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Abstract. Flood frequency curves are usually highly uncer-
tain since they are based on short data sets of measured dis-
charges or weather conditions. To decrease the confidence
intervals, an efficient bootstrap method is developed in this
study. The Rhine river delta is considered as a case study. We
use a hydraulic model to normalize historic flood events for
anthropogenic and natural changes in the river system. As a
result, the data set of measured discharges could be extended
by approximately 600 years. The study shows that historic
flood events decrease the confidence interval of the flood fre-
quency curve significantly, specifically in the range of large
floods. This even applies if the maximum discharges of these
historic flood events are highly uncertain themselves.

1 Introduction

Floods are one of the main natural hazards to cause large eco-
nomic damage and human casualties worldwide as a result
of serious inundations with disastrous effects. Design dis-
charges associated with a specific return period are used to
construct flood defences to protect the hinterland from severe
floods. These design discharges are commonly determined
with the use of a flood frequency analysis (FFA). The ba-
sic principle of an FFA starts with selecting the annual max-
imum discharges of the measured data set, or peak values
that exceed a certain threshold (Schendel and Thongwichian,
2017). These maximum or peak values are used to identify
the parameters of a probability distribution. From this fitted
distribution, discharges corresponding to any return period
can be derived.

Return periods of design discharges are commonly of the
order of 500 years or even more, while discharge measure-
ments have been performed only for the last 50–100 years.
For the Dutch Rhine river delta (used as a case study in this
paper), water levels and related discharges have been regis-
tered since 1901 while design discharges have a return period
up to 100 000 years (Van der Most et al., 2014). Extrapolation
of these measured discharges to such return periods results in
large confidence intervals of the predicted design discharges.
Uncertainty in the design discharges used for flood risk as-
sessment can have major implications for national flood pro-
tection programmes since it determines whether and where
dike reinforcements are required. A too wide uncertainty
range may lead to unnecessary investments.

To obtain an estimation of a flood with a return period of
10 000 years with little uncertainty, a discharge data set of at
least 100 000 years is required (Klemeš, 1986). Of course,
such data sets do not exist. For this reason, many studies
try to extend the data set of measured discharges with his-
toric and/or paleo-flood events. The most common methods
in literature to include historical data in an FFA are based
on the traditional methods of frequentist statistics (Frances
et al., 1994; MacDonald et al., 2014; Sartor et al., 2010) and
Bayesian statistics (O’Connell et al., 2002; Parkes and De-
meritt, 2016; Reis and Stedinger, 2005).

While frequentist statistics are generally applied by deci-
sion makers, Bayesian statistics have significantly increased
in popularity in the last decade. Reis and Stedinger (2005)
have successfully applied a Bayesian Markov chain Monte
Carlo (MCMC) analysis to determine flood frequency rela-
tions and their uncertainties using both systematic data and
historic flood events. A Bayesian analysis determines the full
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posterior distribution of the parameters of a probability dis-
tribution function (e.g. generalized extreme value (GEV) dis-
tribution). This has the advantage that the entire range of
parameter uncertainty can be included in the analysis. Con-
trarily, classical methods based on frequentist statistics usu-
ally only provide a point estimate of the parameters where
their uncertainties are commonly described by using the as-
sumption of symmetric normal distributed uncertainty inter-
vals (Reis and Stedinger, 2005). The study of Reis and Ste-
dinger (2005) shows that confidence intervals of design dis-
charges were reduced significantly by extending the system-
atic data set with historic events using the proposed Bayesian
framework. This finding is important for the design of future
flood-reduction measures since these can then be designed
with less uncertainty.

However, Bayesian statistics also have several drawbacks.
Although no assumption about the parameter uncertainty of
the distribution function has to be made, the results depend
on the parameter priors, which have to be chosen a priori. The
influence of the priors on the posterior distributions of the
parameters and hence on the uncertainty of flood frequency
relations can even be larger than the influence of discharge
measurement errors (Neppel et al., 2010). The prior can be
estimated by fitting the original data with the use of the max-
imum likelihood method. However, we do not have any mea-
surements in, or near, the tail of the frequency distribution
functions. In this way, the benefits of the Bayesian method
compared to a traditional flood frequency analysis are at least
questionable.

In this study, we propose a systematic approach to include
historic flood information in flood safety assessments. The
general methodology of a flood frequency analysis remains;
only the data set of measured discharges is extended with
the use of a bootstrap approach. As a result, this method
is close to current practice of water managers. We extend
the data set of measured discharges at Lobith, the German–
Dutch border, with historic events to decrease uncertainty in-
tervals of design discharges corresponding to rare events. A
bootstrap method is proposed to create a continuous data set
after which we perform a traditional FFA to stay in line with
the current methods used for Dutch water policy. Hence, the
results are understandable for decision makers since solely
the effect of using data sets with different lengths on flood
frequency relations and corresponding uncertainty intervals
is presented. The objective of this study is thus to develop a
straightforward method to consider historic flood events in an
FFA, while the basic principles of an FFA remain unchanged.

The measured discharges at Lobith (1901–2018) are ex-
tended with the continuous reconstructed data set of Toonen
(2015) covering the period 1772–1900. These data sets are
extended with the most extreme, older historic flood events
near Cologne reconstructed by Meurs (2006), which are
routed towards Lobith. For this routing, a one-dimensional–
two-dimensional (1-D–2-D) coupled hydraulic model is used
to determine the maximum discharges during these historic

events based on the current geometry. In such a way, the
historic floods are corrected for anthropogenic interventions
and natural changes of the river system, referred to as nor-
malization in this study. Normalizing the historic events is
of high importance since flood patterns most likely change
over the years as a result of dike reinforcements, land use
change, or decrease in floodplain area (dike shifts). The nor-
malized events almost always lead to a higher discharge than
the historic event. This is because more water is capable of
flowing through the river system as a result of the heightened
dikes along the Lower Rhine. Today, floods occur for higher
discharge stages compared to the historical time period. In
any case, the normalized events give insight into the conse-
quences of an event with the same characteristics of a historic
flood event translated to present times. To create a continuous
data set, a bootstrap resampling technique is used. The results
of the bootstrap method are evaluated against an FFA based
on solely measured annual maximum discharges (1901–2018
and 1772–2018). Specifically, the change in the design dis-
charge and its 95 % confidence interval of events with a re-
turn period of 100 000 years is considered because this de-
sign discharge corresponds with the highest safety level used
in Dutch flood protection programmes (Van Alphen, 2016).

In Sect. 2 the different data sets used to construct the con-
tinuous discharge data set are explained, as well as the 1-
D–2-D coupled hydraulic model. Next, the bootstrap method
and FFA are explained (Sects. 3 and 4 respectively). After
that, the results of the FFA are given (Sect. 5). The paper
ends with a discussion (Sect. 6) and the main conclusions
(Sect. 7).

2 Annual maximum discharges

2.1 Discharge measurements covering the period
1901–2018

Daily discharge observations at Lobith have been performed
since 1901 and are available at https://waterinfo.rws.nl (last
access: 7 September 2018). From this data set, the annual
maximum discharges are selected, in which the hydrologic
time period, starting at 1 October and ending at 30 Septem-
ber, is used. Since changes to the system have been made in
the last century, Tijssen (2009) has normalized the measured
data set from 1901 to 2008 for the year 2004. In the 20th
century, canalization projects were carried out along the Up-
per Rhine (Germany) and were finalized in 1977 (Van Hal,
2003). After that, retention measures were taken in the tra-
jectory Andernach–Lobith. First, the 1901–1977 data set has
been normalized with the use of a regression function de-
scribing the influence of the canalization projects on the max-
imum discharges. Then, again a regression function was used
to normalize the 1901–2008 data set for the retention mea-
sures (Van Hal, 2003). This results in a normalized 1901–
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2008 data set for the year 2004. For the period 2009–2018,
the measured discharges without normalization are used.

During the discharge recording period, different methods
have been used to perform the measurements. These differ-
ent methods result in different uncertainties (Table 1) and
must be included in the FFA to correctly predict the 95 %
confidence interval of the FF curve. From 1901 until 1950,
discharges at Lobith were based on velocity measurements
performed with floating sticks on the water surface. Since
the velocity was only measured at the surface, extrapolation
techniques were used to compute the total discharge. This
resulted in an uncertainty of approximately 10 % (Toonen,
2015). From 1950 until 2000, current metres were used to
construct velocity–depth profiles. These profiles were used to
compute the total discharge, having an uncertainty of approx-
imately 5 % (Toonen, 2015). Since 2000, acoustic Doppler
current profiles have been used, for which an uncertainty of
5 % is also assumed.

2.2 Water level measurements covering the period
1772–1900

Toonen (2015) studied the effects of non-stationarity in
flooding regimes over time on the outcome of an FFA. He
extended the data set of measured discharges of the Rhine
river at Lobith with the use of water level measurements. At
Lobith, daily water level measurements are available since
1866. For the period 1772–1865 water levels were measured
at the nearby gauging locations Emmerich, Germany (located
10 km in upstream direction), and Pannerden (located 10 km
in downstream direction) and Nijmegen (located 22 km in
downstream direction) in the Netherlands. Toonen (2015)
used the water levels of these locations to compute the wa-
ter levels at Lobith and their associated uncertainty interval
with the use of a linear regression between the different mea-
surement locations. Subsequently, he translated these water
levels, together with the measured water levels for the period
1866–1900, into discharges using stage–discharge relations
at Lobith. These relations were derived based on discharge
predictions adopted from Cologne before 1900 and measured
discharges at Lobith after 1900 as well as water level esti-
mates from the measurement locations Emmerich, Panner-
den, Nijmegen, and Lobith. Since the discharge at Cologne
strongly correlates with the discharge at Lobith, the mea-
sured discharges in the period 1817–1900 could be used to
predict discharges at Lobith. The 95 % confidence interval
in reconstructed water levels propagates in the application of
stage–discharge relations, resulting in an uncertainty range of
approximately 12 % for the reconstructed discharges (Fig. 1)
(Toonen, 2015).

The reconstructed discharges in the period 1772–1900 rep-
resent the computed maximum discharges at the time of oc-
currence and these discharges have not been normalized for
changes in the river system. They thus represent the actual
annual maximum discharges that occurred. Toonen (2015)

argues that, based on the work of Bronstert et al. (2007) and
Vorogushyn and Merz (2013), the effect of recent changes
in the river system on discharges of extreme floods of the
Lower Rhine is small. Hence, it is justified to use the pre-
sented data set of Toonen (2015) in this study as normalized
data. Figure 1 shows the annual maximum discharges for the
period 1772–2018 and their 95 % confidence intervals. These
data represent the systematic data set and consist of the mea-
sured discharges covering the period 1901–2018 and the re-
constructed data set of Toonen (2015) covering the period
1772–1900.

2.3 Reconstructed flood events covering the period
1300–1772

Meurs (2006) has reconstructed maximum discharges during
historic flood events near the city of Cologne, Germany. The
oldest event dates back to 1342. Only flood events caused
by high rainfall intensities and snowmelt were reconstructed
because of the different hydraulic conditions of flood events
caused by ice jams. The used method is described in detail by
Herget and Meurs (2010), in which the 1374 flood event was
used as a case study. Historic documents providing informa-
tion about the maximum water levels during the flood event
were combined with the reconstruction of the river cross sec-
tion at that same time. Herget and Meurs (2010) calculated
mean flow velocities near the city of Cologne at the time of
the historic flood events with the use of Manning’s equation:

Qp = ApR
2
3
p S

1
2 n−1, (1)

where Qp represents the peak discharge (m3 s−1), Ap the
cross-sectional area (m2) during the highest flood level, Rp
the hydraulic radius during the highest flood level (m), S the
slope of the main channel, and n its Manning’s roughness
coefficient (s m−

1
3 ). However, the highest flood level as well

as Manning’s roughness coefficient are uncertain. The range
of maximum water levels was based on historical sources,
whereas the range of Manning’s roughness coefficients was
based on the tables of Chow (1959). Including these uncer-
tainties in the analysis, Herget and Meurs (2010) were able to
calculate maximum discharges of the specific historic flood
events and associated uncertainty ranges (Fig. 4).

In total, 13 historic flood events that occurred before 1772
were reconstructed. Two of the flood events occurred in
1651. Only the largest flood of these two is considered as
a data point. This results in 12 historic floods that are used
to extend the systematic data set. The reconstructed maxi-
mum discharges at Cologne (Meurs, 2006) are used to predict
maximum discharges at Lobith with the use of a hydraulic
model to normalize the data set. Although Cologne is located
roughly 160 km upstream of Lobith, there is a strong corre-
lation between the discharges at these two locations. This is
because they are located in the same fluvial trunk valley and
only have minor tributaries (Sieg, Ruhr, and Lippe rivers)
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Table 1. Uncertainties and properties of the various data sets used. The 1342–1772 data set represents the historical discharges (first row in
the table), whereas the data sets in the period 1772–2018 are referred to as the systematic data sets (rows 2–7).

Time period Data source Property Cause uncertainty Location

1342–1772 Meurs (2006) 12 single Reconstruction uncertainty caused by main channel Cologne
events bathymetry, bed friction, and maximum occurring

water levels

1772–1865 Toonen (2015) Continuous Reconstruction uncertainty based on measured Emmerich,
data set water levels of surrounding sites (∼ 12%) Pannerden,

and Nijmegen

1866–1900 Toonen (2015) Continuous Uncertainty caused by translation of measured water Lobith
data set levels into discharges (∼ 12%)

1901–1950 Tijssen (2009) Continuous Uncertainty caused by extrapolation techniques to Lobith
data set translate measured velocities at the water surface

into discharges (10 %)

1951–2000 Tijssen (2009) Continuous Uncertainty caused by translation of velocity–depth Lobith
data set profiles into discharges (5 %)

2001–2008 Tijssen (2009) Continuous Measurement errors (5 %) Lobith
data set

2009–2018 Measured water levels available Continuous Measurement errors (5 %) Lobith
at https://waterinfo.rws.nl data set
(last access: 7 September 2018)

Figure 1. Maximum annual discharges (Q) and their 95 % confidence interval during the systematic time period (1772–2018).

joining in between (Toonen, 2015). This makes the recon-
structed discharges at Cologne applicable to predict corre-
sponding discharges at Lobith. The model used to perform
the hydraulic calculations is described in Sect. 2.3.1. The
maximum discharges at Lobith of the 12 historic flood events
are given in Sect. 2.3.2.

2.3.1 Model environment

In this study, the 1-D–2-D coupled modelling approach as
described by Bomers et al. (2019a) is used to normalize
the data set of Meurs (2006). This normalization is per-
formed by routing the reconstructed historical discharges
at Cologne over modern topography to estimate the maxi-
mum discharges at Lobith in present times. The study area
stretches from Andernach to the Dutch cities of Zutphen,
Rhenen, and Druten (Fig. 2). In the hydraulic model, the
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main channels and floodplains are discretized by 1-D pro-
files. The hinterland is discretized by 2-D grid cells. The 1-D
profiles and 2-D grid cells are connected by a structure cor-
responding with the dimensions of the dike that protects the
hinterland from flooding. If the computed water level of a
1-D profile exceeds the dike crest, water starts to flow into
the 2-D grid cells corresponding with inundations of the hin-
terland. A discharge wave is used as the upstream boundary
condition. Normal depths, computed with the use of Man-
ning’s equation, were used as downstream boundary condi-
tions. HEC-RAS (v. 5.0.3) (Brunner, 2016), developed by
the Hydrologic Engineering Center (HEC) of the U.S. Army
Corps of Engineers, is used to perform the computations. For
more information about the model set-up, see Bomers et al.
(2019a).

2.3.2 Normalization of the historic flood events

We use the hydraulic model to route the historical discharges
at Cologne, as reconstructed by Meurs (2006), to Lobith.
However, the reconstructed historical discharges were un-
certain. Therefore, the discharges at Lobith are also uncer-
tain. To include this uncertainty in the analysis, a Monte
Carlo analysis (MCA) is performed in which, among oth-
ers, the upstream discharges reconstructed by Meurs (2006)
are included as random parameters. These discharges have
large confidence intervals (Fig. 4). The severe 1374 flood,
representing the largest flood of the last 1000 years with
a discharge of 23 000 m3 s−1, even has a confidence inter-
val of more than 10 000 m3 s−1. To include the uncertainty
as computed by Meurs (2006) in the analysis, the maxi-
mum upstream discharge is varied in the MCA based on its
probability distribution. However, the shape of this probabil-
ity distribution is unknown. Herget and Meurs (2010) only
provided the maximum, minimum, and mean values of the
reconstructed discharges. We assumed normally distributed
discharges since it is likely that the mean value has a higher
probability of occurrence than the boundaries of the recon-
structed discharge range. However, we found that the as-
sumption of the uncertainty distribution has a negligible ef-
fect on the 95 % uncertainty interval of the FF curve at Lo-
bith. Assuming uniformly distributed uncertainties only led
to a very small increase in this 95 % uncertainty interval.

Not only the maximum discharges at Cologne but also the
discharge wave shape of the flood event are uncertain. The
shape of the upstream flood event may influence the maxi-
mum discharge at Lobith. Therefore, the upstream discharge
wave shape is varied in the MCA. We use a data set of ap-
proximately 250 potential discharge wave shapes that can oc-
cur under current climate conditions (Hegnauer et al., 2014).
In such a way, a broad range of potential discharge wave
shapes, e.g. a broad peak, a small peak, or two peaks, are
included in the analysis. For each run in the MCA, a dis-
charge wave shape is randomly sampled and scaled to the
maximum value of the flood event considered (Fig. 3). This

discharge wave represents the upstream boundary condition
of the model run.

The sampled upstream discharges, based on the recon-
structed historic discharges at Cologne, may lead to dike
breaches in present times. Since we are interested in the con-
sequences of the historic flood events in present times, we
want to include these dike breaches in the analysis. However,
it is highly uncertain how dike breaches develop. Therefore,
the following potential dike breach settings are included in
the MCA (Fig. 3):

1. dike breach threshold

2. final dike breach width

3. dike breach duration.

The dike breach thresholds (i.e. the critical water level
at which a dike starts to breach) are based on 1-D fragility
curves provided by the Dutch Ministry of Infrastructure and
Water Management. A 1-D fragility curve expresses the re-
liability of a flood defence as a function of the critical water
level (Hall et al., 2003). The critical water levels thus influ-
ence the timing of dike breaching. For the Dutch dikes, it is
assumed that the dikes can fail due to failure mechanisms of
wave overtopping and overflow, piping, and macro-stability,
whereas the German dikes only fail because of wave overtop-
ping and overflow (Bomers et al., 2019a). The distributions
of the final breach width and the breach formation time are
based on literature and on historical data (Apel et al., 2008;
Verheij and Van der Knaap, 2003). Since it is unfeasible to
implement each dike kilometre as a potential dike breach lo-
cation in the model, only the dike breach locations that result
in significant overland flow are implemented. This results in
33 potential dike breach locations, whereas it is possible for
overflow (without dike breaching) to occur at every location
throughout the model domain (Bomers et al., 2019a).

Thus, for each Monte Carlo run an upstream maximum
discharge and a discharge wave shape are sampled. Next, for
each of the 33 potential dike breach locations the critical wa-
ter level, dike breach duration, and final breach widths are
sampled. With these data, the Monte Carlo run representing
a specific flood scenario can be run (Fig. 3). This process
is repeated until convergence of the maximum discharge at
Lobith and its confidence interval are found. For a more in-
depth explanation of the Monte Carlo analysis and random
input parameters, we refer to Bomers et al. (2019a).

The result of the MCA is the normalized maximum dis-
charge at Lobith and its 95 % confidence interval for each of
the 12 historic flood events. Since the maximum discharges at
Cologne are uncertain, the normalized maximum discharges
at Lobith are also uncertain (Fig. 4). Figure 4 shows that the
extreme 1374 flood with a maximum discharge of between
18 800 and 29 000 m3 s−1 at Cologne significantly decreases
in the downstream direction as a result of overflow and dike
breaches. Consequently, the maximum discharge at Lobith

www.nat-hazards-earth-syst-sci.net/19/1895/2019/ Nat. Hazards Earth Syst. Sci., 19, 1895–1908, 2019



1900 A. Bomers et al.: Decreasing uncertainty in flood frequency analyses

Figure 2. Model domain of the 1-D–2-D coupled model.

Figure 3. Random input parameters considered in the Monte Carlo analysis.

turns out to be between 13 825 and 17 753 m3 s−1. This large
reduction in the maximum discharge is caused by the major
overflow and dike breaches that occur in present times. Since
the 1374 flood event was much larger than the current dis-
charge capacity of the Lower Rhine, the maximum discharge
at Lobith decreases. The reconstruction of the 1374 flood
over modern topography is presented in detail in Bomers
et al. (2019b). On the other hand, the other 11 flood events
were below this discharge capacity and hence only a slight
reduction in discharges was found for some of the events
as a result of dike breaches, whereas overflow did not oc-
cur. Some other events slightly increased as a result of the
inflow of the tributaries Sieg, Ruhr, and Lippe rivers along
the Lower Rhine. This explains why the 1374 flood event is

much lower at Lobith compared to the discharge at Ander-
nach, while the discharges of the other 11 flood events are
more or less the same at these two locations (Fig. 4). The re-
duction in maximum discharge of the 1374 flood event in the
downstream direction shows the necessity to apply hydraulic
modelling since the use of a linear regression analysis based
on measured discharges between Cologne and Lobith will
result in an unrealistically larger maximum discharge at Lo-
bith.

The reconstructed discharges at Lobith are used to extend
the systematic data set presented in Fig. 1. In the next sec-
tion, these discharges are used in an FFA with the use of a
bootstrap method.
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Figure 4. Maximum discharges and their 95 % confidence intervals of the reconstructed historic floods at Cologne (Herget and Meurs, 2010)
and simulated maximum discharges and their 95 % confidence intervals at Lobith for the 12 historic flood events.

3 The bootstrap method

The systematic data set covering the period 1772–2019 is ex-
tended with 12 reconstructed historic flood events that oc-
curred in the period 1300–1772. To create a continuous data
set, a bootstrap method based on sampling with replacement
is used. The continuous systematic data set (1772–2018) is
resampled over the missing years from the start of the his-
torical period to the start of the systematic record. Two as-
sumptions must be made such that the bootstrap method can
be applied:

1. The start of the continuous discharge series since the
true length of the historical period is not known.

2. The perception threshold over which floods were
recorded in the historical times before water level and
discharge measurements were conducted is known.

Assuming that the historical period starts with the first
known flood (in this study 1342) will significantly underes-
timate the true length of this period. This underestimation
influences the shape of the FF curve (Hirsch and Stedinger,
1987; Schendel and Thongwichian, 2017). Therefore, Schen-
del and Thongwichian (2017) proposed the following equa-
tion to determine the length of the historical period:

M = L+
L+N − 1

k
, (2)

where M represents the length of the historical period
(years), L the number of years from the first historic flood
to the start of the systematic record (431 years), N the length
of the systematic record (247 years), and k the number of
floods exceeding the perception threshold in both the his-
torical period and the systematic record (28 in total). Using
Eq. (2) results in a length of the historical period of 455 years
(1317–1771).

The perception threshold is considered to be equal to the
discharge of the smallest flood present in the historic period,
representing the 1535 flood with an expected discharge of
8826 m3 s−1 (Fig. 4). We follow the method of Parkes and
Demeritt (2016) assuming that the perception threshold was
fairly constant over the historical period. However, the max-
imum discharge of the 1535 flood is uncertain and hence the
perception threshold is also uncertain. Therefore, the percep-
tion threshold is treated as a random uniformly distributed
parameter in the bootstrap method, the boundaries of which
are based on the 95 % confidence interval of the 1535 flood
event.

The bootstrap method consists in creating a continuous
discharge series from 1317 to 2018. The method includes the
following steps (Fig. 5).

1. Combine the 1772–1900 data set with the 1901–2018
data set to create a systematic data set.

2. Select the flood event with the lowest maximum dis-
charge present in the historic time period. Randomly
sample a value in between the 95 % confidence inter-
val of this lowest flood event. This value is used as the
perception threshold.

3. Compute the start of the historical time period (Eq. 2).

4. Of the systematic data set, select all discharges that have
an expected value lower than the sampled perception
threshold.

5. Use the data set created in Step 4 to create a continuous
discharge series in the historical time period. Randomly
draw an annual maximum discharge of this systematic
data set for each year within the historical period for
which no data are available following a bootstrap ap-
proach.
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Figure 5. Bootstrap method to create a continuous discharge series
in which M represents the length of the historical period and p the
number of floods exceeding the perception threshold in the histori-
cal period.

6. Since both the reconstructed as well as the measured
discharges are uncertain due to measurement errors,
these uncertainties must be included in the analysis.
Therefore, for each discharge present in the systematic
data set and in the historical data set, its value is ran-
domly sampled based on its 95 % confidence interval.

7. Combine the data sets of Steps 5 and 6 to create a con-
tinuous data set from 1317 to 2018.

The presented steps in the bootstrap method are repeated
5000 times in order to create 5000 continuous discharge data
sets resulting in convergence in the FFA. The FFA procedure
itself is explained in the next section.

4 Flood frequency analysis

An FFA is performed to determine the FF relation of the dif-
ferent data sets (e.g. systematic record, historical record). A
probability distribution function is used to fit the annual max-
imum discharges to their probability of occurrence. Many
types of distribution functions and goodness-of-fit tests ex-
ist, all with their own properties and drawbacks. However,
the available goodness-of-fit tests for selecting an appropriate
distribution function are often inconclusive. This is mainly
because each test is more appropriate for a specific part of the
distribution, while we are interested in the overall fit since the
safety standards expressed in probability of flooding along
the Dutch dikes vary from 10−2 to 10−5. Furthermore, we
highlight that we focus on the influence of extending the data
set of measured discharges on the reduction in uncertainty of
the FF relations rather than on the suitability of the different
distributions and fitting methods.

We restrict our analysis to the use of a generalized extreme
value (GEV) distribution since this distribution is commonly
used in literature to perform an FFA (Parkes and Demeritt,
2016; Haberlandt and Radtke, 2014; Gaume et al., 2010).
Additionally, several studies have shown the applicability of
this distribution to the flooding regime of the Rhine river
(Toonen, 2015; Chbab et al., 2006; Te Linde et al., 2010). The
GEV distribution has an upper bound and is thus capable of
flattening off at extreme values by having a flexible tail. We
use a bounded distribution since the maximum discharge that
is capable of entering the Netherlands is limited to a physi-
cal maximum value. The crest levels of the dikes along the
Lower Rhine, Germany, are not infinitely high. The height
of the dikes influences the discharge capacity of the Lower
Rhine and hence the discharge that can flow towards Lobith.
Using an upper-bounded distribution yields that the FF rela-
tion converges towards a maximum value for extremely large
return periods. This value represents the maximum discharge
that is capable of occurring at Lobith.

The GEV distribution is described with the following
equation:

F(x)= exp

{
−

[
ξ
x−µ

σ

] 1
ξ

}
, (3)

where (µ) represents the location parameter indicating where
the origin of the distribution is positioned, (σ ) what the scal-
ing parameter describing the spread of the data is, and (ξ )
what the shape parameter controlling the skewness and kur-
tosis of the distribution is, both influencing the upper tail and
hence the upper bound of the system. The maximum like-
lihood method is used to determine the values of the three
parameters of the GEV distribution (Stendinger and Cohn,
1987; Reis and Stedinger, 2005).

The FFA is performed for each of the 5000 continuous dis-
charge data sets created with the bootstrap method (Sect. 3),
resulting in 5000 fitted GEV curves. The average of these
relations is taken to get the final FF curve and its 95 % confi-
dence interval. The results are given in the next section.

5 Results

5.1 Flood frequency relations

In this section the FFA results (Fig. 6 and Table 2) of the
following data sets are presented.

– The 1901 data set measured discharges covering the pe-
riod 1901–2018.

– The 1772 data set is as above and extended with the
data set of Toonen (2015), representing the systematic
data set and covering the period 1772–2018.

– The 1317 data set is as above and extended with 12
reconstructed historic discharges and the bootstrap re-
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Figure 6. Fitted GEV curves and their 95 % confidence intervals of
the 1901, 1772, and 1317 data sets.

sampling method to create a continuous discharge series
covering the period 1317–2018.

If the data set of measured discharges is extended, we find
a large reduction in the confidence interval of the FF curve
(Fig. 6 and Table 2). Only extending the data set with the
data of Toonen (2015) reduced this confidence interval by
5200 m3 s−1 for the floods with a return period of 1250 years
(Table 2). Adding the reconstructed historic flood events in
combination with a bootstrap method to create a continuous
data set results in an even larger reduction in the confidence
interval of 7400 m3 s−1 compared to the results of the 1901
data set. For the discharges with a return period of 100 000
years, we find an even larger reduction in the confidence in-
tervals (Table 2).

Furthermore, we find that using only the 1901 data set
results in larger design discharges compared to the two ex-
tended data sets. This is in line with the work of Toonen
(2015). Surprisingly, however, we find that the 1772 data set
predicts the lowest discharges for return periods> 100 years
(Table 2), while we would expect that the 1317 data set pre-

dicts the lowest values according to the findings of Toonen
(2015). The relatively low positioning of the FF curve con-
structed with the 1772 data, compared to our other 1317 and
1901 data sets, might be explained by the fact that the data
of Toonen (2015) covering the period 1772–1900 have not
been normalized. This period has a relatively high flood in-
tensity (Fig. 1). However, only two flood events exceeded
10 000 m3 s−1. A lot of dike reinforcements along the Lower
Rhine were executed during the last century. Therefore, it is
likely that before the 20th century, flood events with a max-
imum discharge exceeding 10 000 m3 s−1 resulted in dike
breaches and overflow upstream of Lobith. As a result, the
maximum discharge of such an event decreased significantly.
Although Toonen (2015) mentions that the effect of recent
changes in the river system on discharges of extreme floods
of the Lower Rhine is small, we argue that it does influence
the flood events with maximum discharges slightly lower
than the current main channel and floodplain capacity. Cur-
rently, it is possible for larger floods to flow in the down-
stream direction without the occurrence of inundations com-
pared to the 19th century. Therefore, it is most likely that
the 1772–1900 data set of Toonen (2015) underestimates the
flooding regime of that specific time period influencing the
shape of the FF curve.

5.2 Hypothetical future extreme flood event

After the 1993 and 1995 flood events of the Rhine river, the
FF relation used in Dutch water policy was recalculated tak-
ing into account the discharges of these events. All return
periods were adjusted. The design discharges with a return
period of 1250 years, which was the most important return
period at that time, was increased by 1000 m3 s−1 (Parmet
et al., 2001). Such an increase in the design discharge re-
quires more investments in dike infrastructure and floodplain
measures to re-establish the safety levels. Parkes and De-
meritt (2016) found similar results for the river Eden, UK.
They showed that the inclusion of the 2015 flood event had
a significant effect on the upper tail of the FF curve, even
though their data set was extended from 1967 to 1800 by
adding 21 reconstructed historic events to the data set of mea-
sured data. Schendel and Thongwichian (2017) argue that if
the flood frequency relation changes after a recent flood, and
if this change can be ambiguously attributed to this event, the
data set of measured discharges must be expanded since oth-
erwise the FF results will be biased upward. Based on their
considerations, it is interesting to see how adding a single
extreme flood event influences the results of our method.

Both the 1317 and 1901 data sets are extended from
2018 to 2019 with a hypothesized flood in 2019. We as-
sume that in 2019 a flood event has occurred that equals
the largest measured discharge so far. This corresponds with
the 1926 flood event (Fig. 1), having a maximum discharge
of 12 600 m3 s−1. No uncertainty of this event is included
in the analysis. Figure 7 shows that the FF curve based on
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Table 2. Discharges (m3 s−1) and their 95 % confidence interval corresponding to several return periods for the 1901, 1772, and 1317 data
sets.

Data Q_10 Q_100 Q_1000 2.5 % Q_1250 97.5 % 2.5 % Q_100 000 97.5 %

1901–2018 9264 12 036 14 050 10 594 14 215 20 685 11 301 16 649 29 270
1772-2018 9106 11 442 13 008 11 053 13 130 16 027 11 858 14 813 19 576
1317–2018 8899 11 585 13 655 12 514 13830 15 391 14 424 16 562 19 303

Figure 7. Fitted GEV curves and their 95 % confidence intervals of
the 1901 and 1317 data sets if they are extended with a future flood
event.

the 1901 data set changes significantly as a result of this hy-
pothesized 2019 flood. We calculate an increase in the dis-
charge corresponding with a return period of 100 000 years
of 1280 m3 s−1. Contrarily, the 2019 flood has almost no
effect on the extended 1317 data set. The discharge corre-
sponding to a return period of 100 000 years only increased
slightly by 180 m3 s−1. Therefore, we conclude that the ex-
tended data set is more robust to changes in FF relations as
a result of future flood events. Hence, we expect that the
changes in FF relations after the occurrence of the 1993 and

1995 flood events would be less severe if the analysis was
performed with an extended data set as presented in this
study. Consequently, decision makers might have made a dif-
ferent decision since fewer investments were required to cope
with the new flood safety standards. Therefore, we recom-
mend using historical information about the occurrence of
flood events in future flood safety assessments.

6 Discussion

We developed an efficient bootstrap method to include his-
toric flood events in an FFA. We used a 1-D–2-D coupled hy-
draulic model to normalize the data set of Meurs (2006) for
modern topography. An advantage of the proposed method
is that any kind of historical information (e.g. flood marks,
sediment depositions) can be used to extend the data set of
annual maximum discharges as long as the information can
be translated into discharges. Another great advantage of the
proposed method is the computational time to create the con-
tinuous data sets and to fit the GEV distributions. The entire
process is completed within several minutes. Furthermore, it
is easy to update the analysis if more historical information
about flood events becomes available. However, the method
is based on various assumptions and has some drawbacks.
These assumptions and drawbacks are discussed below.

6.1 The added value of normalized historic flood events

The results have shown that extending the systematic data
set with normalized historic flood events can significantly re-
duce the confidence intervals of the FF curves. This is in line
with the work of O’Connell et al. (2002), who claim that the
length of the instrumental record is the single most important
factor influencing uncertainties in flood frequency relations.
However, reconstructing historic floods is time-consuming,
especially if these floods are normalized with a hydraulic
model. Therefore, the question arises of whether it is re-
quired to reconstruct historic floods to extend the data set
of measured discharges. Another, less time-consuming, op-
tion might be to solely resample the measured discharges in
order to extend the length of the data set. Such a method was
applied by Chbab et al. (2006), who resampled 50 years of
weather data to create a data set of 50 000 years of annual
maximum discharges.
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To test the applicability of solely using measured dis-
charges, we use the bootstrap method presented in Sect. 3.
A data set of approximately 700 years (equal to the length
of the 1317 data set) is created based on solely measured
discharges in the period 1901–2018. The perception thresh-
old is assumed to be equal to the lowest measured discharge
such that the entire data set of measured discharges is used
during the bootstrap resampling. Again, 5000 discharge data
sets are created to reach convergence in the FFA. These data
are referred to as the Q_Bootstrap data set.

We find that the use of the Q_Bootstrap data set, based on
solely resampling the measured discharges of the 1901 data
set, results in lower uncertainties of the FF curve compared
to the 1901 data set (Fig. 8). This is because the length of
the measured data set is increased through the resampling
method. Although the confidence interval decreases after re-
sampling, the confidence interval of the Q_Bootstrap data
set is still larger compared to the 1317 data set, including
the normalized historic flood events (Fig. 8). This is because
the variance of the Q_Bootstrap data set, which is equal to
4.19×106 m3 s−1, is still larger than the variance of the 1317
data set. For the Q_Bootstrap data set, the entire measured
data set (1901–2018) is used for resampling, while for the
1317 data set only the discharges below a certain threshold
in the systematic time period (1772–2018) are used for re-
sampling. The perception threshold was chosen to be equal
to the lowest flood event in the historical time period hav-
ing a discharge of between 6928 and 10724 m3 s−1. Hence,
the missing years in the historical time period are filled with
relatively low discharges. Hence, the variance of the 1317
data set is relatively low (3.35× 106 m3 s−1). As a result of
the lower variance, the uncertainty intervals are also smaller
compared to the Q_Bootstrap data set.

Furthermore, the FF curve of the Q_Bootstrap data set is
only based on a relatively short data set of measured dis-
charges and hence only based on the climate conditions of
this period. Extending the data set with historic flood events
gives a better representation of the long-term climatic vari-
ability in flood events since these events have only been nor-
malized for changes in the river system and thus still capture
the climate signal. We conclude that reconstructing historic
events, even if their uncertainty is large, is worth the effort
since it reduces the uncertainty intervals of design discharges
corresponding to rare flood events, which is crucial for flood
protection policymaking.

6.2 Resampling the systematic data set

The shape of the constructed FF curve strongly depends on
the climate conditions of the period considered. If the data set
is extended with a period which only has a small number of
large flood events, this will result in a significant shift of the
FF curve in the downward direction. This shift can be over-
estimated if the absence of large flood events only applies to
the period used to extend the data set. Furthermore, by resam-

Figure 8. Fitted GEV curves of the 1901, 1317, and Q_Bootstrap
data sets.

pling the measured data set, we assume that the flood series
consists of independent and identically distributed random
variables. This might not be the case if climate variability
plays a significant role in the considered time period result-
ing in a period of extreme low or high flows. However, up till
now no consistent large-scale climate change signal in ob-
served flood magnitudes has been identified (Blöschl et al.,
2017).

In Sect. 5, we found that extending the data set from 1901
to 1772 resulted in a shift in the downward direction of the
FF curve. This is because in the period 1772–1900, a rel-
atively small number of floods exceeded a discharge larger
than 10 000 m3 s−1. Since no large flood events were present
in the period 1772–1900, this data set has a lower variance
compared to the 1901 data set. Using both the 1772 and 1901
data sets for resampling purposes influences the uncertainty
of the FF curve. To identify this effect, we compared the re-
sults if solely the measured discharges (1901–2018) are used
for resampling purposes and if the entire systematic data set
(1772–2018) period is used. We find that using the entire sys-
tematic data set results in a reduction in the 95 % confidence

www.nat-hazards-earth-syst-sci.net/19/1895/2019/ Nat. Hazards Earth Syst. Sci., 19, 1895–1908, 2019



1906 A. Bomers et al.: Decreasing uncertainty in flood frequency analyses

intervals compared to the situation in which solely the mea-
sured discharges are used caused by the lower variance in the
period 1772–1900. However, the reduction is at a maximum
of 12 % for a return period of 100 000 years. Although the
lower variance in the 1772–1900 data set might be explained
by the fact that these discharges are not normalized, the lower
variance may also be caused by the natural variability in cli-
mate.

6.3 Distribution functions and goodness-of-fit tests

In Sect. 5, only the results for a GEV distribution were pre-
sented. We found that the uncertainty interval of the flood
event with a return period of 100 000 years was reduced by
73 % by extending the data set of approximately 120 years
of annual maximum discharges to a data set with a length of
700 years. Performing the analysis with other distributions
yields similar results. A reduction of 60 % is found for the
Gumbel distribution and a reduction of 76 % for the Weibull
distribution. This shows that, although the uncertainty inter-
vals depend on the probability distribution function used, the
general conclusion of reduction in uncertainty of the fitted
FF curve holds.

However, by only considering a single distribution func-
tion in the analysis, model uncertainty is neglected. One ap-
proach to manage this uncertainty is to create a composite
distribution of several distributions each allocated a weight-
ing based on how well it fits the available data (Apel et al.,
2008). Furthermore, the uncertainty related to the use of var-
ious goodness-of-fit tests was neglected since only the max-
imum likelihood function was used to fit the sample data to
the distribution function. Using a composite distribution and
multiple goodness-of-fit tests will result in an increase in the
uncertainties of FF curves.

6.4 The length of the extended data set and the
considered perception threshold

The measured data set starting at 1901 was extended to 1317.
However, the extended data set still has limited length com-
pared to the maximum return period of 100 000 years con-
sidered in Dutch water policy. Preferably, we would like to
have a data set with at least the same length as the maximum
safety level considered such that extrapolation in FFAs is not
required anymore. However, the proposed method is a large
step to decrease uncertainty.

Furthermore, the systematic data set was used to create
a continuous data set using a bootstrap approach. However,
preferably we would like to have a continuous historical
record since now the low flows are biased on climate con-
ditions of the last 250 years. Using this data set for resam-
pling influences the uncertainty intervals of the FF curves.
If the historical climate conditions highly deviated from the
current climate conditions, this approach does not produce
a reliable result. In addition, the perception threshold influ-

ences the variance of the considered data set and hence the
uncertainty of the FF curve. Using a smaller threshold re-
sults in an increase in the variance of the data set and hence
in an increase in the uncertainty intervals. The proposed as-
sumption related to the perception threshold can only be used
if there is enough confidence that the smallest known flood
event in the historical time is indeed the actual smallest flood
event that occurred in the considered time period.

6.5 A comparison with Bayesian statistics

The FFA was performed based on frequentist statistics. The
maximum likelihood function was used to fit the parameters
of the GEV distribution function. However, only point es-
timates are computed. To enable uncertainty predictions of
the GEV parameter estimates, the maximum likelihood es-
timator assumes symmetric confidence intervals. This may
result in an incorrect estimation of the uncertainty, which is
specifically a problem for small sample sizes. For large sam-
ple sizes, maximum likelihood estimators become unbiased
minimum variance estimators with approximate normal dis-
tributions. Contrarily, Bayesian statistics provide the entire
posterior distributions of the parameter estimates and thus no
assumptions have to be made. However, a disadvantage of
the Bayesian statistics is that the results are influenced by the
priors describing the distributions of the parameters (Neppel
et al., 2010). For future work, we recommend studying how
uncertainty estimates differ between the proposed bootstrap
method and a method which relies on Bayesian statistics such
as the study of Reis and Stedinger (2005).

Moreover, a disadvantage of the proposed bootstrap ap-
proach is that, by resampling the systematic data set to fill
the gaps in the historical time period, the shape of the flood
frequency curve is influenced in the domain corresponding
to events with small return periods (i.e. up to ∼ 100 years
corresponding with the length of the 1901 data set). Methods
presented by Reis and Stedinger (2005) and Wang (1990) use
historical information solely to improve the estimation of the
tail of the FF curves, while the systematic part of the curve
stays untouched. Table 2 shows the discharges correspond-
ing to a return period of 100 years for both the 1901 data
set and the extended 1317 data set following the bootstrap
method described in Sect. 3. We find that this discharge de-
creases from 12 036 to 11 585 m3 s−1 by extending the sys-
tematic data set. This decrease in design discharge by 3.7 %
indicates that resampling the systematic data set over the his-
torical time period only has a little effect on the shape of the
flood frequency curve corresponding to small return periods.
This finding justifies the use of the bootstrap method.

7 Conclusions

Design discharges are commonly determined with the use
of flood frequency analyses (FFAs) in which measured dis-
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charges are used to fit a probability distribution function.
However, discharge measurements have been performed only
for the last 50–100 years. This relatively short data set of
measured discharges results in large uncertainties in the pre-
diction of design discharges corresponding to rare events.
Therefore, this study presents an efficient bootstrap method
to include historic flood events in an FFA. The proposed
method is efficient in terms of computational time and set-
up. Additionally, the basic principles of the traditional FFA
remain unchanged.

The proposed bootstrap method was applied to the dis-
charge series at Lobith. The systematic data set covering
the period 1772–2018 was extended with 12 historic flood
events. The historic flood events reconstructed by Meurs
(2006) had a large uncertainty range, especially for the most
extreme flood events. The use of a 1-D–2-D coupled hy-
draulic model reduced this uncertainty range of the maxi-
mum discharge at Lobith for most flood events as a result
of the overflow patterns and dike breaches along the Lower
Rhine. The inclusion of these historic flood events in combi-
nation with a bootstrap method to create a continuous data
set resulted in a decrease in the 95 % uncertainty interval
of 72 % for the discharges at Lobith corresponding to a re-
turn period of 100 000 years. Adding historical information
about rare events with a large uncertainty range in combina-
tion with a bootstrap method thus has the potential to signif-
icantly decrease the confidence interval of design discharges
of extreme events.

Since correct prediction of flood frequency relations with
little uncertainty is of high importance for future national
flood protection programmes, we recommend using histor-
ical information in the FFA. Additionally, extending the data
set with historic events makes the flood frequency relation
less sensitive to future flood events. Finally, we highlight
that the proposed method to include historical discharges in
a traditional FFA can be easily implemented in flood safety
assessments because of its simple nature in terms of mathe-
matical computations as well as its computational efforts.

Code and data availability. This work relied on data which are
available from the providers cited in Sect. 2. The code is writ-
ten for MATLAB, which is available upon request by contacting
Anouk Bomres (a.bomers@utwente.nl).

Author contributions. AB, RMJS, and SJMHH contributed towards
the conceptualization of the study. AB set up and carried out the
methodology and drafted the paper. All co-authors jointly worked
on enriching and developing the draft, also in reaction to the review-
ers’ recommendations.

Competing interests. The authors declare that they have no conflict
of interest.

Acknowledgements. This research has benefited from cooperation
within the network of the Netherlands Centre for River studies,
NCR (https://ncr-web.org/, last access: 15 February 2019).

The authors would like to thank the Dutch Ministry of Infrastruc-
ture and Water Management, Juergen Herget (University of Bonn),
and Willem Toonen (KU Leuven) for providing the data. Further-
more, the authors would like to thank Willem Toonen (KU Leuven)
for his valuable suggestions that improved the paper. In addition,
the authors would like to thank Elena Volpi (Roma Tre University)
and the two anonymous reviewers for their suggestions during the
discussion period, which greatly improved the quality of the pa-
per. Finally, the authors would like to thank Bas van der Meulen,
Kim Cohen, and Hans Middelkoop from Utrecht University for their
cooperation in the NWO project “Floods of the past–Design for the
future”.

Financial support. This research has been supported by the NWO
(project no. 14506), which is partly funded by the Ministry of Eco-
nomic Affairs and Climate Policy. Furthermore, the research is sup-
ported by the Ministry of Infrastructure and Water Management and
Deltares.

Review statement. This paper was edited by Bruno Merz and re-
viewed by Elena Volpi and two anonymous referees.

References

Apel, H., Merz, B., and Thieken, A. H.: Quantifica-
tion of uncertainties in flood risk assessments, Interna-
tional Journal of River Basin Management, 6, 149–162,
https://doi.org/10.1080/15715124.2008.9635344, 2008.

Blöschl, G., Hall, J., Parajka, J., et al.: Changing climate
shifts timing of European floods, Science, 357, 588–590,
https://doi.org/10.1126/science.aan2506, 2017.

Bomers, A., Schielen, R. M. J., and Hulscher, S. J. M. H.:
Consequences of dike breaches and dike overflow in
a bifurcating river system, Nat. Hazards, 97, 309–334,
https://doi.org/10.1007/s11069-019-03643-y, 2019a.

Bomers, A., Schielen, R. M. J., and Hulscher, S. J. M. H.: The severe
1374 Rhine river flood event in present times, in: 38th IAHR
World Congres, Panama City, Panama, 2019b.

Bronstert, A., Bardossy, A., Bismuth, C., Buiteveld, H., Disse, M.,
Engel, H., Fritsch, U., Hundecha, Y., Lammersen, R., Niehoff,
D., and Ritter, N.: Multi-scale modelling of land-use change and
river training effects on floods in the Rhine basin, River Res.
Appl., 23, 1102–1125, https://doi.org/10.1002/rra.1036, 2007.

Brunner, G. W.: HEC-RAS, River Analysis System Hydraulic Ref-
erence Manual, Version 5.0, Tech. Rep. February, US Army Corp
of Engineers, Hydrologic Engineering Center (HEC), Davis,
USA, available at: https://www.hec.usace.army.mil/software/
hec-ras/documentation/HEC-RAS5.0ReferenceManual.pdf (last
access: 12 March 2019), 2016.

Chbab, E. H., Buiteveld, H., and Diermanse, F.: Estimat-
ing Exceedance Frequencies of Extreme River Discharges
Using Statistical Methods and Physically Based Approach,

www.nat-hazards-earth-syst-sci.net/19/1895/2019/ Nat. Hazards Earth Syst. Sci., 19, 1895–1908, 2019

https://ncr-web.org/
https://doi.org/10.1080/15715124.2008.9635344
https://doi.org/10.1126/science.aan2506
https://doi.org/10.1007/s11069-019-03643-y
https://doi.org/10.1002/rra.1036
https://www.hec.usace.army.mil/software/hec-ras/documentation/HEC-RAS 5.0 Reference Manual.pdf
https://www.hec.usace.army.mil/software/hec-ras/documentation/HEC-RAS 5.0 Reference Manual.pdf


1908 A. Bomers et al.: Decreasing uncertainty in flood frequency analyses

Österreichische Wasser- und Abfallwirtschaft, 58, 35–43,
https://doi.org/10.1007/BF03165682, 2006.

Frances, F., Salas, J. D., and Boes, D. C.: Flood frequency anal-
ysis with systematic and historical or paleoflood data based on
the two-parameter general extreme value models, Water Re-
sour. Res., 30, 1653–1664, https://doi.org/10.1029/94WR00154,
1994.

Gaume, E., Gaál, L., Viglione, A., Szolgay, J., Kohnová,
S., and Blöschl, G.: Bayesian MCMC approach to re-
gional flood frequency analyses involving extraordinary
flood events at ungauged sites, J. Hydrol., 394, 101–117,
https://doi.org/10.1016/j.jhydrol.2010.01.008, 2010.

Haberlandt, U. and Radtke, I.: Hydrological model calibration for
derived flood frequency analysis using stochastic rainfall and
probability distributions of peak flows, Hydrol. Earth Syst. Sci.,
18, 353–365, https://doi.org/10.5194/hess-18-353-2014, 2014.

Hall, J. W., Dawson, R. J., Sayers, P. B., Rosu, C., Chat-
terton, J. B., and Deakin, R.: A methodology for national-
scale flood risk assessment, P. I. Civil. Eng., 156, 235–247,
https://doi.org/10.1680/wame.2003.156.3.235, 2003.

Hegnauer, M., Beersma, J. J., van den Boogaard, H. F. P., Buishand,
T. A., and Passchier, R. H.: Generator of Rainfall and Discharge
Extremes (GRADE) for the Rhine and Meuse basins. Final re-
port of GRADE 2.0, Tech. rep., Deltares, Delft, the Netherlands,
ISBN 9789036914062, 2014.

Herget, J. and Meurs, H.: Reconstructing peak dis-
charges for historic flood levels in the city of Cologne,
Germany, Global Planet. Change, 70, 108–116,
https://doi.org/10.1016/j.gloplacha.2009.11.011, 2010.

Hirsch, R. M. and Stedinger, J. R.: Plotting positions for histori-
cal floods and their precision, Water Resour. Res., 23, 715–727,
https://doi.org/10.1029/WR023i004p00715, 1987.

Klemeš, V.: Dilettantism in hydrology: Transition
or destiny?, Water Resour. Res., 22, 177–188,
https://doi.org/10.1029/WR022i09Sp0177S, 1986.

Macdonald, N., Kjeldsen, T. R., Prosdocimi, I., and Sang-
ster, H.: Reassessing flood frequency for the Sussex Ouse,
Lewes: the inclusion of historical flood information since
AD 1650, Nat. Hazards Earth Syst. Sci., 14, 2817–2828,
https://doi.org/10.5194/nhess-14-2817-2014, 2014.

Meurs, H.: Bestimmung der Spitzenabflüsse historischer
Hochwasser Köln, Diploma thesis, University of Bonn,
2006.

Neppel, L., Renard, B., Lang, M., Ayral, P.-A., Coeur, D., Gaume,
E., Jacob, N., Payrastre, O., Pobanz, K., and Vinet, F.: Flood
frequency analysis using historical data: accounting for ran-
dom and systematic errors, Hydrolog. Sci. J., 55, 192–208,
https://doi.org/10.1080/02626660903546092, 2010.

O’Connell, D. R. H., Ostenaa, D. A., Levish, D. R., and
Klinger, R. E.: Bayesian flood frequency analysis with pale-
ohydrologic bound data, Water Resour. Res., 38, 1058–1071,
https://doi.org/10.1029/2000WR000028, 2002.

Parkes, B. and Demeritt, D.: Defining the hundred year flood:
A Bayesian approach for using historic data to reduce uncer-
tainty in flood frequency estimates, J. Hydrol., 540, 1189–1208,
https://doi.org/10.1016/j.jhydrol.2016.07.025, 2016.

Parmet, B., van de Langemheen, W., Chbab, E., Kwadijk, J., Dier-
manse, F., and Klopstra, D.: Analyse van de maatgevende afvoer
van de Rijn te Lobith, Tech. rep., RIZA rapport 2002.012, Arn-
hem, the Netherlands, available at: https://edepot.wur.nl/84989
(last access: 5 May 2019), 2001.

Reis, D. S. and Stedinger, J. R.: Bayesian MCMC flood frequency
analysis with historical information, J. Hydrol., 313, 97–116,
https://doi.org/10.1016/j.jhydrol.2005.02.028, 2005.

Sartor, J., Zimmer, K. H., and Busch, N.: Historische Hochwasser-
ereignisse der deutschen Mosel, Wasser Abfall, 10, 46–51, 2010.

Schendel, T. and Thongwichian, R.: Considering his-
torical flood events in flood frequency analysis: Is it
worth the effort?, Adv. Water Resour., 105, 144–153,
https://doi.org/10.1016/j.advwatres.2017.05.002, 2017.

Stendinger, J. R. and Cohn, R. A.: Flood frequency analysis with
historical and paleoflood information, Water Resour. Res., 22,
785–793, https://doi.org/10.1029/WR022i005p00785, 1987.

Te Linde, A. H., Aerts, J. C., Bakker, A. M., and Kwadijk, J. C.:
Simulating low-probability peak discharges for the Rhine basin
using resampled climate modeling data, Water Resour. Res., 46,
1–19, https://doi.org/10.1029/2009WR007707, 2010.

Tijssen, A.: Herberekening werklijn Rijn in het kader van
WTI2011, Tech. rep., Deltares, Delft, the Netherlands,
available at: http://publicaties.minienm.nl/documenten/
herberekening-werklijn-rijn-in-het-kader-van-wti2011 (last
access: 30 May 2019), 2009.

Toonen, W. H. J.: Flood frequency analysis and discussion
of non-stationarity of the Lower Rhine flooding regime
(AD 1350-2011): Using discharge data, water level mea-
surements, and historical records, J. Hydrol., 528, 490–502,
https://doi.org/10.1016/j.jhydrol.2015.06.014, 2015.

Van Alphen, J.: The Delta Programme and updated flood risk man-
agement policies in the Netherlands, J. Flood Risk Manag., 9,
310–319, https://doi.org/10.1111/jfr3.12183, 2016.

Van der Most, H., De Bruijn, K. M., and Wagenaar, D.: New Risk-
Based Standards for Flood Protection in the Netherlands, in:
6th International Conference on Flood Management, pp. 1–9,
https://doi.org/10.1017/CBO9781107415324.004, 2014.

Van Hal, L.: Hydraulische randvoorwaarden Rijn en Maas, Tech.
rep., RIZA. Memo RYN2003-12(A), Arnhem, the Netherlands,
2003.

Verheij, H. J. and Van der Knaap, F. C. M.: Modification breach
growth model in HIS-OM, Tech. rep., Project Q3299. WL | Delft
Hydraulics, Delft, the Netherlands, 2003.

Vorogushyn, S. and Merz, B.: Flood trends along the Rhine: the
role of river training, Hydrol. Earth Syst. Sci., 17, 3871–3884,
https://doi.org/10.5194/hess-17-3871-2013, 2013.

Wang, Q. J.: Unbiased estimation of probability weighted mo-
ments and partial probability weighted moments from system-
atic and historical flood information and their application to
estimating the GEV distribution, J. Hydrol., 120, 115–124,
https://doi.org/10.1016/0022-1694(90)90145-N, 1990.

Nat. Hazards Earth Syst. Sci., 19, 1895–1908, 2019 www.nat-hazards-earth-syst-sci.net/19/1895/2019/

https://doi.org/10.1007/BF03165682
https://doi.org/10.1029/94WR00154
https://doi.org/10.1016/j.jhydrol.2010.01.008
https://doi.org/10.5194/hess-18-353-2014
https://doi.org/10.1680/wame.2003.156.3.235
https://doi.org/10.1016/j.gloplacha.2009.11.011
https://doi.org/10.1029/WR023i004p00715
https://doi.org/10.1029/WR022i09Sp0177S
https://doi.org/10.5194/nhess-14-2817-2014
https://doi.org/10.1080/02626660903546092
https://doi.org/10.1029/2000WR000028
https://doi.org/10.1016/j.jhydrol.2016.07.025
https://edepot.wur.nl/84989
https://doi.org/10.1016/j.jhydrol.2005.02.028
https://doi.org/10.1016/j.advwatres.2017.05.002
https://doi.org/10.1029/WR022i005p00785
https://doi.org/10.1029/2009WR007707
http://publicaties.minienm.nl/documenten/herberekening-werklijn-rijn-in-het-kader-van-wti2011
http://publicaties.minienm.nl/documenten/herberekening-werklijn-rijn-in-het-kader-van-wti2011
https://doi.org/10.1016/j.jhydrol.2015.06.014
https://doi.org/10.1111/jfr3.12183
https://doi.org/10.1017/CBO9781107415324.004
https://doi.org/10.5194/hess-17-3871-2013
https://doi.org/10.1016/0022-1694(90)90145-N

	Abstract
	Introduction
	Annual maximum discharges
	Discharge measurements covering the period 1901--2018
	Water level measurements covering the period 1772--1900
	Reconstructed flood events covering the period 1300--1772
	Model environment
	Normalization of the historic flood events


	The bootstrap method
	Flood frequency analysis
	Results
	Flood frequency relations
	Hypothetical future extreme flood event

	Discussion
	The added value of normalized historic flood events
	Resampling the systematic data set
	Distribution functions and goodness-of-fit tests
	The length of the extended data set and the considered perception threshold
	A comparison with Bayesian statistics

	Conclusions
	Code and data availability
	Author contributions
	Competing interests
	Acknowledgements
	Financial support
	Review statement
	References

