

It should be noted that the variable σ is proportional to the
total water depth.

σ = 2
√
gH = 2

√
g(−αx+ η) (9)

Therefore, the wave equation (Eq. 4) is solved on the semi-
axis σ ≥ 0, and this coordinate plays the radius role in the
cylindrical coordinate system. We would like to emphasize
that the point σ = 0 corresponds to a moving shoreline, and
therefore the original problem, solved in the area with an un-
known boundary, is reduced to the fixed area problem.

It is important to note that the hodograph transformation
is valid if the Jacobian transformation is nonzero

J =
∂(x, t)

∂(σ,λ)
6= 0. (10)

It is the case when a gradient catastrophe, identified in
the framework of the shallow-water theory with the wave-
breaking, does not occur. The necessary condition for the ab-
sence of wave-breaking is the boundedness and smoothness
of all solutions; this question will be discussed below.

We will assume that the wave approaches the coast from
the area far from the shoreline (x→−∞), where the wave
is linear. Then it is obvious that the function 8(σ , λ) can
be completely found from the linear theory. The difficulty

Figure 1. The problem geometry.

in finding the wave field in the near-shoreline area is due to
the implicit transformation of the coordinates (x, t) to (σ , λ).
However, for the most interesting point of the moving shore-
line σ = 0 (its dynamics determines the size of the flooded
area on the coast) all the formulas become explicit. In partic-
ular, from Eqs. (5) and (6) follows

r(t)= R

[
t +

u(t)

αg

]
−
u(t)2

2g
, (11)

u(t)= U

[
t +

u(t)

αg

]
, (12)

where r(t) and u(t) are the vertical displacement of the mov-
ing shoreline and its speed, and the functions R(t) and U(t)
determine the field characteristics at the fixed point (x = 0)
from the linear theory

R(t)=
1

2g
∂8(σ = 0,λ)

∂λ

∣∣∣∣
λ=αgt

,

U(t)=
1
σ

∂8(σ,λ)

∂σ

∣∣∣∣
σ=0,λ=αgt

. (13)

Then we add the obvious kinematic relations for the vertical
displacement and velocity of the last sea point along the slope

u(t)=
1
α

dr(t)
dt

, U(t)=
1
α

dR(t)
dt

. (14)

Let us note that Eq. (12) is identical to the so-called Rie-
mann wave or a simple wave in a nonlinear, nondispersive
medium (in particular, in nonlinear acoustics) if we consider
the parameter 1/αg to be a “coordinate”; see, for example,
Rudenko and Soluyan (1977) and Gurbatov et al. (1991,
2011). Moreover, Eq. (11) describes the integral over the
Riemann wave. This analogy proves to be very useful when
transferring the already known results in the wave nonlinear
theory to the run-up characteristics described by Eqs. (11)
and (12).

Detailed calculations of the long-wave run-up on the coast
were carried out repeatedly; see, for example, Carrier and
Greenspan (1958), Synolakis (1987), Pelinovsky and Ma-
zova (1992), Tinti and Tonini (2005), Madsen and Fuhrman
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(2008), Madsen and Schaffer (2010), Antuano and Broc-
chini (2008, 2010), Didenkulova (2009), Dobrokhotov et al.
(2015), and Aydin and Kanoglu (2017).

It is worth mentioning that the nonlinear time transfor-
mation in Eqs. (11) and (12) leads to the shoreline oscil-
lation distortion in comparison with the linear theory pre-
dictions. So, for large amplitudes the wave shape becomes
multivalued (broken). The first moment of the wave break-
ing on the shoreline (the gradient catastrophe) is easily found
from Eq. (12) by calculating the first derivative of the moving
shoreline velocity

du
dt
=

dU/dt

1− dU/dt
αg

, (15)

and from this follows the wave-breaking condition

Br=
max(dU/dt)

αg
=

max
(
d2R/dt2

)
α2g

= 1, (16)

where we have introduced the breaking parameter Br to des-
ignate the left-hand side in Eq. (16), which characterizes the
nonlinear wave properties on the shoreline. The condition
(Eq. 16) can be given a physical meaning: that the breaking
occurs when the last sea particle acceleration (α−1d2R/dt2)
exceeds the component of the gravity acceleration along the
shoreline (gα). As shown in Didenkulova (2009), the condi-
tion (Eq. 16) coincides with Eq. (10) for Jacobian. It is im-
portant to emphasize that the breaking condition is unequiv-
ocally found through solving the linear problem of the wave
run-up on the shore. It is determined only by the particle ac-
celeration value on the shoreline, but it is not determined sep-
arately by the shoreline displacement or its velocity.

The similar Carrier–Greenspan transformation is obtained
for waves in narrow-inclined channels, fjords, and bays (Ry-
bkin et al., 2014; Pedersen, 2016; Anderson et al., 2017; Raz
et al., 2018); only the wave equation (Eq. 4) and relations
(Eqs. 5–8) change. However, the moving shoreline dynamics
are still described by Eqs. (11) and (12), valid for arbitrary
cross section channels.

3 The moving shoreline dynamics at an initially
monochromatic wave run-up

The monochromatic wave run-up on a flat slope by using
the Carrier–Greenspan transformation has been studied in a
number of papers cited above. Let us reproduce here the main
features of the moving shoreline dynamics necessary for us
to draw the statistical description below. Mathematically, the
monochromatic wave run-up is described by an elementary
solution of Eq. (4)

8(σ,λ)=QJ0(lσ )cos(lλ), (17)

where Q and l are arbitrary constants and J0 is the zero-
order Bessel function. Far from the shoreline (σ →∞) the

Bessel function decreases, so the wave function 8 becomes
small. In this case, in Eqs. (5)–(8) one can use approximate
expressions (the “linear” Carrier–Greenspan transformation)

η =
1

2g
∂8

∂λ
, u=

1
σ

∂8

∂σ
, x =−

σ 2

4αg
, t =

λ

αg
, (18)

and, using the asymptotic representation for the Bessel func-
tion, reduce Eq. (17) to the expression for the water surface
displacement

η(x, t)= a(x)

{
sin
[
ω

(
t −

∫
dx

√
gh(x)

)]
−
π

4

}
+ sin

[
ω

(
t +

∫
dx

√
gh(x)

)
+
π

4

]
, (19)

where

a(x)=
Q

2g

√
l

π
√
gh(x)

, ω = glα. (20)

The wave field away from the shoreline is a superposition
of two waves of the same frequency and a variable ampli-
tude a(x), which together form a standing wave. It imme-
diately shows that the wave amplitude varies with depth ac-
cording to Green’s law (h−1/4), as it should be far from the
coast. The same asymptotic result follows from the exact so-
lution of linear shallow-water equations

η(x, t)= R0J0

√4ω2
|x|

gα

sin(ωt), (21)

where R0 is the wave amplitude at the fixed shoreline (x =
0), identified with the maximum run-up height in the lin-
ear theory. By connecting Eqs. (20) and (21), we obtain the
formula for the run-up height obtained through the incident
wave amplitude far from the coast

R0

a(x)
=

√√√√2ω
α

√
h(x)

g
. (22)

Equation (22) allows for working further with the run-
up height R0 instead of the wave amplitude far from the
coast a(x). This run-up height will be considered the given
value. Having determinedQ and l through the incident wave
parameters, we can calculate the run-up characteristics in
the nonlinear theory, considering the limit of Eq. (17) with
σ → 0 and using the Carrier–Greenspan transformation for-
mulas (Eqs. 5–8). The moving shoreline movement is deter-
mined by the parametric dependence
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t =
λ

αg
−
ωR0

α2g
cos

(
ωλ

αg

)
, (23)

r = R0 sin
(
ωλ

αg

)
−
ω2R2

0
2α2g

cos2
(
ωλ

αg

)
. (24)

It is convenient to introduce dimensionless variables

z=
r

R0
, τ = ωt, ϕ =

ωλ

αg
, (25)

and calculate the breaking parameter

Br=
ω2R0

α2g
, (26)

so Eqs. 23 and 24 are finally rewritten in the form

τ = ϕ−Brcos(ϕ), (27)

z= sin(ϕ)−
Br
2

cos2(ϕ), (28)

which is another expression for Eqs. (11) and (12) if we take

R(t)= R0 sin(ωt), (29)

arising from Eq. (21) with x = 0. Let us note that the func-
tion z(τ , Br) is set in a parametric form, but after express-
ing ϕ from Eq. (28) and substituting it in Eq. (27), we can
obtain the explicit expression for the function τ(z; Br). In
this paper, we will use both explicit and implicit expressions
of the functions describing the moving shoreline dynamics.

Figure 2 shows the moving shoreline dynamics at different
wave height values in terms of the breaking parameter up to
the limiting value (Br= 1). In the limit of small parameter
values, the oscillations are close to sinusoidal (it is almost
a linear problem). Then, with the increasing amplitude, the
moving shoreline velocity gets a steep leading front, while
at the moving shoreline vertical displacement a peculiar fea-
ture is formed at the wave run-down stage. As it is known,
at the time of the Riemann wave breaking, the peculiarity
like u∼ t1/3 is formed (Pelinovsky et al., 2013). Then, in the
integral over the Riemann wave (at the moving shoreline dis-
placement), this peculiar feature will have the form z∼ t4/3.
Thus, with the wave amplitude increase, the first breaking
occurs at sea (at the run-down stage) and not on the coast.
Then the breaking zone expands and moves on to the sea,
but at this stage, analytical solutions based on the Carrier–
Greenspan transformation become inapplicable.

4 Probabilistic characteristics of the initially sine wave
run-up with a random phase

Let us now consider the probabilistic characteristics of the
initially sine wave run-up with a random phase on the shore,

Figure 2. The moving shoreline dynamics (a) and its velocity (b) in
the case of the incident monochromatic wave for different breaking
parameter values Br (0: the dotted line; 0.5: the dashed line; 1: the
solid line).

assuming it to be uniformly distributed over the interval [0–
2π ]. These characteristics are found by using the geomet-
ric probability methods (Kendall and Stuart, 1969), so that
for ergodic processes the probability density of the moving
shoreline vertical displacement coincides with the relative lo-
cation time of the function z(τ ) in the interval (z, z+ dz)

W(z)=
1

2π

N∑
n=1

∣∣∣∣dτndz

∣∣∣∣ , (30)

where the summation takes place at all intersection lev-
els z(τ ). For harmonic disturbance, it is enough to restrict
ourselves to considering the field over a half-period. So, for
the moving shoreline vertical displacement in dimension-
less variables, the derivative dτ/dz of the parametric curve
(Eqs. 27 and 28) can be calculated through the ratio of the
derivatives dτ/dϕ and dz/dϕ

W sin
z (z;Br)=

1
π

1+Brsinϕ
cosϕ+Brcosϕ sinϕ

=
1

π cosϕ
. (31)

We indicated here that the probability density depends on Br
as a parameter. Finding cosϕ from Eq. (28) for the vertical
displacement, we obtain the final expression for the proba-
bility density

W sin
z (z;Br)=

1
π

1√
1− 1

Br2

[
1−

√
1+ 2zBr+Br2

]2
, (32)

which in the linear problem for a purely sinusoidal perturba-
tion transforms into a well-known expression for the proba-
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Figure 3. The probability density of the moving shoreline vertical
displacement for the initially sine wave run-up at Br= 0 (the dotted
line), 0.5 (the dashed line), and 1 (the solid line).

bility distribution of a harmonic signal with a random phase
(Kendall and Stuart, 1969)

W sin
z (z;0)=

1
π

1
√

1− z2
. (33)

The probability distribution (Eq. 32) for the three values of
the parameter Br is shown in Fig. 3. As you can see, the
probability density becomes an asymmetric function with a
greater probability in the area of positive values correspond-
ing to the wave run-up on the coast than at the run-down
stage. At the ends of the interval, the probability density is
unlimited throughout the entire range change of Br, since the
shoreline oscillations near the maximum have a zero deriva-
tive (the moving shoreline velocity in it becomes zero).

The obtained probability density function can be used to
calculate the statistical moments of the shoreline oscillations.
Technically, however, it is easier to use the parametric equa-
tions (Eqs. 27 and 28) and calculate all the moments.

Mz
n =

1
2π

2π∫
0

zn(τ )dτ =
1

2π

2π∫
0

zn(ϕ)
dτ
dϕ

dϕ (34)

Thus, the first moment,

Mz
1 =

Br
4
, (35)

determines the average water level rise on the coast when the
waves approach the shore (the setup phenomenon), which is
commonly observed (Dean and Walton, 2009).

The second moment determines the dispersion

δ2
=

1
2π

2π∫
0

(
z−Mz

1
)2dτ =

1
2
−

3
32

Br2, (36)

characterizing the fluctuation range relative to the average
value; it relatively weakly decreases with the growth of the
parameter Br (less than 10 % for non-breaking waves).

Figure 4. The total flooding time (the solid curve) and the drainage
time (the dashed curve) depending on the parameter Br.

Finally, the total flooding time and its drainage time are
easy to find from Eqs. (27) and (28) by finding from the
Eq. (28) the value ϕ at which z= 0 and substituting the ob-
tained values in Eq. (27)

Tflood = π − 2arcsin

[√
1+Br2− 1

Br

]

+ 2
√

2
√√

1+Br2− 1, (37)

Tdry = π + 2arcsin

[√
1+Br2− 1

Br

]

− 2
√

2
√√

1+Br2− 1. (38)

Both times change almost linearly with the increasing wave
amplitude (parameter Br); see Fig. 4.

It is worth noting that, in contrast to the vertical dis-
placement, the moving shoreline velocity distribution [u=
(ωR0/α)v], as it is easy to show, does not depend on the
breaking parameter, and the probability density function is
determined by the simple formula

W sin
v (v)=

1
π

1
√

1− v2
. (39)

The distribution independence on the degree of nonlinearity
is well known for the Riemann waves and is explained by the
compensation of compression and rare fraction areas (Gur-
batov et al., 1991, 2011).

5 Probabilistic characteristics of a narrow-band wave
run-up with a random amplitude and phase

Let us consider the run-up of a quasi-harmonic wave with
a random amplitude and phase on a flat slope. To do this,
we will first rewrite Eqs. (32) and (37) for them to include
the wave amplitude. It is convenient to enter the maximum
height Rmax as the amplitude scales at which the breaking
parameter turns into 1
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Br=
ω2Rmax

α2g
= 1, (40)

and to use the dimensionless displacement (y = r/Rmax).
Then the dimensionless amplitude is

A=
R0

Rmax
≤ 1, (41)

and Eq. (32) is converted to the form (−A< y < A)

W sin
y (y;A)=

1
π

1√
A2−

[
1−

√
1+ 2y+A2

]2
. (42)

Assuming now that the wave amplitude A is a random vari-
able, we average Eq. (40) by using the amplitude distribution
density WA(A)

W(y)=

∞∫
y

W sin
y (y;A)WA(A)dA. (43)

Equation (43) has an important practical meaning: by using
the measured distribution of the wave amplitudes far from
the coast (recomputed on run-up amplitudes in the linear
theory), it is possible to obtain the distribution of the wave
run-up characteristics on the coast. The only requirement im-
posed on the wave ensemble is that it should not contain
breaking waves, which should be somehow removed from
the record. It immediately follows that the Gaussian field
containing large amplitude tails does not fit this requirement,
and it should be modified. Therefore, we assume the ampli-
tude distribution to be finite for A<Amax = 1. The narrow-
band random wave field contains sine waves with almost con-
stant frequency and random amplitude and phase. It means
that if the wave amplitude is below the “breaking ampli-
tude” Amax = 1, the breaking will not be implemented in any
way, and the random wave run-up will take place without any
breaking. Further calculations depend on the specific type of
the amplitude distribution.

Let us construct the finite amplitude distribution at which
the linear field distribution is close to the Gaussian form and
modify the Rayleigh distribution for wave heights in the area
A<Amax = 1 (Fig. 5)

WA (A;Amax,As)=
1

1− exp
(
−2A2

max/A
2
s
) 4A
A2

s

exp
(
−2
A2

A2
s

)
, A≤ Amax, (44)

to make the density function distribution normalized. Here,
As is the so-called significant wave run-up height (an aver-
aged value of one-third of the highest amplitudes). We would
like to note here that it follows from Eqs. (11) and (12) that

Figure 5. The modified Rayleigh distribution (Eq. 43) for different
distribution values As/Amax (0.5: the dotted curve; 0.7: the dashed
line; 1: the solid line).

the extremal run-up characteristics in the nonlinear theory
remain the same as in the linear theory. This means that the
significant wave run-up height remains the same as in the
nonlinear theory.

When As� Amax = 1, the distribution (Eq. 44) trans-
forms into the Rayleigh one, which is characteristic of the
Gaussian initial distribution of a narrow-band random sig-
nal. With the help of Eq. (43), it becomes possible to cal-
culate the distribution function of shoreline oscillations for
the various wave energies. So, with the incident wave small
amplitude (As� 1), the distribution (Eq. 44) can be replaced
by a simpler expression (Eq. 33) and the answer is the run-up
distribution characteristics in the linear theory:

Wlin (y;Amax,As)=
4

πA2
s
[
1− exp

(
−2A2

max/A
2
s
)]

Amax∫
y

A√
A2− y2

exp
(
−2
A2

A2
s

)
dA. (45)

Besides, if As� Amax = 1, the integral (Eq. 45) is reduced
to the Gaussian distribution

Wlin (y;As)=
2

√
2πAs

exp
(
−2

y2

A2
s

)
, (46)

where As = 2σy and σ 2
y is the moving shoreline oscillation

dispersion.
Figure 6 shows the distribution of the run-up character-

istics for different ratios of As/Amax values by Eqs. (43)
and (44); they are shown in solid lines. Here the dashed
lines show the calculation results according to the linear the-
ory (Eq. 46). As one can see, with As/Amax = 0.5 (Fig. 6a)
and 0.7 (Fig. 6b), the linear distribution is close to the Gaus-
sian one. Nonlinearity leads to the asymmetry of the distribu-
tion function density in the direction of positive values cor-
responding to the wave characteristics on the coast. If the
undisturbed wave ensemble is made of relatively large waves
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Figure 6. The probabilistic density function of the vertical shoreline
displacement in the nonlinear theory (the solid lines) and in the lin-
ear theory (the dashed lines) for different As/Amax: (a) 0.5 values,
(b) 0.7, and (c) 1 .

(As/Amax = 1), their distribution is far from the Gaussian,
both in the linear and in the nonlinear approximation.

The finite (A<Amax) power-law distribution concen-
trated mainly near the maximum amplitudeAmax can be con-
sidered to be another example of undisturbed large-amplitude
waves.

WA(A)=
6A5

A6
max

(47)

Figure 7. The probabilistic density function of the shoreline vertical
displacement in the linear theory (the dashed line) and nonlinear
theory (the solid line).

Figure 7 shows the graphs of the probabilistic density func-
tion of the moving shoreline displacement calculated by us-
ing Eq. (46) in the linear theory and Eq. (43) in the nonlinear
theory. It is also seen in the figure that the nonlinear effects
lead to a strong asymmetry towards the positive values, i.e.,
to the wave amplification at the run-up stage than at the run-
down stage.

6 The wave-breaking effect on probabilistic run-up
characteristics

The theory described above is valid for non-breaking waves.
The mentioned wave ensemble, strictly speaking, cannot be
the Gaussian one, as it always has unlimited tails in the prob-
ability density function. Let us briefly discuss what the for-
mulas obtained for non-breaking waves lead to in the pres-
ence of broken waves. Figure 8 shows the parametric curve
(Eqs. 27 and 28) when Br= 2. Formally, the curve became
multivalued in the range of negative values corresponding to
the maximum water outflow from the coast. We have already
indicated that the probability density function of the moving
shoreline vertical displacement W(ξ) coincides with the rel-
ative residence time ξ(t) of the function in the interval (ξ ,
ξ + dξ), which is calculated by Eq. (17). In contrast to nega-
tive cut-off bias values, in the area of positive values there is
no ambiguity, and therefore all the calculations can be carried
out by using the formulas described above. The calculation
example with Br= 2 and r >−0.5 (in the zone of one-value
solution) is shown in Fig. 9. However, these results should be
treated with caution. If Br> 1 the Jacobian breaks down sea-
wards of the shoreline. This may affect the probabilistic dis-
tribution on the positive side. This important issue requires
going beyond the theory discussed in this article.
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Figure 8. The parametric curve (Eqs. 27 and 28) with Br= 2 (the
solid curve) in comparison with the linear problem with Br= 0 (the
dashed line).

Figure 9. The probability density function at Br= 2, constructed
by Eqs. (42) and (43) (the solid line) in comparison with the linear
distribution (Eq. 43) (the dotted line) (As/Amax = 0.7).

7 Discussion and conclusion

In this paper, we study the run-up of irregular narrow-band
waves with a random envelope (swell, storm surges, and
tsunami) on a beach of a constant slope. The work was
carried out in the framework of the nonlinear wave theory
with one important assumption: there should be no breaking
waves in the wave ensemble. This restriction is quite strict
for field and laboratory conditions, but nevertheless, there
are cases when it is performed. For instance, 75 % of histor-
ical tsunami waves climbed onto the coast with no breaking
(Mazova et al., 1983). In the experiments performed in the
Warwick University tank and in the Large Tank in Hanover
(Denissenko et al., 2011, 2013) this condition was fulfilled.

The wave nonlinearity at the run-up stage leads to in-
creased deviations from Gaussianity, as might be expected
from general considerations. Nevertheless, it is shown that
the probability distribution of the moving shoreline velocity
does not depend on the wave nonlinearity and can be calcu-
lated within the linear theory framework. The same conclu-
sion can be drawn about the distribution of the extreme run-
up characteristics (the moving shoreline displacement and
speed), which, in fact, has been discussed previously (Di-
denkulova et al., 2008). However, the probabilistic density
function of the moving shoreline displacement differs from
that predicted in the linear theory framework. It is described
by Eq. (43) by using either the theoretical or the measured
distribution of the incident wave amplitudes. The paper gives
the calculation results of the probabilistic run-up characteris-

tics with the modified Rayleigh distribution for wave ampli-
tudes.

The wave-breaking leads to the inapplicability of the wave
run-up theory based on the Carrier–Greenspan transforma-
tion. If, nevertheless, the share of large amplitude waves is
small, the breaking occurs mainly at the run-down stage, hav-
ing little effect on the long-wave coastal flooding character-
istics (see Sect. 6). This question, however, requires a spe-
cial study based on direct numerical solutions of the shallow-
water equations or their nonlinear-dispersive generalizations.

Finally, it is worth noting that we considered the narrow-
band wave run-up with a random amplitude and phase. As
far as the random waves with a wide spectrum are concerned,
they may be the problem for further consideration.

The obtained probability density functions of the vertical
displacement of the moving shoreline are useful to compute
statistical characteristics of flooding time and force on coasts
and constructions, which are necessity for the mitigation of
natural marine hazards.

Now, in practice, various generalizations of shallow-water
equations are used to analyze tsunami run-up including the
wave dispersion; see, for instance, Løvholt et al. (2012). The
wave dissipation is a quadratic dissipative term that prevents
us from getting analytical results, so its influence on statisti-
cal characteristics should be investigated in the future.
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