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Abstract. Reduction of water levels during river floods is
key in preventing damage and loss of life. Computer mod-
els are used to design ways to achieve this and assist in the
decision-making process. However, the predictions of com-
puter models are inherently uncertain, and it is currently un-
known to what extent that uncertainty affects predictions of
the effect of flood mitigation strategies. In this study, we
quantify the uncertainty of flood mitigation interventions on
the Dutch River Waal, based on 39 different sources of un-
certainty and 12 intervention designs. The aim of each inter-
vention is to reduce flood water levels. Our objective is to in-
vestigate the uncertainty of model predictions of intervention
effect and to explore relationships that may aid in decision-
making. We identified the relative uncertainty, defined as the
ratio between the confidence interval and the expected effect,
as a useful metric to compare uncertainty between different
interventions. Using this metric, we show that intervention
effect uncertainty behaves like a traditional backwater curve
with an approximately constant relative uncertainty value. In
general, we observe that uncertainty scales with effect: high
flood level decreases have high uncertainty, and, conversely,
small effects are accompanied by small uncertainties. How-
ever, different interventions with the same expected effect do
not necessarily have the same uncertainty. For example, our
results show that the large-scale but relatively ineffective in-
tervention of floodplain smoothing by removing vegetation
has much higher uncertainty compared to alternative options.
Finally, we show how a level of acceptable uncertainty can be
defined and how this can affect the design of interventions.

In general, we conclude that the uncertainty of model predic-
tions is not large enough to invalidate model-based interven-
tion design, nor small enough to neglect altogether. Instead,
uncertainty information is valuable in the selection of alter-
native interventions.

1 Introduction

The number of people living in areas exposed to river flood-
ing is projected to exceed 1 billion in 2050 (Jongman et al.,
2012). Therefore, it is increasingly important that the river
system is designed in such a way that flood risk is minimised.
Human intervention in river systems has a long history, to
a point that for some rivers human management has be-
come the dominant factor driving hydrological change (Pin-
ter et al., 2006; Bormann and Pinter, 2017). Today, the de-
cision to change an existing river system (e.g. by leveeing a
channel to protect flood-prone areas) is increasingly based on
predictions made by computer models. Various software sys-
tems can be used to resolve flow conditions accurately, tak-
ing much of the complexity of rivers into account – such as
terrain geometry, vegetation and hydraulic structures. How-
ever, despite increasingly available data, not all model input
or model parameters can be reliably measured or represented.
For example, vegetation density and vegetation height, which
modify vegetation roughness (Baptist et al., 2007; Luhar and
Nepf, 2013), are variable both in time and space. This vari-
ability is neither captured on the scale of river modelling, nor
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by the equations that resolve vegetation roughness. Examples
such as this introduce uncertainty in the modelling process
and in the model output (Oreskes et al., 1994; Walker et al.,
2003).

Proper understanding and communication of uncertainty
are important both for scientists and decision makers (Pap-
penberger and Beven, 2006; Uusitalo et al., 2015). Maier
et al. (2016) distinguished three complementary paradigms
for modelling to support decision-making under (deep) un-
certainty: (1) using the best available knowledge, (2) quan-
tifying uncertainty and sensitivities of key parameters and
(3) exploring multiple plausible outcomes. One advantage
computational models can bring to decision-making for river
engineering is an assessment of the impact of the planned in-
tervention on hydraulics, such as water levels, flow velocities
and the morphodynamic response of the river bed. While hy-
draulic effects are not the only impact of interventions (see,
for example, Straatsma et al., 2017, for effects on biodiver-
sity), they are considered important: for the 39 interventions
of the EUR 2.3 billion “Room for the River” programme in
the Netherlands, the hydraulic effect as predicted by mod-
els was a precondition for any design “to be taken seriously
at all” (Klijn et al., 2013). Mosselman (2018) reported that
quantified, large uncertainty in flood water levels is some-
times played down when assessing effects, under the assump-
tion that systematic errors cancel out when subtracting the
intervention case from the reference case. However, it was
recently demonstrated in an idealised study that uncertainty
in flood water levels does not cancel out but could be sig-
nificant compared to the effect and sensitive to the specific
design of the intervention (Berends et al., 2018). Therefore,
uncertainty quantification of effect studies for a real-world
case study is needed to assess the implications for the design
of interventions.

Uncertainty quantification of impact analysis for real-
world solutions suffers from two compounding issues spe-
cific to intervention design studies. First, there is a practical
need for sufficiently detailed models given the increasingly
complicated design of interventions, which moves from tra-
ditional flood prevention (building dikes or levees) to more
holistic designs. This is in part motivated by the paradoxi-
cal “levee effect” that states that flood control measures do
not decrease but increase flood risk (White, 1945; Di Bal-
dassarre et al., 2013; Munoz et al., 2018) and of which in-
sight has spurred policy change away from purely flood con-
trol and towards alternative options (Pinter et al., 2006; Klijn
et al., 2018). In the Netherlands, this has led to designs that
focus on increasing conveyance capacity to achieve lower
flood levels while integrating multiple other (ecological, so-
cietal) objectives as well (Rijke et al., 2012). Predicting the
effects of such more intricate alternative approaches, like the
construction of artificial secondary channels (van Denderen
et al., 2019), requires detailed models that take local geom-
etry, vegetation and other terrain features into account. Such
models are not only computationally expensive, which both

complicates Monte Carlo simulation (MSC)-based quantifi-
cation methods, but also have a high number of model param-
eters, which complicates the use of (data-based) surrogate
model approaches (Razavi et al., 2012). The second issue is
that the analysis relies on at least one unmeasured environ-
mental system, namely, the river system altered by the pro-
posed intervention. Therefore, there is no way to verify that
accuracy for the proposed future state of the river. Verifica-
tion of the accuracy of the current, unaltered state is likewise
not necessarily available. For example, flood mitigation mea-
sures tend to be designed for a low period of return, e.g. a 1
in 100-year return or even 1 in 1250-year flood return (Klijn
et al., 2018), for which recent measurements are (by defini-
tion) sparse. Under such conditions, the uncertainty of model
output cannot be expressed in terms of accuracy (e.g. stan-
dard deviation of model error) without additional untestable
assumptions.

In the present paper we address the lack of studies into the
model uncertainty of model predictions used in impact de-
sign. Our objective is twofold. The first objective is to quan-
tify the effect of parameter uncertainty on the predicted effect
of flood mitigation measures, by implementing 12 different
interventions of varying type and intensity in a section of the
Dutch River Waal, using a detailed hydraulic model. To limit
the computational burden we use CORAL, which is an imple-
mentation of the efficient uncertainty quantification method
of Berends et al. (2018), that does not suffer from limitations
with regard to the number of model parameters. Our second
objective is to explore the relationship between the expected
reduction of flood levels and the uncertainty, to aid in the
decision-making process. To this end we will introduce the
“relative uncertainty” measure to facilitate inter-comparison
between different intervention designs.

Our analysis proceeds in three steps. First, we set up the
numerical model for the Dutch River Waal and select the un-
certainty sources in Sect. 2. Here, we also introduce the rel-
ative uncertainty measure. We then present the results of the
uncertainty of the modelled water levels and reduction in wa-
ter levels in Sect. 3.1 and 3.2. In Sect. 3.3 we show how un-
certainty may influence decision-making. In the Discussion
(Sect. 4) we discuss reducing uncertainty in intervention de-
sign and the feasibility of probabilistic analysis for interven-
tion design in practice. A general conclusion on the practi-
cal value of uncertainty quantification for decision-making
in flood mitigation strategies and specific conclusions related
to the objectives are given in Sect. 5.

2 Methods

2.1 Study area

The River Waal is selected as the case study for its extensive
history of human intervention and good data availability. The
Waal is a distributary of the River Rhine and, by discharge,
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Figure 1. The River Waal, situated entirely in the Netherlands. The study area is a stretch of about 15 km between km 913 and 928. The
hatched area shows the total extent of the model domain, which overlaps with the river and its floodplains bounded by the dikes.

the largest river in the Rhine–Meuse–Scheldt delta, located
in western Europe. The present-day river has a main chan-
nel about 8 m deep at bank-full discharge, a bank-full width
of about 250 m and relatively narrow floodplains. Before the
construction of the dikes from 1000 CE onward, it was a me-
andering river with regular overbank deposition (Hobo et al.,
2014). Recorded river engineering works for flood protec-
tion as well as inland navigation date back to at least the 18th
century (e.g. see Velsen, 1749). In the 19th century, the river
was normalised in large governmental projects, obtaining its
current narrow channel, groynes (also termed spur dikes or
wing dikes) and relatively straight channel (Sieben, 2009).
In the present day, the river has a bed slope of approximately
1× 10−4 m m−1 over a stretch of 90 km from the upstream
bifurcation to the Merwede bifurcation. At the end of the
20th century, motivated by the near-disaster of 1995 (Chbab,
1995), the large-scale Room for the River programme was
enacted to reduce flood levels (Rijke et al., 2012; Klijn et al.,
2018). The largest intervention in the River Waal in this
programme was the Nijmegen–Lent dike relocation project,
which was predicted to lower the water levels by 27 cm at
a cost of approximately EUR 350 million. Most other inter-
ventions on the River Waal were projected to lower the water
level by less than 10 cm.

Our study domain covers the entire Waal River (Fig. 1).
Distances along the river are measured using the conven-
tional “Rhine kilometre”, which starts from km 0 at the Ger-
man city of Konstanz. The Waal starts at km 867 at the Pan-
nerden bifurcation and runs through to km 961 where it bi-
furcates in the Nieuwe Merwede and Boven Merwede rivers.
All flood mitigation measures studied will be implemented
between km 913 and 928, depicted by the annotated rectan-
gle in Fig. 1.

The intervention area is characterised by a relatively
straight river stretch with narrow floodplains and the strongly

curved St. Andries river bend, which provides a known bot-
tleneck during high discharges. Nine towns border directly
on the dikes along this 17.5 km stretch. Interventions in this
area to increase flood safety, considering the narrow flood-
plains and the populated surrounding land, present both a
technical and a societal problem.

2.2 Hydrodynamic model & interventions

To simulate the hydrodynamic response of the flow to various
interventions we use the Delft3D Flexible Mesh modelling
system (Kernkamp et al., 2011). Geographical information,
such as land cover, bathymetry and hypsometry, as well as in-
formation on embankments and weirs, was derived from the
Baseline information system (Becker et al., 2014). Our setup
uses a two-dimensional unstructured numerical grid, with be-
tween 71 000 and 120 000 active grid cells. The grid size
varies from 40 m by 15 m in the main channel to a maximum
of about 120 m by 120 m in the floodplains. In all cases, we
simulate a steady upstream discharge of 10 165 m3 s−1 and a
constant downstream water level of 3.98 m+NAP (Normaal
Amsterdams Peil), for 72 h. A single model evaluation on our
computer resources took about 2.5 h. These conditions are
consistent with a return period of 1250 years (T1250). Initial
conditions were derived from a reference run with all con-
sidered stochastic variables (see Sect. 2.3) at their median
values. The initial time step was set at 30 s.

All interventions are modelled as changes to a reference
state of the system. This reference state is the Waal River af-
ter all interventions from the Room for the River programme,
which approximately corresponds to the 2016 situation. We
consider 12 additional system states, each one corresponding
with a particular human intervention (Fig. 2). In all cases, the
interventions were procedurally generated by the RiverScape
tool (Straatsma and Kleinhans, 2018). We implemented six
different interventions, detailed below. Each intervention was
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implemented in a low-intensity and a high-intensity variant.
Here, intensity refers to the magnitude of the intervention,
for example a small reduction in groyne height (low inten-
sity) or a large reduction in groyne height (high intensity).
We assume that the intervention is carried out in reality ex-
actly as it was designed. This is known as the “as designed”
post-intervention state. In reality, there may be a discrepancy
between the as designed state and the actual (“as built”) state.
In theory, this discrepancy could be considered an additional
source of uncertainty. However, because there is no literature
to support any assumptions regarding such a discrepancy, we
do not take this into account here.

2.2.1 Groyne lowering (GROYNLOW)

Groynes (also known as wing dikes or spur dikes) are (stone)
structures perpendicular to the flow. During normal condi-
tions, groynes restrict the effective channel width to promote
navigable depths. However, during high flows groynes ob-
struct flow. Prior to 2016, many groynes in the Waal were al-
ready lowered as part of the Room for the River programme.
The intervention as implemented in this study further reduces
the groynes’ crest heights. Groynes were lowered to the crest
height corresponding to the water levels with exceedance fre-
quency of 150 d (low intensity) and 363 d (high intensity) per
year.

2.2.2 Minor embankment lowering (MINEMBLOW)

The River Waal floodplains are compartmentalised by mi-
nor embankments, of which original purpose is to prevent
flooding of the floodplains during minor (summer) floods.
This intervention lowers the crests of these embankments to
reduce their obstruction during high flow. Low and high in-
tensity lowered the crests to a water level with exceedance
frequency of 50 d (low intensity) and 150 d (high intensity)
per year.

2.2.3 Floodplain lowering (FLPLOW)

Lowering or excavation of the floodplains increases the max-
imum water volume within the existing bounds of the river
corridor, thereby increasing conveyance. In this study, we
lower the level of the floodplain without changing exist-
ing vegetation or other floodplain configuration to isolate
the effect of lowering. Floodplains were lowered to the cor-
responding water level with an exceedance frequency of
20 d yr−1, with 5 % (low intensity) and 99 % (high intensity)
of the terrestrial floodplain area altered.

2.2.4 Floodplain smoothing (FLPSMOOTH)

Vegetation in the floodplain greatly contributes to resistance
during high flows. Replacing existing high-friction vegeta-
tion by low-friction vegetation mitigates this problem. Here,
the existing vegetation was replaced by production meadow

(roughness code 1201 in Table A1). Smoothing at low in-
tensity affected the top 5 % of the obstructing vegetation. At
high intensity all vegetation was converted to meadow.

2.2.5 Dike relocation (DIKERELOC)

In the River Waal, dikes are the primary defence against
flooding. However, they also contribute to flood risk by
restricting the river corridor. Dike relocation increases the
floodplains and allocates more space to the river. While this
is perhaps the best example of combatting problematic con-
striction of the river corridor, it is also the most invasive –
considering human settlement near and on the dikes. At low
intensity, concave dike sections of less than 700 m are re-
placed by straight dikes, whereas at high intensity concave
sections of 7000 m are straightened, while creating small
polders around existing built-up areas.

2.2.6 Side channels (SIDECHAN)

Finally, the construction of secondary (side) channels within
the existing corridor both increases the available volume and
decreases vegetation friction. All new channels are assigned
“side channel” roughness (code 105 in Table A1) and a trape-
zoidal cross sectional shape and slope of 1 to 3. The channels
were implemented with widths of 10 m (low intensity) and
100 m (high intensity) and depths of 0.35 m (low intensity)
and 3.5 m (high intensity) below the water level with an ex-
ceedance frequency of 363 d yr−1.

2.3 Uncertainty sources

Modelling real-world rivers on the scale of nearly 100 km
necessarily involves various simplifications, discretisations
and parameterisations. Sources of uncertainty for this river
were identified by Warmink et al. (2011) using expert elic-
itation. The main sources were (a) boundary conditions and
(b) main channel friction and to a lesser extent (c) friction by
vegetation, (d) geometry and (e) weir and groyne formula-
tions. In this study we follow the design approach taken in the
Room for the River programme, which assumes the bound-
ary conditions are given and stationary for a certain design
return rate (which is T1250) and therefore not a source of un-
certainty. Warmink et al. (2013b) considered the hydraulic
roughness parameters to be the most important parameter
based on literature. We adopt this assumption and take un-
certainty of the main channel friction, vegetation parameters
and classification errors in the land-use maps into account.
The total number of stochastic variables is 39 (see Table ).

2.3.1 Main channel roughness

The hydraulic roughness of the main channel is chiefly de-
termined by the material of the bed (“grain roughness”) and
the bed forms (“form roughness”). Various models have been
proposed that calculate the friction factor based on the char-
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Figure 2. A schematic overview of a typical cross section of the River Waal and the flood mitigation measures studied in this paper. Figure
is based on Middelkoop et al. (1999).

Table 1. A summarised overview of the stochastic variables. A full
overview is given in Table A1 in the Appendix.

Type Number of
stochastic
variables

Main channel roughness 1
Floodplain roughness

Vegetation height (hv) 14
Vegetation density (nv) 17
Non-vegetation roughness 6

Classification error 1

Total 39

acteristics of the bed (van der Mark, 2009). Here, we adopt
the approach of Warmink et al. (2013a) who estimated the
values for Nikuradse roughness height kn (m) for a T1250
event by extrapolation using a generalised extreme value
(GEV; Weibull variant) distribution for five roughness mod-
els. Given the GEV percentiles, we fitted a log-normal distri-
bution at the T1250 return period for each roughness model.
These log-normal distributions were combined into a single
distribution using equal weight for each roughness model.
Figure 3 shows the resulting individual and combined prob-
ability functions from the Weibull extrapolation.

In the following we will use the joint cumulative density
function of the five roughness models to sample represen-
tative roughness height kn. The joint cumulative function is
a highly asymmetrical distribution, with a mean of approx-
imately 0.58 m and 95 % confidence limits at 0.31 m and
1.0 m. The sampled values of kn will be used in the hydro-
dynamic model as input for the White–Colebrook model:

C = 1810 log
12h
kn
, (1)

with Chézy’s coefficient C (m1/2 s−1) and water depth h (m).
The sampled kn values are used to resolve friction for all
main channel roughness classes, which cover 95.6 % of the
main channel area. The other 4.4 % are non-erodible layers in
the outer river bends which are not stochastically determined
in this study.

Figure 3. The combined probability function of the main bed rough-
ness is based on Weibull extrapolation of Nikuradse roughness
height kn to the T1250 return period using five different bed rough-
ness formulas.

2.3.2 Floodplain roughness

The Baseline database divides the floodplain into vegetation
classes, riverbanks and water bodies. Each class is given a
specific roughness code called a trachytope, which is then
coupled to an appropriate roughness formula and parameters
specific to that formula. Spatially, the vegetation in the flood-
plains is discretised by polygons, which are designated by
either one or a combination of distinct vegetation classes.

For vegetation, the generation of roughness by vegetation
is complex, resulting from obstruction by stems and leafs and
turbulent flow through the vegetation and over the canopy.
The relationship between vegetation and roughness is ex-
tensively studied, leading to various models to compute hy-
draulic friction from vegetation traits (Nepf, 2012; Vargas-
Luna et al., 2015; Shields et al., 2017). These traits often
include the vegetation canopy height hv (m), drag coefficient
CD [−], stem density nv =mvDv or vegetation concentra-

tion λ= πD2
vmv
4 , with the number of stems per square me-

tre mv (m−2) and stem diameter Dv (m) (Klopstra et al.,
1997; Stone and Shen, 2002; Baptist et al., 2007; Huthoff
et al., 2007; Yang and Choi, 2010; Li et al., 2015). Warmink
et al. (2013b) have shown that the choice of a particular
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vegetation model has little influence on the outcome uncer-
tainty compared to parameter uncertainty. Therefore, we only
used the model proposed by Klopstra et al. (1997), in which
vegetation friction is chiefly determined by the parameters
hv,nv,CD. These parameter values are determined in the
following way. For CD we use fixed, deterministic values
based on van Velzen et al. (2003). The height and density
parameters (hv and nv) are assigned probability distributions
based on the field campaign of Straatsma and Alkema (2009).
Based on 206 field observations, they approximated the vari-
ation in vegetation density and height for 25 homogeneous
vegetation classes. Based on their estimate quantiles we fit-
ted log-normal distributions for each class, assuming the veg-
etation height and density to be independent parameters. In
total, the roughness of 66 % of the River Waal floodplain is
defined by one of the vegetation trachytopes, and 2.5 % is
defined by the combination of two vegetation trachytopes.

Six trachytopes are associated with water bodies or river-
banks, accounting for about 27 % of the total areal. We model
the friction for these six classes with the Manning formula:

C = h1/6n−1, (2)

with Manning’s coefficient n (s m−1/3). The n values for
these trachytopes are modelled as triangular probability func-
tions with the minimum, maximum and mean values based
on Chow (1959). All parameters of the vegetation parame-
ter distributions are summarised in Table A1. The remaining
4.5 % of floodplain area, which is given deterministic rough-
ness values, is mostly (3.7 %) covered by buildings which are
excluded from flow computations, revetment and pavement.

2.3.3 Classification error matrix

Available vegetation maps are likely to contain “impurities”
(Knotters and Brus, 2012) or classification errors, that have
significant impact on model output uncertainty (Warmink
et al., 2013a). The probabilities of one class being in real-
ity another is encoded in a confusion matrix (we use Table 1
in Straatsma and Huthoff, 2011). Following this matrix it
is found, for example, that “willow plantation” was, in all
cases, found to be “softwood forest” instead. An overview of
the various vegetation classes is given in the Appendix. Fol-
lowing these probabilities we generated an ensemble of 2000
pre-intervention trachytope maps. Each map was then given
a fixed index number. We sample from these maps by picking
a number from a discrete uniform distribution and finding the
corresponding map by index number. In this way, each map
is assigned the same probability.

2.4 Quantification of model output uncertainty

2.4.1 Estimation method

In this study we focus on prediction of the maximum flood
levels (see Fig. 2) in the reference state (denoted by X),

Figure 4. Schematic overview of the efficient uncertainty estima-
tion method CORAL for post-intervention model output and impact
analysis. In this figure, n represents the MCS sample size, m the
subsample size, p the number of stochastic parameters, X the pre-
intervention model output, j the number of draws from the poste-
rior predictive model, Y the post-intervention model output, Ŷ the
estimated post-intervention model output and 1H the intervention
effect. Figure is adapted from Berends et al. (2018).

the maximum flood levels in the various interventions (de-
noted by Y ) and the difference between these two (denoted
by 1H ). Due to the uncertainties in model input discussed
in Sect. 2.3, X, Y and 1H are stochastic. To analytically
compute differences between these two (stochastic) states of
the river system, we would need to obtain both the model
output probability distributions and the covariances between
the two distributions (Berends et al., 2018). This problem
is analytically intractable but can be solved numerically by
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Monte Carlo simulation (MCS; Metropolis, 1987; Stefanou,
2009). In the numerical approach, covariances are not explic-
itly computed.

However, MCS is not always practically feasible or desir-
able. Although MCS has been applied for estimation of flood
level uncertainty before (Warmink et al., 2013b), the added
task of performing a separate MCS for each intervention puts
a severe strain on computational resources. Therefore we fol-
low the approach of Berends et al. (2018), schematically de-
picted in Fig. 4, which is computationally more efficient. We
refer to this method as “correlated output regression analy-
sis” (CORAL). The key feature of CORAL is that the stochas-
tic intervention output Y is not directly solved by MCS, but
instead an estimator Ŷ is computed using the reference state
and a correlation model. This correlation model is defined
within a Bayesian framework and is probabilistic as well. We
use the same linear model as Berends et al. (2018):

Ŷ = α(X− c)+β + ε+ c, (3)

with ε ∼N (0,σε) and transformation constant c. The con-
stant is introduced to shift data to the origin, which fa-
cilitates faster inference and is defined as c =min(X). In
the Bayesian framework, the regression parameters θ =

{α,β,σε} are considered stochastic variables themselves and
estimated via a Markov Chain Monte Carlo (MCMC) algo-
rithm, trained by a limited subsample of simulations from Y .
We use a subsample of m= 20 for all intervention states. To
estimate the distribution of the reference state (step 2) we use
a quasi-random MCS sample (n= 1000) with the Sobol low-
discrepancy sequence. The linear model was demonstrated to
be applicable to similar intervention studies by Berends et al.
(2018), and (visual) inspection of the correlation between the
reference state and the intervention models shows this holds
for our cases as well.

The main advantage of this approach is a significant de-
crease of required computational resources by reducing the
number of model evaluations. The total number of hydrody-
namic model evaluations was 1240, divided over 13 model
states (the reference plus 12 interventions). This is a decrease
of computational effort of more than 90 % compared to direct
MCS with all states, which would have totalled 13 000 model
evaluations. It is important to state that the consequence of
having a probabilistic correlation model is that the interven-
tion state estimator Ŷ is stochastic for each individual draw
from the reference state (X). Since X is stochastic itself, this
can be thought of as the “uncertainty of the uncertainty” or
the estimation uncertainty.

To maintain correlation between the X and Y , a union
stochastic parameter space is constructed (step 1 in Fig. 4).
Practically, this means that each corresponding member in
the reference and intervention model ensembles has identi-
cal values for their stochastic variables, with the noticeable
exception where those were altered by the intervention. For
example, we assume that a tree with a height of 8 m in the ref-
erence case still has a height of 8 m after intervention, unless

this tree was removed or otherwise affected by the interven-
tion. This is straightforward to implement for parameter val-
ues but requires an additional step for the classification un-
certainty. To be able to draw from the confusion matrix (see
Sect. 2.3.3) a large number of trachytope maps was gener-
ated for the reference case. To maintain correlation, the same
number of maps is generated for each intervention in such
a way that every map is identical to the corresponding ref-
erence map with the same index, except in areas where the
intervention has altered the trachytope. For example, an area
which was classified as “willow plantation” in the reference
state will still be classified as “willow plantation” after the
intervention, unless that area has been reclassified as part of
the intervention.

2.4.2 Uncertainty metrics

As a data reduction step, we summarise the results using the
following metrics based on the water level reduction effect
1H .

Confidence intervals measure the distance between two
percentiles (e.g. the 10 % and 90%) of a cumulative den-
sity function (cdf). We refer to the confidence intervals of
the stochastic variables X, Y and 1H as the model uncer-
tainty confidence interval or MCI. For example, the MCI of
1H is defined as

MCI1H = |F̂
−1
1H (pu)− F̂

−1
1H (pl)|. (4)

The MCI of Ŷ is derived in the same way. Here, F̂−1 is the
inverse cumulative density function, also known as the quan-
tile or percent point function and pl, pu the lower and upper
quantiles. Here, these quantiles are always symmetric around
the median. We use a limited subset of quantiles (consistent
with the 10 %, 20 %, 50 %, 80 % and 90 % confidence inter-
vals) to summarise the data. Additionally, we calculate the
exceedance probability P(1H < z)= F̂1H (z).

It is important to note that MCI
Ŷ

and MCI1H are stochas-
tic – resulting from the estimation method. Therefore, each
value belonging to an arbitrary quantile pz may be expressed
in terms of the expected value E(F̂−1

1H (pz)) and variance
Var(F̂−1

1H (pz)). This uncertainty may be referred to as the
estimation uncertainty. A more detailed account of this can
be found in Berends et al. (2018).

To compare the uncertainty of interventions we calculate
the relative uncertainty, i.e. the uncertainty relative to the ex-
pected effect. For this, we use an adapted version of the co-
efficient of variation, defined as

Ur;90 =
MCI90,1H

E(1H)
, (5)

where MCI90,1H is the 90 % confidence interval for 1H
and E(1H) the average of 1H . We use Ur;90 instead of
the coefficient of variation (which is defined as the stan-
dard deviation on the expected value) to directly express the

www.nat-hazards-earth-syst-sci.net/19/1737/2019/ Nat. Hazards Earth Syst. Sci., 19, 1737–1753, 2019



1744 K. D. Berends et al.: Uncertainty quantification of flood mitigation predictions

Figure 5. (a) Confidence levels of design water levels, normalised by the average water levels at each location. The water flow is from left
(upstream) to right (downstream). The black line indicates km 893. (b) The histogram of the (not normalised) water levels at km 893.

size of the largest used confidence interval in percentages of
the expected effect. Therefore, a Ur;90 of 100 % means that
the 90 % MCI is as large as the average effect. Since both
MCI90,1H and E(1H) are stochastic, Ur;90 is stochastic as
well.

3 Results

3.1 Pre-intervention uncertainty

Figure 5 shows the uncertainty in the water levels along the
River Waal before any intervention has taken place, nor-
malised by the average water levels. The average confidence
intervals over the entire stretch range from 55.4 cm for the
90 % interval to 5.7 cm for the 10 % interval. However, the
intervals are not uniform along the river. At the downstream
boundary the intervals collapse to zero due to the fixed
boundary condition. Upstream from the boundary, there is a
noticeably smaller interval, approximately between km 885
and 925. This is attributed to the relatively wider floodplains
in this part of the river, which reduce flow through the main
channel (Warmink et al., 2013b). The right-hand panel of
Fig. 5 shows the histogram at km 893, which enables vi-
sual comparison with Fig. 6 in Warmink et al. (2013b), who
performed their analysis with the WAQUA modelling sys-
tem for the 1995 River Waal and slightly higher upstream
boundary discharge. They reported a 95 % confidence inter-
val of 68 cm (13.99 m+NAP to 14.66 m+NAP) at km 893.
Our results also show a 95 % confidence interval of 68 cm,
although at slightly higher water levels (14.05 m+NAP to
14.73 m+NAP). This provides confidence in the model re-
sults. However, we highlight two differences with respect to
the study of Warmink et al. (2013b). First, we did not include
the vegetation roughness model as a source of uncertainty,
but we added vegetation parameter uncertainty. This change
does not seem to have affected the output uncertainty of flood
levels significantly. Second, the increase in flood levels with
respect to the study of Warmink et al. (2013b) was not ex-
pected, given that between 1995 and 2015 a large-scale flood

mitigation programme (Room for the River) was carried out
aimed at reducing flood levels. However, given the different
modelling systems and assumptions, this comparison cannot
be used to judge the effectiveness of that programme.

3.2 Uncertainty of along-channel flood level decrease

The primary objective of the flood mitigation measures is to
lower flood levels during a given design discharge. In de-
terministic approaches, this effect is typically communicated
with an along-channel diagram showing the difference (i.e.
before and after the intervention) in flood levels (see, for ex-
ample, Fig. 3 in Klijn et al., 2018). Figure 6 shows a simi-
lar diagram, augmented with information on the uncertainty
of the prediction. The expected effect follows the general
trend as a deterministic approach. Starting from the down-
stream end of the intervention (around km 932), water levels
gradually decrease due to the local increase of conveyance
compared to the reference state. From km 912 upstream, wa-
ter levels gradually return to the reference equilibrium. The
gradual relaxation to equilibrium levels both over and up-
stream from the intervention, i.e. backwater curves, is ex-
plained through basic subcritical flow theory. We note that
the length of the backwater curves spans tens of kilometres,
resulting in a residual water level decrease of approximately
5 cm near the upstream boundary (km 868). In theory, this
could affect the distribution of discharge at the bifurcation
of the River Waal with the Pannerden Canal. This secondary
effect is not accounted for in this study.

The novelty of Fig. 6 results is mainly found in the un-
certainty, visualised through the confidence intervals. These
intervals follow the movement of the average, going down
when the average decreases and relaxing toward the refer-
ence equilibrium upstream from the location of maximum ef-
fect (xm). This shows that taking parameter uncertainty into
account does not fundamentally change established typical
effects of flood mitigation measures. However, the move-
ment with the average is not accompanied by parallelity: the
range of the intervals is not constant along the river. Instead,
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Figure 6. The expected lowering of flood levels for side channel construction (a, SIDECHAN) and floodplain smoothing (b, FLPSMOOTH),
with both high intensity and flow direction from left to right. The colours in this chart convey identical confidence levels as shown in Fig. 5.
The location of the maximum expected effect is indicated by the dashed line and annotation xm.

the range of the intervals scale with the expected effect: the
ranges are small for small effects and increase with increas-
ing effect. Consequently, uncertainty is largest at the max-
imum effect. Downstream from the intervention the confi-
dence bands tend to zero, since for a steady computation,
there is no difference between the pre- and post-intervention
models and no backwater effects. Upstream from the inter-
vention the confidence intervals reduce to zero along with
the backwater curve effect.

Next, we compute the relative uncertainty (Ur;90) for each
intervention and intensity. We first marginalise the uncer-
tainty in Ur;90 due to CORAL by calculating the expected
value (E(Ur;90)) for each point along the river (Fig. 7). Fig-
ure 7, as well as the relatively small standard deviations in
Table 2, show that values for E(Ur;90) are fairly constant
over the river length up to the location of the maximum flood
level decrease (xm) for all interventions. A notable excep-
tion is the peak at approximately km 885 for low-intensity
GROYNLOW. This is attributed to small inaccuracies in the
estimation of the expected effect. Since Ur;90 is a ratio, its
value is sensitive to small values of the denominator, which
is the expected effect; see Eq. (5). GROYNLOW has a very
minor effect (maximum of 1 cm at low intensity), so small
inaccuracies in estimation will greatly affect Ur;90. For this
same reason, we do not compute Ur;90 upstream from the
maximum effect, as the flood level decrease will rapidly re-
turn to and cross zero, which will lead to rapidly exploding
Ur;90 values. From the fact that we do not observe such peaks
much more often, we gain confidence that the chosen esti-
mation method is suitable for this type of analysis even for
very small-scale effects. In general, the constant values for
E(Ur;90) show that it is a useful parameter to characterise the
uncertainty of an intervention, as the increase in uncertainty
with the effect, observed in Fig. 6, is sufficiently summarised
by a single Ur;90 value.

It is interesting to note that in theory, the adaptation length
(i.e. the length scale of the backwater curve) is affected by
the equilibrium water level and can therefore result in con-
verging or diverging confidence intervals. Since E(Ur;90)

Table 2. Summarised results for each measure. H represents high
intensity, L low intensity, xm location given by Rhine kilometre
(km) where maximum effect occurs, E(1H)xm expected effect at
xm, E(MCI90)xm expected 90 % uncertainty at xm, ̂E(Ur;90) ex-
pected relative uncertainty along the river (average ± the standard
deviation). The rows are sorted from highest expected effect (top)
to lowest expected effect (bottom).

Intervention xm E(1H)xm E(MCI90)xm
̂E(Ur;90)

DIKERELOC H 916 −1.08 0.176 15± 2.2 %
L 924 −0.21 0.034 20± 2.3 %

FLPLOW H 914 −0.80 0.224 28± 1.7 %
L 916 −0.10 0.024 25± 2.3 %

SIDECHAN H 912 −0.36 0.076 20± 1.0 %
L 912 −0.02 0.007 30± 2.1 %

FLPSMOOTH H 912 −0.28 0.239 82± 1.9 %
L 912 −0.04 0.023 55± 1.6 %

GROYNLOW H 918 −0.04 0.012 26± 0.9 %
L 916 −0.01 0.004 42± 5.1 %

MINEMBLOW H 914 −0.03 0.014 54± 0.9 %
L 914 −0.03 0.013 53± 0.9 %

is relatively constant along the river, the adaptation lengths
(i.e. the length scale of backwater effects) are not signifi-
cantly affected by the intervention. Therefore, we see that all
uncertainty is generated over the length of the intervention
and subsequently diminishes upstream as water levels return
to their equilibrium. In other words, if the adaptation lengths
are known, the uncertainty upstream of xm can be readily es-
timated from the relative uncertainty at xm.

A comparison of all interventions (Table 2) shows that
small effects (E(1H)xm ) are accompanied by small uncer-
tainties (E(MCI90)xm ). This shows that even small changes to
rivers can be predicted, even when the absolute uncertainty
in water levels (see Fig. 5) is an order of magnitude larger
than the expected effect.
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Figure 7. The expected values for the relative uncertainty (Ur;90) along the river, from the upstream boundary at km 868 to the location of
maximum effect xm indicated by the marker, showing relatively constant values upstream from xm.

Figure 8. Probability densities of the relative uncertainty (Ur;90) at
the location of maximum effect (xm), for all interventions, show-
ing that FLPSMOOTH is significantly more uncertain than other in-
terventions. Most interventions show similar distributions for the
low-intensity (left, light-coloured) and high-intensity (right, dark-
coloured) variants.

3.3 Inter-comparison between interventions

A straightforward way to compare differences between the
effect of two or more interventions is to look at the backwater
figures. In Fig. 6 we see two diagrams of interventions that
result in flood level decrease within the same order of mag-
nitude but with very different uncertainty. The uncertainty of
FLPSMOOTH is much higher than that of SIDECHAN, as rep-
resented by the wider confidence intervals.

To systematically compare interventions we compute the
relative uncertainty Ur;90 at the location of the maximum ef-
fect for each intervention (Fig. 8). Since Ur;90 is stochastic,
we visualised the kernel density estimation of their probabil-
ity distributions. In general we observe that (i) FLPSMOOTH
and MINEMBLOW are more uncertain than the other four in-
terventions. This can be seen by their higher values for Ur;90,
especially for the high-intensity variants. We also observe
that overall, the low-intensity variants have similar distribu-
tions compared to their high-intensity variants, both in shape
and location. Even in the cases in which the high-intensity
variant distribution is clearly different from the low-intensity
variant (DIKERELOC, GROYNLOW and FLPSMOOTH), the

distributions still overlap. This shows that the intensity of
an intervention is not a deciding explaining factor for Ur;90,
even though it is evidently important in explaining the abso-
lute uncertainty (MCI90) and the expected effect. The latter
follows from the earlier observation that the absolute uncer-
tainty scales with the expected effect following a (constant)
relative uncertainty. For decision-making, it may be useful
to estimate how much uncertainty is expected for a given
expected effect. When considering different flood mitigation
measures, the choice may depend on the level of acceptable
uncertainty.

By linearly interpolating between the expected values of
the low and high intensities, we obtain a first approxima-
tion of the uncertainty for a given expected effect for each
intervention (Fig. 9). For example, consider that the objec-
tive of a planned flood mitigation measure is 25 cm. We see
from Fig. 9 that this can be accomplished by four different
interventions (FLPSMOOTH, FLPLOW, SIDECHAN and DIK-
ERELOC), within the bounds marked by the low and high in-
tensities. The confidence intervals differ markedly between
these choices. Under the assumption of linear interpolation
between the two intensities, the 90 % confidence intervals
for an expected decrease of 25 cm are estimated at 4 cm
(DIKERELOC), 5 cm (SIDECHAN), 7 cm (FLPLOW) and 21 cm
(FLPSMOOTH). These intervals may or may not be accept-
able.

Instead of looking at the expected effect, the confidence
intervals can be marginalised by designing for a given ex-
ceedance probability of the effect. The desired effect is re-
lated to the expected effect through the exceedance proba-
bility. To illustrate how the exceedance probability can be
used to guide intervention design, we linearly interpolated
between the low-intensity and high-intensity variants as a
function of the expected effect (Fig. 10). In this figure, the
estimation uncertainty is not taken into account. Given that
we only have two points (low and high intensity), a linear
transformation is the only model we can support. Although
we acknowledge that other models are possible, we included
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Figure 9. The expected effect (E(1H)) at xm against the 90 % confidence interval, linearly interpolated between the low and high intensities.
The relationship between the two is described by the relative uncertainty Ur;90, here shown as dashed grey lines. The error bars depict the
estimation uncertainty (90 % interval). Panel (b) displays a zoomed-in part of the graph in (a).

this as a first approximation because it illustrates information
available for decision makers.

The high-intensity variant of FLPSMOOTH has an expected
flood level decrease of 28 cm. However, the likelihood that
the decrease is smaller (or higher) than that number is only
approximately 50 %. This means that the expected effect of
28 cm is as likely as not to be met by the proposed inter-
vention. In contrast, the 90 % exceedance probability for the
high-intensity variant is 18.7 cm. This means that it is “very
likely” (following IPCC terminology; see Solomon et al.,
2007) that the flood level decrease is larger than 18.7 cm.

This approach can be applied to the earlier example of a
planned mitigation measure with a 25 cm flood level decrease
objective. In Fig. 10b, we see that at an exceedance probabil-
ity of 66 % (“likely”), all four possible interventions can be
implemented. However, to meet this likelihood all interven-
tions have to be “over-designed”, i.e. meet a larger expected
flood level decrease than the given objective. For example,
floodplain smoothing needs to be designed for an expected
effect of 28 cm for a 66 % likelihood of reaching the objec-
tive of 25 cm. The amount by which the measure needs to
be over-designed depends on the uncertainty of that measure
and the exceedance probability. Higher exceedance probabil-
ities such as a 95 % likelihood (“Extremely likely”) can also
preclude some flood mitigation measures (Fig. 10c). With
this level of confidence, FLPSMOOTH can no longer be con-
sidered: none of the computed examples reach an “extremely
likely” flood level decrease of 25 cm within the limits of the
considered interventions. In this case, there is a physical limit
to an even higher intensity FLPSMOOTH, since there is sim-
ply no more available land within the study area to turn into
meadow. Extrapolation beyond the given limits is therefore
not possible, although a higher effect could be obtained by
simply enlarging the study area. Within the given limits, the
three remaining interventions (DIKERELOC, SIDECHAN and

FLPLOW) can still be used. They would need to be designed
for an expected effect of−0.27,−0.28 and−0.29 m, respec-
tively. For perspective, it is worth pointing out that one of the
greatest interventions on the River Waal in the past decades,
the Nijmegen–Lent dike relocation project, has (determinis-
tically) predicted effect of −27 cm, at an estimated cost of
more than EUR 10 million per cm flood level decrease.

4 Discussion

Our results show that some interventions are inherently more
uncertain than other interventions. Given the complexity of
high-detailed modelling of floodplains, it is not straightfor-
ward to explain these differences. The statistical causes of
uncertainty are discussed in detail by Berends et al. (2018).
They observed that the removal of existing stochastic ele-
ments (e.g. a vegetation polygon) in exchange for new ones
greatly increased the unexplained variance (ε in Eq. 3) and
therefore increases effect uncertainty. We see that here as
well: FLPSMOOTH, which removes high-friction vegetation
in exchange for meadow, is by far the most uncertain inter-
vention. However, in this study we have argued that the rel-
ative uncertainty (Ur;90) is a more useful parameter than the
absolute uncertainty (MCI). In that context, a large absolute
uncertainty can be offset by a large expected flood level de-
crease. This is evidenced by both DIKERELOC and FLPLOW,
which both have a large absolute uncertainty at high intensity
but a relatively low relative uncertainty. A reduction in rela-
tive uncertainty could therefore be achieved by minimising
the amount of change to existing floodplains while optimis-
ing the expected flood level decrease. This general observa-
tion is likely applicable to other rivers and case studies.

A lack of computational resources is often named as the
main obstacle that motivates the use of deterministic ap-
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Figure 10. (a) The relationship between the expected effectE(1H)
and the exceedance level z for various exceedance probabilities.
(b) Inter-comparison of a 66 % exceedance probability for four in-
terventions. The dashed black line indicates a z of 25 cm, and the
coloured dashed lines indicate which expected levels belong to that
z, given the exceedance probability (see text). (c) Same as (b) but
for an exceedance probability of 99 %. Note that all lines show the
expected value of the exceedance level; the estimation uncertainty
is not depicted.

proaches over probabilistic approaches. The analysis per-
formed in this study is nonetheless feasible due to the CORAL
approach, which reduces the required computer resources by
reducing the number of model evaluations. An additional ad-
vantage of this method is that the uncertainty of the estima-
tion is known and can be explicitly incorporated in analyses.
In this study, we show that the relative uncertainty Ur;90 can
be estimated to a sufficient precision (Fig. 8) to draw con-
clusions, even with a relatively low number of model runs
(20 for each intervention). It is possible to decrease the esti-
mation uncertainty by increasing the number of model runs
with the post-intervention models (Berends et al., 2018), if
(computational) resources allow.

Our study focused on providing uncertainty estimations
for many different interventions, not on providing an optimal
intervention for the given case study. Following this approach

we made several simplifications that must be resolved if an
optimal intervention design is pursued. The linear interpola-
tion between low-intensity and high-intensity interventions
in Figs. 9 and 10 was used to obtain a first approximation
of the uncertainty for interventions at different intensities.
These figures are useful to illustrate how confidence levels
and differences in relative uncertainty between interventions
affect the expected effect but should not replace new calcula-
tions in intervention design – in part because our study pro-
vides only two support points, which is insufficient to either
support or oppose the assumption of linearity. Rather, they
may help to provide a starting point for a new set of calcula-
tions. Second, we marginalised the estimation uncertainty in
Fig. 10 by averaging, to show how model uncertainty impli-
cates intervention design. Practical use of exceedance levels
should include estimation uncertainty of those levels – which
can be reduced by increasing the number model evaluations
if necessary. Finally, the interventions studied in this paper
are single archetypes, while in reality designs would likely
be a combination of multiple archetypes (e.g. side channel
combined with lowering of the surrounding floodplain). Our
study does not provide support for claims regarding such
compound interventions, which would require further study.

Our approach is a form of forward uncertainty analysis:
the quantification of model output uncertainty based on un-
certainty in model assumptions without taking historical ev-
idence of the goal variable (i.e. water level measurements)
into account. We justify choosing this approach based on the
assumption that no historical information can be used to in-
fer or narrow the distributions of the uncertain parameters
because (a) such information does not exist for our study
case, and (b) measurements after the intervention will never
be available ex ante. The results of our analysis are there-
fore conditional on our assumptions about the validity of the
model, the selection of uncertainty sources and the proba-
bility distributions of these sources. We have taken care to
select the stochastic variables, and their distributions, based
on previous research specific to our study case. Forward un-
certainty analysis is contrasted (e.g. see Beven et al., 2018)
with so-called inverse methods, such as GLUE (Beven and
Binley, 2014), DREAM (Vrugt et al., 2008) or determinis-
tic calibration, that use historical evidence to potentially nar-
row the uncertainty bands of input variables. However, the
potential use of historical data to constrict uncertainty faces
complex challenges which will have to be met. Chief among
them are extrapolation to unmeasured conditions and dealing
with the large number of uncertain variables (here, 39) which
may not be uniquely identifiable (Werner et al., 2005). In any
case, like traditional deterministic approaches, the assump-
tions underlying probabilistic approaches should be readily
available, transparent and open to discussion.

Models can play a role in decision support under (deep)
uncertainty, and the uncertainty quantification is an impor-
tant step to model the future (Maier et al., 2016). How-
ever, too much focus on quantifiable uncertainty should be
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avoided. Warmink et al. (2017) documented several exam-
ples in which too much focus on quantifiable (also “statis-
tical” or “technical”) uncertainty resulted in knowledge cre-
ation that did not contribute to the policy process (“super-
fluous knowledge”). A key idea is that other uncertainties
exist that cannot be reduced by more data or simply can-
not be quantified. Examples of these include “social uncer-
tainty”: fundamental disagreement between experts, lack of
trust in scientific results, ambiguity and diverging narratives
based on the same empirical basis (Sarewitz, 2004; Brug-
nach et al., 2011; Warmink et al., 2017). Coping with such
uncertainties may require adaptive river management (Pahl-
Wostl, 2009) and exploration of multiple alternate futures
(see the third paradigm of Maier et al., 2016, and refer-
ences therein). Given these considerations, there are sev-
eral probabilistic frameworks of flood risk adaptation strate-
gies to which explicit quantification of model uncertainty
is a natural and required extension (e.g. Lendering et al.,
2018; Klijn et al., 2018). In this paper, we demonstrated
that model predictions of human intervention in rivers are
sensitive to uncertainty and can substantially influence de-
sign decisions. Therefore, we argue that trusting only in the
best available knowledge and, by extension, prediction by the
best-available models, is not sufficient for planning interven-
tions in river systems. Finally, our study was limited to the ef-
fect of interventions with respect to water level lowering. We
did not consider other indicators, such as economic, ecolog-
ical or societal costs and benefits, as was done by Straatsma
et al. (2019) (albeit without addressing uncertainty). Multi-
disciplinary and multi-sectoral assessment of interventions
including uncertainty is recommended to determine trade-
offs in river management. CORAL provides a computation-
ally effective method to do so.

5 Conclusions

In general, our study shows that explicitly quantifying the
uncertainty of predicted flood mitigation measures provides
decision makers and modellers with valuable information.
On the one hand, results show how taking uncertainty into
account can lead to different design choices. On the other
hand, even small effects on flood levels can be quantified
because small effects are accompanied by small uncertain-
ties. This shows that model uncertainty does not invalidate
model-supported decision-making in river management, but
it enriches it.

Our first objective was to quantify the effect of parameter
uncertainty on the predicted effectiveness of flood mitigation
measures. Based on previous studies, we quantified the pa-
rameter uncertainty for 39 variables and estimated the uncer-
tainty of model output. Results show that the absolute uncer-
tainty of the predicted effect of flood level decrease is highly
dependent on the type of intervention and location along the
river. However, we found that the confidence bounds of flood

level decrease along the river can be adequately described by
a single relative uncertainty metric, defined as the ratio be-
tween the 90 % confidence interval and the expected effect.
This ratio remains relatively constant along the river and be-
tween intensities of intervention types and enables us to make
some general observations. First, all uncertainty is “gener-
ated” when the intervention has modified the river system.
Upstream from there, the uncertainty gradually diminishes
upstream with a constant rate following typical backwater
curves. Second, a higher expected flood level decrease led to
a higher uncertainty, and a small flood level decrease was ac-
companied by a small uncertainty. The ranges of the expected
relative uncertainty varied between 15 % and 40 % for most
interventions, which means that the size of the 90 % confi-
dence bounds of those interventions is less than half of the
expected flood level decrease.

The second objective was to explore the relationship be-
tween the expected effect and its uncertainty, to aid in the
decision-making process. We observe that interventions of
different types may reach the same expected flood level de-
crease but have different uncertainty. Specifically, a large-
scale but relatively ineffective intervention such as flood-
plain smoothing (by removing high-friction vegetation) has
a high relative uncertainty compared to alternative interven-
tions. The intensity of an intervention (e.g. total area of veg-
etation smoothed) may be increased to reach a higher effect.
Our results show that higher intensity also leads to a higher
uncertainty, while the relative uncertainty remains approx-
imately constant. This relationship was then used to show
how explicit uncertainty quantification and differences in rel-
ative uncertainty between various interventions may affect
design choices, depending on the level of acceptable uncer-
tainty. For a fixed level of acceptable uncertainty (i.e. by a
given exceedance probability), we graphically demonstrated
that interventions need to be designed for a larger expected
flood level decrease than the given objective.

Code availability. In this article we used the following code and
software. For the hydraulic modelling we used Delft3D Flexible
Mesh (FM) version 1.1.261.52670. Delft3D FM is available from
https://oss.deltares.nl/web/delft3dfm (last access: 26 July 2019).
For the generation of the various flood mitigation measures we
used the Python tool RiverScape (for availability, see Straatsma and
Kleinhans, 2018). The uncertainty quantification method CORAL is
available from GitHub (https://github.com/kdberends/coral, last ac-
cess: 26 July 2019).
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Appendix A: Parameter distributions for vegetation
types

Table A1. Parameters of the floodplain roughness class distributions. Codes marked with an asterisk ∗ are not used in the Waal model. “n/a”
stands for “not applicable”.

Class code Name Parameters

Empirical distribution

612–637 Alluvial bed

Uniform distribution

n/a Classification map

Triangular distributions min mean max

102 Deep bed 0.025 0.03 0.033
104 Natural side channel 0.03 0.035 0.04
105 Side channel 0.025 0.03 0.033
106 Pond/harbour 0.025 0.03 0.033
111 Sand bank 0.025 0.03 0.033
121 Field 0.02 0.03 0.04

Log-normal distributions µhv σhv µnv σnv

1201 Production meadow −3.18 0.47 2.40 0.77
1202 Natural grass and hayland −0.74 0.53 −2.64 0.93
1203 Herbaceous meadow −1.64 0.32 2.59 0.33
1211∗ Thistle herb. veg. −1.29 0.33 1.05 0.43
1212 Dry herbaceous vegetation −0.59 0.39 −3.06 0.65
1213∗ Brambles −0.67 0.21 −0.73 0.36
1214∗ Hairy willowherb −1.89 0.56 −0.25 0.49
1215∗ Reed herb. veg. 0.60 0.22 −1.83 0.27
1221 Wet herb. veg. −1.08 0.38 −1.49 0.44
1222∗ Sedge −1.32 0.67 0.04 0.63
1223 Reed grass −0.92 0.86 −2.19 0.16
1224 Bulrush −0.81 0.67 0.04 0.63
1225∗ Reed mace 0.37 0.23 −1.12 0.57
1226 Reed 0.94 0.13 −1.14 0.42
1231 Softwood shrubs 1.81 0.24 −2.20 0.79
1232 Willow plantation 1.05 0.43 −3.23 0.62
1233 Thorny shrubs 1.48 0.64 −1.73 0.41
1241∗ Hardwood production forest Deterministic Deterministic −4.68 0.67
1242 Softwood production forest Deterministic Deterministic −4.72 0.66
1243∗ Pine forest Deterministic Deterministic −4.18 0.54
1244 Hardwood forest Deterministic Deterministic −3.45 0.77
1245 Softwood forest Deterministic Deterministic −3.04 0.99
1246 Orchard low 1.10 0.10 −3.72 0.25
1247 Orchard high 1.78 0.21 −4.61 0.12
1250 Pioneer vegetation −2.87 0.18 −1.93 0.50
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