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Abstract. In this study, we developed an enhanced approach
for large-scale flood damage and risk assessments that uses
characteristics of buildings and the built environment as
object-based information to represent exposure and vulner-
ability to flooding. Most current large-scale assessments use
an aggregated land-use category to represent the exposure,
treating all exposed elements the same. For large areas where
previously only coarse information existed such as in Africa,
more detailed exposure data are becoming available. For our
approach, a direct relation between the construction type and
building material of the exposed elements is used to develop
vulnerability curves. We further present a method to differ-
entiate flood risk in urban and rural areas based on charac-
teristics of the built environment. We applied the model to
Ethiopia and found that rural flood risk accounts for about
22 % of simulated damage; rural damage is generally ne-
glected in the typical land-use-based damage models, par-
ticularly at this scale. Our approach is particularly interest-
ing for studies in areas where there is a large variation in
construction types in the building stock, such as developing
countries.

1 Introduction

Globally, floods are one of the main natural hazards in terms
of socioeconomic impacts, causing billions of dollars of
damage each year. For example, between 1980 and 2013,
global flood damage exceeded USD 1 trillion and resulted

in ca. 220 000 fatalities (Dottori et al., 2016). Reducing dis-
aster risk, such as from flooding, is globally very high on
the political agenda. For example, it is an important aspect
of both the Sendai Framework for Disaster Risk Reduction
(UNISDR, 2015) and the Warsaw International Mechanism
for Loss and Damage Associated with Climate Change Im-
pacts (UNFCCC, 2013). To achieve this reduction in risk
at the global scale requires methods to quantitatively assess
global flood risk (Mechler et al., 2014). Here, flood risk is
defined as a function of three components: hazard (e.g. flood
extent and depth), exposure (assets and people exposed), and
vulnerability (factors that determine the susceptibility of the
exposed assets to the hazard) (UNISDR, 2015).

Global flood risk assessments are increasingly used in
decision-making and practice and have been useful for iden-
tifying flood risk hotspots (e.g. Ward et al., 2015). In an ideal
situation, such flood risk assessment models could use de-
tailed, high-resolution data for all locations around the globe
(Jonkman, 2013). In practice, data and resources required for
such models rarely exist, and therefore global flood risk mod-
els have been developed. Current global flood risk models
often use resolutions between 30′′× 30′′ and 0.5◦× 0.5◦ to
assess the exposed assets (e.g. Alfieri et al., 2013; Arnell
and Gosling, 2016; Ward et al., 2013). Recently, much ef-
fort has been put into improving global risk models, mainly
by improving the hazard component (e.g. Dottori et al., 2016;
Ikeuchi et al., 2017; Sampson et al., 2015; Trigg et al., 2016).
However, much less attention has been given to improve-
ments in the representation of exposure and vulnerability, de-
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spite the fact that their overall contribution to uncertainty is
large (de Moel and Aerts, 2010).

In large-scale assessments, i.e. regional to global levels,
exposure is generally represented based on aggregated land-
use categories, especially in regions where only limited data
are available, such as Africa (de Moel et al., 2015). Whilst
using such data provides a useful first assessment of large-
scale damage and risk (e.g. Feyen et al., 2011; Hall et al.,
2005; Ward et al., 2013), more detailed information of the ex-
posed objects could improve these assessments. Vulnerabil-
ity is mostly represented using stage-damage functions, also
known as vulnerability curves, which describe the relation-
ship between the potential damage of the exposed elements
for different levels of the hazard (usually water depth). These
functions can represent physical vulnerability, which we re-
fer to in this paper, but not social vulnerability (i.e. character-
istics that influence a person’s or group’s capability of deal-
ing with the impact of a natural hazard) or other vulnerabil-
ity dimensions (e.g. institutional, economic, environmental)
(Fuchs, 2009; Papathoma-Köhle et al., 2017). For large-scale
studies, a vulnerability curve is generally developed for each
of the aggregated land-use categories used to represent expo-
sure (Ward et al., 2013).

Whilst aggregated land-use categories may be a suitable
option to represent exposure if data are limited, they cannot
reflect the (spatial) heterogeneity within each land-use cat-
egory (Wünsch et al., 2009). For instance, large-scale flood
risk models usually focus on an urban category that aggre-
gates exposed elements of various types (e.g. houses, infras-
tructure, shops, green areas) into one land-use class (Ward
et al., 2015). Since an aggregated land-use category like ur-
ban is coupled to one urban vulnerability curve, these curves
generalize the relationship between flood depth and dam-
age across all of the diverse exposed element types within
that category. Without a more direct relation between these
types of exposed elements and the impact of flood waters,
large uncertainties exist in the simulated damage (de Moel
and Aerts, 2010). More detailed information on the specific
land use, its extent, and the vulnerability of the exposed el-
ements could improve large-scale assessments, for example
by using high-resolution remote sensing products (Goldblatt
et al., 2018; Myint et al., 2011) or information as used in
local-scale flood damage studies at an object level (individual
buildings, businesses, infrastructure objects, etc.) (de Moel et
al., 2015; Merz et al., 2010). In our approach, we therefore
utilize information about the composition of an area’s build-
ing stock and the characteristics of exposed objects, particu-
larly construction types and materials. Applying such object-
based information, which is not to be confused with object-
based image analysis in remote sensing, is contrasting to the
common land-use-based approach in large-scale flood risk
assessments.

The literature distinguishes flood vulnerability of build-
ings according to different structural factors (such as build-
ing type, quality, height, and material), as well as occupancy
type (such as residential, commercial, and industrial). The
latter is a commonly used factor for determining vulnerabil-
ity (de Ruiter et al., 2017), with much fewer studies relat-
ing potential losses to the structural factors. Reasons for this
are the paucity of information and the huge effort it takes
to obtain information on the damage incurred by individ-
ual objects and the structural components (Wahab and Tiong,
2016). Studies or models that do include information on these
factors are mostly based on surveys and have therefore only
been feasible on smaller scales. FLEMOps (Thieken et al.,
2008) is an example of a model that uses survey data on flood
damage in Germany and includes factors such as building
type and quality. The study by de Villiers et al. (2007) is one
of the few assessments (see also World Bank, 2000) within
Africa but uses size and content value of houses to determine
flood damage and does not go into detail on structural fea-
tures. Studies that focus on construction type and building
material to assess the flood damage show that these charac-
teristics, together with ground floor elevation and number of
floors, are important features in determining the vulnerability
of different building types to floods (e.g. Godfrey et al., 2015;
Neubert et al., 2008; Schwarz and Maiwald, 2008; Zhai et
al., 2005). Furthermore, building characteristics are essential
components of physical vulnerability and risk assessment in
the earthquake domain (de Ruiter et al., 2017), as well as
for other flood types such as flash floods in mountain areas
and debris flows. For such studies on the local scale, aspects
can even include for example features of the building enve-
lope such as layout of openings and wall dimensions, flow
direction, sediment load, and surrounding buildings; these el-
ements are sometimes evaluated via laboratory experiments
and on-site data collection (e.g. Godfrey et al., 2015; Mi-
lanesi et al., 2018; Sturm et al., 2018). There is a gap in ap-
plying such indicators in large-scale flood risk assessments,
which could be improved by using object-based character-
istics to represent exposure and vulnerability, particularly in
developing countries with a diverse structural building stock.

Recently, a building exposure dataset has been developed
for several African countries as part of the Building Disaster
Resilience programme for the World Bank’s Africa Disas-
ter Risk Financing Initiative by ImageCat (ImageCat et al.,
2017). ImageCat uses a stratified sampling technique that in-
fers the number of buildings in a region from census data
and then uses image processing tools to identify development
patterns (Hu et al., 2014). The construction practices are then
characterized through a review of the literature, interviews,
review of very high resolution (VHR) images, in situ video,
and in some cases site visits (Silva et al., 2018). This char-
acterization of development patterns is used for dasymetric
mapping of building counts to a 15′′ grid. Estimates are sup-
plemented with total estimates of floor area and replacement
values based on construction practices observed in each de-
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Figure 1. Flowchart for large-scale flood risk assessment using object-based data with a building-material-based vulnerability approach.

velopment pattern (Huyck and Eguchi, 2017). Compared to
the methods employed in current large-scale flood risk mod-
els, the information about the built environment of an area
and its characteristics as provided in such datasets enables a
differentiation between the exposed objects in terms of vul-
nerability to flood waters and exposed value.

Furthermore, a greater level of detail opens up the pos-
sibility to address the issue of distinguishing urban and ru-
ral flood risk. This is commonly neglected in land-use-based
flood risk assessment, due to the focus on higher-value ur-
ban damage. Moreover, land-use classification studies have
difficulties in assessing urban and rural differences. This is
because the resolution in previous land-use and land-cover
products was not sufficient to identify smaller settlements,
and the characteristics of urban and rural areas are very dif-
ferent and can be difficult to grasp in land-use classification
studies (Dijkstra and Poelman, 2014). Internationally there
is no agreed way to distinguish urban from rural areas. For
example, according to the national census of Ethiopia, lo-
calities of 2000 or more inhabitants are considered urban,
whereas the urban definition for Niger only includes capitals
of departments and districts (UNSD, 2016). Another tradi-
tional distinction is that urban areas provide a different way
of life and usually a higher living standard (UNSD, 2017).
Compared to developed countries, the building stock in ru-
ral areas of developing countries is often constructed from
more traditional and less expensive building materials, which
makes them more vulnerable to flooding. In this regard, ur-
ban settlements in the context of this study are defined as
geographic units with built-up areas that are more developed
and have a higher built-up density than rural settlements.

The aim of this paper is (i) to develop an approach for
assessing large-scale river flood risk in urban and rural areas
using object-based data from ImageCat to represent exposure
and (ii) to develop vulnerability curves for different build-
ing classes. The approach draws upon common practices in
earthquake risk assessments and relates damage by flood wa-
ters more directly to the vulnerability of buildings based on
the building materials. We test the suitability of this approach
for the case of Ethiopia, comparing our results with those
using a more traditional large-scale flood risk modelling ap-
proach, examining how the increased detail influences risk
estimates. In addition to river floods, Ethiopia has experi-
enced flash flood events in the past, such as in 2006 with
several casualties and millions in property damage in Dire
Dawa (Billi et al., 2015). However, these kinds of floods are
not included in this analysis.

2 Data and methods

The approach used in this study is composed of the following
main four steps and shown in Fig. 1:

1. development of vulnerability classes and curves for dif-
ferent construction types and building materials based
on a literature review of previous studies,

2. classification of an object-based exposure dataset using
input data from ImageCat,

3. derivation of maximum damage values, and

4. risk assessment by combining the aforementioned vul-
nerability and exposure with hazard data.
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Each of these steps is described in more detail in the follow-
ing subsections.

2.1 Vulnerability classes and curves

As a first step (Fig. 1), an extensive literature review was con-
ducted to develop flood vulnerability classes and associated
curves based on construction types and building materials
(Table 1). An increasing number of studies investigate multi-
parameter damage models (e.g. Chinh et al., 2016; Wagenaar
et al., 2018), but, given the large amount of data required to
apply such models, we here only consider studies on river
floods that apply stage-damage curves. For the class and
curve development, we use studies from different regions that
have focused on the vulnerability of individual construction
types or building materials and which are preferably based on
actual event data. Some additional studies, often more quali-
tative in nature, were used to further refine the flood vulner-
ability classifications of the different building materials and
construction types (e.g. Kappes et al., 2012; Laudan et al.,
2017; Neubert et al., 2008; Zhai et al., 2005). Apart from re-
viewing the literature, experts with a structural engineering
background were consulted to confirm the coherence of the
final classification and vulnerability curves.

Table 1 summarizes the studies used to derive construc-
tion type and building-material-based vulnerability classes
and curves. In all of these studies, the construction type or
(dominant) building material is clearly specified, and it is ei-
ther the only indicator or one of the primary indicators for
the description of the flood vulnerability. Four vulnerabil-
ity classes can be identified from this literature, of which
each class consists of similar construction types and build-
ing materials with comparable behaviour towards flooding.
The four classes are (I) non-engineered buildings built with
materials such as compacted mud and adobe block or infor-
mal buildings; (II) wooden buildings; (III) unreinforced ma-
sonry/concrete buildings with walls of burnt bricks or stone
or concrete blocks; and (IV) reinforced masonry/concrete
and steel buildings.

From the literature described in Table 1, we identified in-
formation to develop the stage-damage curve for each of
these vulnerability classes. The stage-damage curves in most
of the studies are concave, increasing steeply at low water
depths (especially for the buildings made with more vulnera-
ble materials), and with a decreasing slope at higher water
depths. This overall concave shape was differentiated into
curves for each of the four vulnerability classes, shown in
Fig. 2, using information on threshold levels (e.g. the water
depth at which most damage was incurred) from the stud-
ies in Table 1. We distinguish curves that go up to 2.5 m and
up to 5 m (for buildings with one and two floors), as flood
levels rarely reach higher levels. Housing built through in-
formal channels dominates in Africa (World Bank, 2015),
and self-constructed buildings using inexpensive materials
and traditional manufacturing techniques are still very com-

mon (Alagbe and Opoko, 2013; Collier and Venables, 2015).
Buildings of class I and II belong to this group and are
assumed to be one floor only, as multiple-storey buildings
would require higher quality materials and hiring a profes-
sional construction crew. The four vulnerability classes are
described below:

– Class I consists of non-engineered buildings built with
materials such as compacted mud, (non-cemented)
adobe blocks, and other traditional materials found in
the natural environment or informal buildings (often us-
ing natural or scrap materials for the walls and roof
covers). Buildings in this class can disintegrate and col-
lapse easily when impacted by flood waters and thus are
the most vulnerable to flooding. Literature shows that
mud walls can collapse when flooded by about a metre
of water (Maiti, 2007), and submersion tests illustrate
that most adobe bricks completely dissolve when sub-
merged for 24 h (Chen, 2009). Depending on the mate-
rial mixture and mortar, the stability of these buildings
can be increased, for example by adding cement. How-
ever, with the high level of the cement prices in Africa
(Schmidt et al., 2012) this is rather a consideration for
class I buildings in other regions. Buildings of class I
are assumed to be one floor only.

– Class II consists of wooden buildings. Theoretically,
these are far less vulnerable to collapsing than class I,
when held together by joinery or nailing and straps into
a structural frame and have durable wall and roof cover
materials, but if wood frames become wet, they often
have to be replaced, or finishing needs to be removed for
drying (and replaced afterwards). In a study carried out
in Germany, Buck (2007) showed that the damage can
be ∼ 35 %–50 % higher for wood frame homes than for
masonry/concrete homes. However, the value and qual-
ity of the wooden buildings in Ethiopia is much lower
and they seem to be predominantly present in rural ar-
eas with more informal, less durable building material.
Therefore, we decided to let the curve progress up to
damage factor 1 (total loss due to destruction or need
for demolition) at a flood depth of 2.5 m (i.e. damage
can reach full building value, unlike masonry and con-
crete constructions). Buildings that are based on wood
construction types can account for a large proportion
of overall building stock in some countries (e.g. USA,
Japan, and Ethiopia). The quality of these construc-
tions and the building’s value can vary considerably. For
large-scale assessments outside of Africa, adjustment
towards a greater flood resistance is recommended.

– Class III consists of unreinforced masonry/concrete
buildings with walls of burnt bricks or stone or concrete
blocks. These buildings are more vulnerable than those
in class IV (reinforced masonry/concrete or steel). This
is related to the fact that unreinforced walls are less able
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to resist the pressure of flood water exerted on walls.
However, damage potential is assumed to be less than
class II, as bricks, stone, and concrete blocks are more
durable and less likely to disintegrate or need replace-
ment after being flooded compared to wood. Nonethe-
less, as described in Li et al. (2016), brick masonry
buildings are less resilient than steel-reinforced struc-
tures. Therefore, a curve between class II and class IV
was created for both one- and two-storey buildings of
this class.

– Class IV represents engineered reinforced ma-
sonry/concrete and steel buildings. These types of
buildings are engineered and basically standard in most
western countries and large cities in Africa. Overall,
they constitute the most resistant class to flooding.
Many studies (e.g. Buck, 2007; Li et al., 2016; Maiti,
2007) show that vulnerability curves for these types of
buildings do not go up to a damage factor of 1, as some
elements do not need replacement after a flood (e.g. the
foundation or the structural walls or the frames). This
is similar to the values from Dutta et al. (2003) and
HAZUS-MH (Scawthorn et al., 2006), who show
examples of curves that go up to 0.6–0.7 damage ratio.
Therefore, in this study it is chosen to let this curve
go up to 0.65. Both reinforced masonry and reinforced
concrete and steel are put in the same class.

2.2 Object-based exposure data

In step 2 (Fig. 1), we reclassify the objects identified in the
ImageCat database into the four vulnerability classes and dis-
tinguish between urban and rural areas. The exposure data
developed by ImageCat are available on a 15′′× 15′′ grid for
several African countries. Each grid cell contains building
counts for different construction types, as well as the total
floor area and total building value of the cell’s building stock.
For the building numbers the Ethiopian census data on hous-
ing units were used directly in most regions as the building
stock is mostly single-family housing. The living area was
gleaned from sampling building footprint data and as with
structural characteristics varies by development pattern. For
a predominantly commercial pattern, building stock data are
adjusted with exposure derived from building footprint data.
The number of floors can vary by development pattern, but
for the vast number of buildings it is single storey for most
of the country. For highly urbanized areas the number of sto-
ries was adjusted through expert opinion of several country-
based structural engineers (Huyck and Eguchi, 2017). In to-
tal, 22 construction types are differentiated in the ImageCat
data. Table 2 shows how these can be reclassified into the
four vulnerability classes used in our study. Further descrip-
tion of the construction types can be found in Sect. S1 in the
Supplement. In the Ethiopian data nine of the types from Ta-
ble 2 occur.
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Figure 2. Stage-damage curves for four building-material-based vulnerability classes. For class III and IV the one- and two-floor curve are
denoted by (a) and (b).

Table 2. Construction types of the ImageCat building exposure data with their respective flood vulnerability class.

Type Description Vuln. Type Description Vuln.
class class

ADB URM adobe building I DS Stone masonry building III
ERTH Earthen building I STN URM stone building III
INF Informal building I UCB Unreinforced concrete block building III
M Mud wall building I UFB Unreinforced fired brick masonry building III
RE Rammed earth building I BTLR Steel frame with bracing rods (Butler) building IV
WWD Wattle and daub building I C2 Reinforced concrete shear wall building IV
W2 Wood frame building II C3 Non-ductile RC frame with masonry infill walls building IV
WLI Light wood building II MCF Confined masonry building IV
WS Solid wood building II RC Reinforced concrete frame with URM infill building IV
BRK URM brick building III RM Reinforced masonry brick building IV
CB URM concrete block building III S Steel building IV

Most large-scale flood assessments focus on urban areas
due to the availability of data and high potential damage.
In countries with large differences between urban and rural
living standards, such as developing countries, it can be ex-
pected that the share of more vulnerable buildings (i.e. class I
and II) is higher in rural areas compared to urban areas
(e.g. Fiadzo, 2004). To account for these differences, we clas-
sify each cell as urban or rural. If more than 50 % of the Im-
ageCat objects in a cell belong to vulnerability class I or II,
the area is assumed to be predominantly rural.

To check the assumption that the share of class I and II
buildings in developing countries is higher in rural areas
compared to urban areas, we examined these shares in the
PAGER dataset (Jaiswal and Wald, 2008; Jaiswal et al.,
2010). PAGER is a global residential and non-residential
building inventory at the country level (usually but not exclu-
sively expressed in proportions of people living or working in
particular building structure typologies in urban and rural ar-
eas respectively), which is often used in earthquake research.
PAGER provides information at a country level on the con-
struction types that make up the total urban and rural building

stock, though the information quality varies between coun-
tries. First, we reclassified the PAGER construction types
into the four flood vulnerability classes used in our study (see
Table S1 in the Supplement). Then, we calculated the per-
centage of buildings in PAGER’s total urban and rural build-
ing stocks that are categorized as class I and II (Fig. 3). The
building stock differences between urban and rural areas can
be found to a changing degree in all groups. While there is a
distinct gap suggested for Africa, PAGER has to rely there on
very limited information (i.e. only two of the countries differ-
entiate between urban and rural building stock without judg-
ing information from neighbouring countries). Nevertheless,
the data for urban and rural building stock distribution com-
pared by income level also indicate these differences in the
built environment. In low- and lower-middle-income coun-
tries, the percentage of buildings in class I and II is indeed
much higher in rural areas (36 %) than in urban areas (10 %).
These differences are far less pronounced for higher-income
countries. The chosen threshold to identify rural areas in the
ImageCat dataset (> 50 %) is larger than the average share
we find in PAGER (Fig. 3). This means that cells identified
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as rural using the ImageCat data information about the built
environment with the chosen threshold are quite likely to in-
deed be rural.

In remote sensing or land-use studies, accuracy assess-
ments determine a process’ accomplishment of classifying
an image (e.g. satellite data, aerial photos). Such an assess-
ment requires reference values that represent the ground truth
of the region of interest. Preferably these values are from
ground-collected data or hand-labelled high-resolution im-
agery validated by multiple interpreters (e.g. Goldblatt et al.,
2018; Miyazaki et al., 2011). With these options out of the
scope of this study, we examine the similarity between ex-
isting land-use products and classified areas in our approach.
Compared to a strict accuracy assessment this holds the lim-
itation of comparing already classified products. However,
by benchmarking the classified ImageCat data against estab-
lished and recently published products, we provide an assess-
ment of how well areas are identified in comparison. To this
end, we reviewed the quality of the urban–rural ImageCat
map by visual comparison with satellite imagery and by over-
lap with other classification products, visually and by quan-
tifying the agreement between classified areas of the Image-
Cat data and other products (Sect. 3.1). Two comparisons are
made, one for urban and rural areas and one only for urban
areas. Similar to an accuracy assessment, we express the per-
formance of this overlap by calculating common comparison
metrics from a confusion matrix such as overall accuracy,
the kappa coefficient, and producer’s and user’s accuracy for
the sampling cells as described in Fig. S1 in the Supplement.
Overall accuracy and the kappa coefficient are metrics indi-
cating the general agreement between the reference and com-
parison dataset. The latter two refer to the accuracy of indi-
vidual classes of which the producer’s accuracy describes the
probability that, for example, an urban pixel is correctly clas-
sified and the user’s accuracy that a pixel classified as urban
is actually urban.

For Ethiopia, the comparison maps are from several global
land-use datasets as there are no other maps on a national
scale available for the country. For the reference map, the Im-
ageCat data are assigned the reference categories urban, ru-
ral, and other land use for cells outside of settlements. From
the comparison maps, GHS-SMOD is the only other product
that also considers rural settlements, allowing for a compar-
ison of both urban and rural classifications. GHS-SMOD is
a relatively new product based on the high-resolution Euro-
pean Joint Research Centre (JRC)’s Global Human Settle-
ment Layer (Pesaresi and Freire, 2016). For GHS-SMOD,
built-up areas are combined with population grids to differ-
entiate between three settlement classes: urban centres, ur-
ban clusters, and rural (Pesaresi and Freire, 2016). In order
to compare to the ImageCat reference, the GHS-SMOD’s ur-
ban centre and cluster cells were reassigned into a single ur-
ban class and rural cells were kept as is.

More products are available that provide a classifica-
tion limited to urban areas but largely overlook rural areas,

such as GRUMP (CIESIN, 2011), MOD500 (Schneider et
al., 2009), the Global Urban Footprint (GUF) (Esch et al.,
2017), and HBASE (Global Human Built-up And Settle-
ment Extent) (Wang et al., 2017). GRUMP and MOD500 are
widely used land-cover/land-use datasets, with GRUMP be-
ing a 30′′× 30′′ grid of urban extent and MOD500 based on
MODIS satellite data with a 500 m× 500 m resolution. GUF
represents built-up areas based on satellite imagery with a
12 m× 12 m spatial resolution. HBASE is a 30 m× 30 m
Landsat-derived dataset of the extent of built-up area and
settlements. All these products are used in the second com-
parison, in which only the ImageCat settlements classified
as urban remain in the reference map and all cells outside
of these settlements are reassigned to other land use. From
GHS-SMOD, the urban centre and cluster cells are again
combined, but rural GHS-SMOD areas are excluded in this
assessment.

Both the urban–rural and the sole urban classification com-
parisons between the ImageCat data and the other products
follow a class-defined stratified random sampling scheme,
meaning that per class 10 000 sample points were randomly
placed over the cells in each reference class. As the original
maps do not all share a common geospatial model, they were
reprojected to a 15′′× 15′′ raster, using the WGS-84 datum.
The results of the assessments are discussed in Sect. 3.1.

2.3 Maximum damage values

In step 3 (Fig. 1), we determine the maximum damage of
buildings in each vulnerability class. For a coherent set of
input values, we use depreciated country-specific structural
maximum damage estimates per square metre as provided
by the JRC report of Huizinga et al. (2017), in which resi-
dential construction costs are estimated per country using a
non-linear relationship between construction costs and GDP
per capita. This maximum damage value needs to be further
differentiated between the four different vulnerability classes
used in our study and then multiplied by an estimate of the
building footprint area per cell. This is achieved by applying
the following formula for each cell:

Di =

k∑
1

S ·Nk,i ·Ak,i ·Fk, (1)

where Di is total structural maximum damage in a given
cell (i); S is structural maximum damage per square metre
in Ethiopia; N is the number of buildings belonging to vul-
nerability class k and cell i; A is the object area, meaning the
building footprint for each vulnerability class k and cell i;
and F is the maximum damage adjustment factor for vulner-
ability class k.

The factors A and F are derived as follows.

– Building footprint area (A). As data on the footprint
of different building types are not directly available,
we estimated these based on floor area and number
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Figure 3. Average percentage of urban and rural buildings belonging to vulnerability classes I and II for different income groups and Africa
according to PAGER for countries with different urban–rural inventory.

of floors derived from the ImageCat data. ImageCat
provides estimates of floor areas for each construc-
tion type, based on sampling of building footprints,
OpenStreetMap data, interviews with local contractors
and experts, and literature review (Huyck and Eguchi,
2017). The country data descriptions also provide infor-
mation on the typical number of floors, based on sam-
pling. For each construction type, we divided the aver-
age floor area from the ImageCat data with the number
of floors and calculated the footprint area per class (A)
as the average from the construction types belonging to
each class.

Our assumptions on the number of floors are derived
from information in the ImageCat country data descrip-
tions. Since buildings of construction types belonging to
vulnerability class I or II rarely exceed one floor, we as-
sumed they have one floor in both urban and rural areas.
The construction of class III and IV buildings with more
than one floor requires a higher skill level, mainly found
in professional construction workers available in urban
areas. Considering these characteristics, most class III
buildings can be assumed to have one floor in rural ar-
eas. However, as most buildings in urban areas have
more than one floor, we assumed class III buildings in
urban areas have two floors. Class IV buildings are as-
sumed to have multiple floors in all areas. The build-
ings of class III and IV with multiple floors have a
much greater footprint than the one assigned to the other
classes. While buildings with smaller footprints are pri-
marily single-family residential structures or within in-
formal settlements, the buildings of the last two classes
are mainly found in urban environments, with many of
them being long apartment blocks with very large build-
ing footprints leading to a larger average footprint. The
resulting building footprints for Ethiopia can be seen in
Table 3.

– Maximum damage adjustment factor (F ). The maxi-
mum damage values of Huizinga et al. (2017) are depre-
ciated country-specific structural maximum damage es-

timates, averaged across various building types. There-
fore, we differentiated these into maximum damage val-
ues for the four different vulnerability classes used in
our study. Huyck and Eguchi (2017) provides estimates
of replacement costs for different structures, based on
factors such as construction material and whether the
structure is owner-built or engineered using profes-
sional contractors. We used these to calculate the aver-
age replacement costs for each of the four vulnerability
classes, for example the average for vulnerability class I
in Ethiopia is about USD 95 per square metre. In order
to apply comparable maximum damage values based on
a coherent dataset, these average costs per vulnerabil-
ity class are then compared to the country-specific val-
ues from Huizinga et al. (2017), resulting in adjustment
factors (F ) for each vulnerability class (see Table 4) to
arrive at maximum damage estimates.

A detailed example of the maximum damage value
can be found in Fig. S2. The overall Ethiopian build-
ing stock is according to the ImageCat data com-
prised of over 16.8 million buildings. With the de-
scribed approach, the total value exposed in urban areas
amounts to about USD 250 billion compared to almost
USD 30 billion in rural areas. Similarly, there is also a
large gap between the living standard in rural and urban
areas. The last Ethiopian census in 2007 (CSA, 2010)
and the 2016 DHS (Demographic and Health Survey)
report (CSA and ICF, 2016) provide some indications
for rural and urban households that show huge differ-
ences in household durables and quality; for example
more than half of the rural household with livestock
share at night the room with the animals, or high-quality
floors in two-thirds of urban households compared to
only 4 % of floors in rural households. The contrasts
shown there in housing characteristics such as sanita-
tion, drinking water, and flooring material illustrate that
there are large differences in living conditions which
indicate similar differences in exposed urban and rural
value.
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Table 3. Building footprints derived for Ethiopia from the ImageCat
data.

Vulnerability class Building
footprint

(m2)

I 37
II 43
III – one floor 46
III – two floors 256
IV 467

Table 4. Construction cost based on Huizinga et al. (2017) and ad-
justment factors derived from the ImageCat data for Ethiopia.

Ethiopia
construction USD 671 per m2

costs

Vulnerability Adjustment
class factor

I 0.14
II 0.11
III – one floor 0.18
III – two floors 0.33
IV 0.48

2.4 Damage and risk assessment

To calculate the damage, we combine the new exposure
and vulnerability data described above, with existing haz-
ard maps derived from the GLOFRIS global flood risk model
(WRI, 2018). These maps show inundation extent and depth
at a horizontal resolution of 30′′× 30′′ for different return
periods for which per cell a Gumbel distribution was fitted
to a time series of annual maximum flood volume extracted
from simulated daily flood volumes (Ward et al., 2013). De-
tails of the original model setup of GLOFRIS are described
in Ward et al. (2013) and Winsemius et al. (2013). The maps
used in this study are those developed for the current time
period in Winsemius et al. (2015), which have been further
benchmarked against observations and high-resolution local
models in Ward et al. (2017). In doing so, we estimate dam-
age for the return periods 2, 5, 10, 25, 50, 100, 250, 500 and
1000 years. The inundation associated with each return pe-
riod is assumed to occur everywhere simultaneously. There-
fore the inundation maps are not presenting single events but
country-wide probabilistic maps for the return periods. We
expressed flood risk using the commonly used metric of ex-
pected annual damage (EAD). This is estimated as the in-
tegral of the flood damage curve over all exceedance prob-
abilities (e.g. Ward et al., 2013). A source of uncertainty
in flood risk assessment is the level of incorporated flood
protection. Here, we use the modelled protection standard

Table 5. Cell areal extent of different land-use categories in
Ethiopia as a percentage of the country area according to different
products (original dataset projections).

Dataset Percent of country

ImageCat urban 0.6 %, rural 7.2 %
GHS-SMOD urban centre 0.4 %, urban clusters 1.1 %, rural 6.4 %
GRUMP urban extent 0.5 %
MOD500 urban extent 0.1 %
GUF built-up area 0.1 %
HBASE built-up area and settlements 0.1 %

for Ethiopia taken from the FLOPROS database, a global
database of flood protection standards developed by Scus-
solini et al. (2016), namely 2 years.

3 Results and discussion

The third chapter is organized as follows: Sect. 3.1 discusses
the urban–rural exposure in the comparison between the Im-
ageCat data and other products. In Sect. 3.2, we present the
results of the Ethiopian flood risk assessment using our ap-
proach and compare them in Sect. 3.3 to the results of a tra-
ditional model. In Sect. 3.4, the sensitivity of our flood risk
results is discussed for different model parameters.

3.1 Urban–rural identification

The results of our classification of ImageCat cells for
Ethiopia into urban or rural are shown in Table 5, along with
summaries of data from other data sources. For rural areas,
our result (7.2 %) is similar to that of GHS-SMOD (6.4 %),
which is the only other data source among the products that
has a specific value for rural areas. The area in Ethiopia cat-
egorized as urban or built-up is relatively low in all data
sources and is in accordance with Ethiopia being one of the
least urbanized countries in Sub-Saharan Africa, with the
share of urban population being according to Schmidt and
Kedir (2009) only between 11 % and 16 %, or according to
more recent data from the World Bank (2016) at about 20 %.

3.1.1 Visual comparison

Our urban–rural classification is shown spatially in the exam-
ple of Fig. 4, in which we compare different land-use prod-
ucts for an area near the city of Awasa. The urban and rural
areas identified in GHS-SMOD and our classified ImageCat
data show a more detailed and differentiated representation
of the settlements than the coarse-resolution GRUMP and
MOD500 products. All products overlap in the location of
main urban areas, although their extent varies. Locations of
built-up areas with medium extent, for example in GUF, are
hardly or not detected in HBASE, MOD500, and GRUMP,
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but they are also seen with GHS-SMOD and our ImageCat
classification.

Using our classification method, some smaller settlements
are labelled urban with the ImageCat data, because their
building stocks have high shares of class III and IV build-
ings, whilst GHS-SMOD classifies them as urban clusters or
rural. Examples are the areas around Shashemene (see cir-
cled examples in Fig. 4a). By visual inspection of Google
Earth, these seem to be areas of urban–rural transition. They
have a more densely built environment than rural areas and
a higher number of class III and IV buildings, which leads
to the urban classification in our method. Areas where cells
from the ImageCat data get classified as rural are also rural in
GHS-SMOD or to some extent urban clusters due to a higher
population density in the surrounding cells. However, the
overlap of these settlements is more about the general area
and less regarding a cell-by-cell comparison. In addition, vi-
sual inspection showed that the small, more widespread set-
tlements such as east of Awasa and Shashemene are correctly
detected in the ImageCat data (rural areas in Fig. 4a) but are
not displayed in GHS-SMOD (Fig. 4b). As a consequence of
these issues, it is expected that the classified ImageCat data
and GHS-SMOD overlap is lower for rural than urban settle-
ments.

3.1.2 Map agreement analyses

Map agreement has been assessed for urban–other classes
and urban–rural–other classes using confusion matrices (see
Tables S2 and S3). When comparing the urban areas (Ta-
ble S4), we see that urban and built-up-area cells in the
GRUMP, MOD500, GUF, and HBASE almost always corre-
spond with urban cells in the ImageCat map (urban user’s ac-
curacy ∼ 99 %–100 %). This confirms the observations from
the visual comparison (Fig. 4) where we see that the gen-
eral location of the main urban areas are similar between the
datasets. However, with the ImageCat data more medium-
sized urban areas are detected, which are often not in the
other datasets, resulting in the low producer’s accuracy (∼
6 %–26 %), again confirming the visual comparison of the
Awasa region.

When including rural settlements in the assessment, only
GHS-SMOD and the ImageCat classification can be com-
pared (Table 6), as they are the only datasets which distin-
guish rural areas. This comparison is complicated by the
fact that GHS-SMOD has three categories (urban centres,
urban clusters, and rural). Visual comparison with satellite
imagery reveals that the middle class of urban clusters are
sometimes an extension of urban centres, but this can also re-
fer to higher-density settlements areas in rural areas. Never-
theless, for the map agreement analysis of urban–rural–other
classes, we grouped these urban clusters with the urban cen-
tres to form the urban class. We find that urban cells in the
GHS-SMOD have a high probability to also be urban areas in
the ImageCat map (urban user’s accuracy of 86.3 %). How-

ever, urban cells from the ImageCat data have a much lower
probability to be urban in GHS-SMOD (urban producer’s ac-
curacy of 48.7 %). This implies that there are various urban
settlements in the ImageCat map, which are not present in
the urban group (centres and clusters) of the GHS-SMOD.

The agreement of rural cells is not as good compared to the
urban cells, with considerably lower user’s and producer’s
accuracies (31.3 % and 11.0 % respectively). Classifications
of the built-up land from remote-sensing-based products in-
herently have lower accuracy levels in less developed regions
and rural settings. Even high-resolution products still omit
large shares of built-up areas and have to improve their per-
formance in arid regions of Africa and areas where settle-
ments are more scattered (Klotz et al., 2016; Leyk et al.,
2018). We can also observe this in the visual comparison
(Fig. 4) where the high-resolution GUF and HBASE datasets
omit many of the scattered settlements that are found in the
ImageCat data or GHS-SMOD. Because of these difficul-
ties in detecting such scattered settlements, the agreement
between rural areas from the ImageCat classification and in
GHS-SMOD is adversely affected as one dataset might indi-
cate rural areas that are not identified in the other.

Comparability of classified maps remains an issue. For
example, it has been illustrated in the literature that the to-
tal urban land in global maps varies by an order of mag-
nitude between early global earth observation products and
GRUMP. Likewise, there is about a factor of 5 difference be-
tween MOD500 and GRUMP (Potere et al., 2009), and the
global built-up area in the high-resolution GUF product is
35 % less than in GHS built-up areas (Esch et al., 2017). Im-
ageCat data are more specific to the African context as the
other maps are based on global classification algorithms.

The construction-type-based ImageCat classification is a
distinctly different approach as compared to most classifica-
tions, which use population and/or built-up densities. This
can also cause some mismatches, for instance in informal
settlements in or around cities which are classified as ur-
ban when looking at densities but would be classified as ru-
ral when looking at construction types. Our analysis showed,
however, that the classification from ImageCat data is overall
reasonably similar to existing datasets, and it includes unlike
other land-use products rural settlements and, as such, a good
alternative for flood risk assessments as it provides the op-
tion for more detailed building-material-based vulnerability
curves in the analysis.

3.2 Flood risk assessment

Modelled flood damage for the different return periods and
risk for urban and rural areas are shown in Fig. 5. To cal-
culate the overall risk in the country, these simulation are
based on probabilistic maps for which inundation associated
with 2, 5, 10, 25, 50, 100, 250, 500, or 1000-year return pe-
riod respectively occurs simultaneously in all flood-affected
cells. For 2-year return periods the damage is always zero
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Figure 4. Illustration of urban–rural land use in the greater Awasa area in Ethiopia: (a) urban (red) and rural (green) classified ImageCat
data; (b) GHS-SMOD urban centre (red), urban cluster (yellow), and rural (green); (c) GRUMP urban extent (red); (d) MOD500 urban extent
(red); (e) GUF built-up area (black); (f) HBASE built-up area and settlements (black); original dataset projections. Source background map:
Esri, HERE, DeLorme, MapmyIndia, © OpenStreetMap contributors, and the GIS User Community. © OpenStreetMap contributors 2019.
Distributed under a Creative Commons BY-SA License.

Table 6. Results of map agreement for Ethiopia using the ImageCat data classified as urban, rural, and other land use as the reference map.

Urban Rural Other land use

Urban–rural map Producer’s User’s Producer’s User’s Producer’s User’s Overall Kappa
accuracy accuracy accuracy accuracy accuracy accuracy accuracy

(%) (%) (%) (%) (%) (%) (%)

GHS-SMOD 48.7 86.3 11.0 31.3 94.8 45.5 51.5 0.27

as it is assumed that these floods would not cause overbank
flooding. As can be expected, the damage in urban areas is
higher, as it is a more densely concentrated built-up environ-
ment and the value of the buildings is higher. On the other
hand, the majority of exposed buildings are in rural areas. To
illustrate, about 88 000 buildings in urban areas of Ethiopia
are exposed to a flood of a 100-year return period, compared
to more than 4 times as many rural buildings. Furthermore,
we can see that a large amount of damage already occurs
for higher-probability flooding; for example for the 25-year
return period country-wide flooding, rural damage already
amounts to over USD 200 million, and the damage amounts
to over USD 700 million in urban areas.

Table 7 shows the EAD for the different vulnerability
classes in urban and rural areas. These results show that most
of the damage in rural areas results from damage to buildings
of class I, which are buildings with the highest vulnerabil-
ity. In urban areas, the largest share of the damage results
from damage to buildings of class IV; these are the build-
ings with the highest exposed values. In addition, this class
also makes up a large share of the exposed urban buildings,
about 57 000 for a flood of a 100-year return period, which is
more than twice as many buildings of class III. In total more
than 464 000 buildings are simulated to be affected for flood-
ing with this return period, but most are in rural areas with
the majority belonging to class I (58.3 %) (class II 14.6 %,
class III 8.1 %).

Nat. Hazards Earth Syst. Sci., 19, 1703–1722, 2019 www.nat-hazards-earth-syst-sci.net/19/1703/2019/



J. Englhardt et al.: Enhancement of large-scale flood risk assessments 1715

Figure 5. Risk curve for simulated flood damage to building structures in urban and rural areas of Ethiopia for return periods from 2 to
1000 years. USD amounts are given in 2016 values.

Table 7. Expected annual damage (in million USD in 2016 values)
to building structures by vulnerability class in urban and rural areas
of Ethiopia.

I II III IV All

Rural 31.1 8.3 7.3 0 46.7
Urban 0.3 0.2 29.8 136.2 166.6

Total 31.4 8.5 37.1 136.2 213.2

The overall flood risk in Ethiopia (i.e. expected annual
damage, EAD) is about USD 213.2 million per year; 78 % of
the total EAD is in urban areas. Whilst the rural EAD is be-
low the EAD in urban areas, it is still high in absolute terms
(USD 46.7 million per year). This demonstrates that neglect-
ing damage to rural buildings in large-scale assessments may
lead to a severe underestimation of total damage values. Fur-
thermore, the flood damage in urban and rural areas has to
be considered in the context of the coping capacity of the
population in the respective areas. The flood vulnerability of
people below the poverty line is higher, as a larger proportion
of their wealth could be affected during a flood event (Win-
semius et al., 2018). While this is also true for the urban poor,
the livelihoods of rural people are more susceptible where
services and infrastructure are limited (Komi et al., 2016).

3.3 Comparison with Aqueduct

Compared to a traditional land-use-based model, the total
simulated damage in our approach is somewhat higher but
similar in magnitude. For example, the new version of the
GLOFRIS model used for the Aqueduct Global Flood Ana-
lyzer tool (WRI, 2018) applies the same inundation data as
used in this study but follows the common approach of us-
ing land-use-based exposure and vulnerability data, resulting
in EAD for Ethiopia of USD 182 million per year. The re-
sults from our approach contain much more detail on the ex-

Figure 6. Addis Ababa mapped by (a) HYDE as used in GLOFRIS
with above 0 % urban built-up cell (red); (b) classified ImageCat
data: urban (red) and rural (green); GHS-SMOD rural (horizontal),
urban cluster (vertical), and urban centre (diagonal) as background
boundary reference.

posed elements and their vulnerability and allow us to exam-
ine damage in urban and rural areas. Damage in urban and
rural areas cannot be distinguished in GLOFRIS as it uses
HYDE data (Klein Goldewijk et al., 2011) to represent ex-
posure, which represents the urban built-up fraction per grid
cell. Moreover, Fig. 6 compares the land-use exposure map
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using classified ImageCat data and HYDE for the example of
Addis Ababa. As for the rest of the country, it demonstrates
that datasets like the ImageCat exposure data can provide
more spatial detail than the commonly used exposure maps
such as HYDE used in land-use-based flood risk models. Set-
tlement extent and outlines are more distinctive, resulting in
an overall better representation of affected settlement areas
in the risk assessment of our approach.

Further risk comparison as well as flood protection influ-
ence can be found in Sect. S2.

3.4 Sensitivity analysis

Given the uncertainty in the input datasets and methods used
in our approach, we perform a one-at-a-time sensitivity anal-
ysis to assess how the simulated EAD is affected by our
assumptions on the (a) structural maximum damage values,
(b) threshold used in the urban/rural classification, (c) object
area, and (d) stage-damage curves.

To assess the sensitivity of the results to the assumed val-
ues for maximum damage, we used the 90 % confidence in-
terval of estimated construction costs for residential build-
ings reported by Huizinga et al. (2017). These state that
construction costs can be between 28 % lower and 53 %
higher than the estimates used in this paper. For sensitivity to
the threshold used in the urban/rural classification, we used
thresholds of 20 % and 80 % for classifying urban areas, in-
stead of the 50 % used in the earlier analysis. Object areas
can be very diverse between and within countries and de-
pend on the characteristics of the housing market. For exam-
ple, the Centre for Affordable Housing Finance in Africa’s
yearbooks include some indication on the average house size
and price per country. However, the sample sizes used for
example are very small, and the average value covers only
the minimum size that formal developers in urban areas are
prepared to build, therefore neglecting self-built houses. Fur-
thermore, no differentiation between building types or con-
structions is given (CAHF, 2017). For the sensitivity analysis,
instead of calculating the footprint areas from average floor
areas across the construction types per vulnerability class,
we used the most frequent floor area size per type in the Im-
ageCat data. The building footprint sizes most affected by
this are those for classes II and III (see Table S5), as the
size decreased by 5 to 11 m2. The stage-damage curves in
this study show a wide range of vulnerability (see Fig. 2).
Nonetheless, this as well as a comparable shape can also be
found in the identified residential curves for different con-
tinents by Huizinga et al. (2017) as for example their dam-
age degrees at 1 m range between 38 % to 71 %. While our
vulnerability functions show high degrees of damage partic-
ularly for class I and II (mud/adobe and wooden buildings),
other functions that consider building structure such as in the
CAPRA project (CAPRA, 2012; Wright, 2016) display sim-
ilar behaviour for these types of buildings. The sensitivity
regarding the vulnerability curves is analysed by applying

Table 8. Expected annual damage (in million USD in 2016 values)
compared for the normal model setup and the modified parameters
used in the sensitivity analysis.

Sensitivity Analysis

Normal Max. damage Urban–rural Object Vuln.

run lower upper 20 % 80 % area curve

Rural 46.7 33.6 71.4 46.7 46.7 41.5 37.4
Urban 166.6 119.9 254.8 166.6 166.6 165.8 264.1

Total 213.2 153.5 326.2 213.2 213.2 207.3 301.5

like most traditional flood risk models only one vulnerability
curve, thus neglecting the differentiation our model makes
toward material-based vulnerability. To this end, we selected
the residential stage-damage curve used in GLOFRIS, for
which the degree of damage progresses slightly below the
class III one-floor curve.

Results of the sensitivity analysis are summarized in Ta-
ble 8. Clearly, the flood risk estimate is very sensitive to the
applied maximum damage values, as the EAD scales linearly
with maximum damage changes. The results also show the
EAD to be sensitive to the applied vulnerability curve. Using
the single curve from GLOFRIS leads to a higher total esti-
mate of risk by 41 %. Therefore, the estimation of maximum
damage values and improved representation of vulnerability
are important considerations for large-scale flood risk mod-
elling. Our approach improves the incorporation of vulner-
ability in the risk assessment by differentiating a built envi-
ronment into classes that characterize the vulnerability of a
building stock even on large scales. The EAD is very insen-
sitive to the threshold used in the urban/rural classification.
Even with the wide range of thresholds used in the sensitiv-
ity analysis, influence on the urban–rural distribution is mini-
mal, confirming that the urban and rural built environment in
Ethiopia is very distinct in terms of what materials and con-
struction types are applied. Nonetheless, as previously dis-
cussed in Sect. 3.1, exposure of an area can vary depending
on the applied dataset. Using ImageCat data, over half of the
construction types in Ethiopia belong to class I, and about
14 % to each of the other classes (see Table 9). However, ac-
cording to data from the last census in Ethiopia from 2007,
73.9 % of all housing units in Ethiopia have been assigned
the wood and mud wall material, with 80 % of the urban units
and 72.5 % of rural units, whereas a large share of rural units
were built with wood (and thatch) walls (15.5 %). Compared
to the ImageCat data, the Ethiopian building stock appears to
be less diverse and shows a different distribution of urban and
rural constructions, which is also affected by the applied defi-
nition of urban in the census. Since the 2007 census, Ethiopia
has experienced considerable economic growth that appears
to coincide with growth in the Ethiopian construction indus-
try (World Bank, 2019). Furthermore, census data are aggre-
gated to administrative levels and thus cannot be applied in
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Table 9. Ethiopian building stock according to ImageCat data.

Type Description % total Class % urban % rural
building building building

stock stock stock

ADB URM adobe building 4.1

I 3.4 72.0
ERTH Earthen building 3.9
INF Informal building 9.4
WWD Wattle and daub building 39.7

WLI Light wood building 1.0
II 2.0 18.0

WS Solid wood building 13.5

BRK URM brick building 6.1
III 29.9 10.0

STN URM stone building 8.2

RC
Reinforced concrete frame

13.9 IV 64.8 0.03
with URM infill building

the approach developed in this paper, for which an object-
based dataset is required that is comparable between coun-
tries, such as the ImageCat data. With different methodolo-
gies in exposure datasets, future research should explore how
flood risk assessments that are based on building-material-
based vulnerability are affected by the applied building stock
dataset and their different scales. In our sensitivity analysis,
the assumptions made on the object areas have little influence
on the EAD, with overall slightly lower EAD when using al-
ternative footprint sizes. Even though the effect of the object
areas is small, it must be noted that these are estimated sizes
and in reality building layouts are very diverse.

4 Conclusions and recommendations

In this paper, we investigated how characteristics of the built
environment can be used to assess flood impacts on large
scales. To this end, we developed flood vulnerability classes
and stage-damage curves that are based on construction types
and building materials. In contrast to other large-scale flood
risk models that employ aggregated land-use categories and
vulnerability curves, our approach takes advantage of de-
tailed information of the exposed elements to differentiate
their vulnerability.

Showing that the predominant types of buildings are dif-
ferent in urban and rural areas, particularly in developing
countries, the settlements’ land use can be identified by the
characteristics of their building stock. By distinguishing the
urban and rural built environment using our vulnerability
classes, we opened up the possibility to analyse flood impacts
outside of the typical focus on urban areas of large-scale
flood assessments. We used it to show how flood damage
to buildings differs and assessed flood risk in urban and ru-
ral areas of Ethiopia. Although EAD in urban areas exceeds
EAD in rural areas, the rural flood risk of USD 46.7 million
per year (over 20 % of total risk) is nevertheless significant.

Moreover, far more buildings are affected in rural as opposed
to urban areas. As low water depths can already cause major
damage to the types of buildings that predominantly exist in
rural settings in Africa, differentiation between flood damage
in urban and rural settings could also be invaluable to studies
related to poverty and flooding.

We examined the effects of parameter uncertainty and
found that the model is insensitive to the applied threshold
identifying urban and rural areas from the object-based infor-
mation about the characteristics of building stock in the study
area using our material-based vulnerability classes. Consis-
tent with other studies (e.g. de Moel and Aerts, 2010; Merz
et al., 2010), the sensitivity analysis showed that the replace-
ment value of the exposed buildings deserves considerable
attention as we see large differences in the model output.
The results further showed that aggregated vulnerability as
used in large-scale land-use-based models affects the results
to a great extent. In our model, vulnerability is addressed in
greater detail as it reflects the behaviour of different types
of buildings during floods according to their structural char-
acteristics. Therefore, it provides a more direct relation be-
tween physical damaging processes and flood impact on dif-
ferent structural types.

This approach is of particular importance for studies where
there is a large variation in construction types, such as large-
scale studies or studies in developing countries for which
the urban and rural building stock is much more differenti-
ated. Large informal settlement areas in cities are not specif-
ically addressed in the current setup and would be classified
as rural. To acknowledge this, the urban–rural classification
could be extended to highlight such areas and ones where
none of the typically urban or rural building types clearly
prevail. Lastly, it has to be noted that maintenance can influ-
ence the quality of the construction over the years; thus the
structural vulnerability would further increase with building
age. Future research would benefit from including these in-
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dicators or similar ones such as building laws and practices,
given that sufficient data become available, to highlight dif-
ferences between regions. Furthermore, if the data allow in
the future, vulnerabilities within the classes could be further
refined such as between clay, stone, and concrete brick/block
construction or regarding non-structural elements like elec-
trical components and partition walls.

Besides improving the accuracy in estimating direct flood
damage, the use of building-material-based vulnerability
curves also paves the road to the enhancement of multi-risk
assessments as the method enables the comparison of vul-
nerability across different natural hazard types that also use
building-material-based vulnerability.
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