

Supplement of

Enhancement of large-scale flood risk assessments using building-material-based vulnerability curves for an object-based approach in urban and rural areas

Johanna Englhardt et al.

Correspondence to: Johanna Englhardt (englhardt.johanna@gmail.com)

The copyright of individual parts of the supplement might differ from the CC BY 4.0 License.

Supplementary Material

S1 Construction typology

In general, for the mapping of construction types, the materials used for the structural frame and the bearing walls are a main factor in order to differentiate between individual types. Furthermore, the characteristics of each type are for example also

- 5 influenced by local building practices, building codes and other materials used. Therefore there are often similarities between construction types and depending on the available information further subtypes can be differentiated. For example unreinforced masonry (URM) is a general description of buildings with bearing walls made from individual units of some masonry material typically bound together by some form of mortar. With more available information on attributes such as the size of brick, the used material (e.g. clay, stone, concrete), or the type of mortar (mud or cement based), subtypes can be
- 10 separated (for example the ImageCat data differentiates BRK (URM brick building), CB (URM concrete block building), UFB (unreinforced fired brick masonry building) and UCB (unreinforced concrete block building)). Similarly the very traditional buildings such as ERTH (earthen building), M (mud walls building), RE (rammed earth building), and ADB (URM adobe building) are made from soil materials mixed for example with straw and cement. The material can then be formed into bricks and sun-dried, whereas for RE buildings the soil is rammed using wooden molds. The ImageCat structure
- 15 DS (stone masonry) is similar to buildings made from rubble stones. More information can be found in supplementary table 1 containing the PAGER typology or further in the descriptions of the World Housing Encyclopedia¹.

S2 Comparison of risk and flood protection influence

Risk is defined as the product of hazard, exposure and vulnerability and expressed as the expected annual damage (EAD) in this paper. The hazard component is comprised of layers of inundation extent and depth for nine return periods (50% to 0.1% annual exceedance probability). The inundation associated with each return period is assumed to occur everywhere simultaneously and we calculate the expected annual damage as the integral of the exceedance probability-impact curve. With this probabilistic analysis the total EAD for Ethiopia in our model is \$213.2mln/yr (\$46.7mln/yr for rural and \$166.6mln/yr for urban areas).

25 The validation of risk values is difficult as publicly available losses for flood events especially in developing countries, are, if observed at all, rough estimates and often limited to low-frequency, high-impact events. Therefore, modelled and observed metrics are different, since the reported losses do not include information on all flood probabilities. Generating the flood events and their damage stochastically would be a different approach to calculate the risk or might be used to support a dataset of reported losses as the synthetic realizations could extend missing parts of the exceedance probability-impact curve.

¹ http://www.db.world-housing.net/

However, this also would raise the question of the validation of those risk results and validation of the stochastic generated hazard layer of the events.

In our flood risk assessment we assume that Ethiopia is only protected against floods with a return period of 2 years, whilst in reality there may be higher flood protection in place for the most flood-prone areas, especially in the main urban areas.

5 Estimates of EAD are very sensitive to the assumed protection standard (Ward et al., 2017). For example, if we assumed that Ethiopia was protected against floods with a return period of 5 years, the EAD would fall to \$124.5mln/yr (\$96.3mln/yr urban, \$28.2mln/yr rural) which is similar to the country's flood risk (\$135.5mln) in the 2015 Global Assessment Report (UNISDR, 2015).

Table S1. Pager construction types with assigned flood vulnerability classes.

PAGER	Description	Vuln. Class	PAGER	R Description		PAGER	Description	Vuln. Class
W5	Wattle and Daub (Walls with bamboo/light timber log/reed mesh and post).	Ι	UFB5	Unreinforced fired brick masonry, cement mortar, but with reinforced concrete floor and roof slabs		C4	Nonductile reinforced concrete frame without masonry infill walls	
М	Mud walls	I	UCB	Concrete block unreinforced masonry with lime or cement mortar	ш	C4L	Nonductile reinforced concrete frame without masonry infill walls low-rise	IV
M1	Mud walls without horizontal wood elements	Ι	MS	Massive stone masonry in lime or cement mortar	ш	C4M	Nonductile reinforced concrete frame without masonry infill walls mid-rise	IV
M2	Mud walls with horizontal wood elements	Ι	UNK	Not specified (unknown/default)	ш	C4H	Nonductile reinforced concrete frame without masonry infill walls high-rise	IV
А	Adobe blocks (unbaked sundried mud block) walls	Ι	S	Steel	IV	C5	Steel reinforced concrete (Steel members encased in reinforced concrete)	IV
A1	Adobe block, mud mortar, wood roof and floors	Ι	S1	Steel moment frame	IV	C5L	Steel reinforced concrete (Steel members encased in reinforced concrete) low-rise	IV
A2	Adobe block, mud mortar, bamboo, straw, and thatch roof	Ι	S1L	Steel moment frame low-rise	IV	C5M	Steel reinforced concrete (Steel members encased in reinforced concrete) mid-rise	IV
A3	Adobe block, straw, and thatch roofcement-sand mortar	Ι	S1M	Steel moment frame mid-rise	IV	C 5H	Steel reinforced concrete (Steel members encased in reinforced concrete) high-rise	IV
A4	Adobe block, mud mortar, reinforced concrete bond beam, cane and mud roof	I	S1H	Steel moment frame high-rise	IV	C6	Concrete moment resisting frame with shear wall- dual system	IV
A5	Adobe block, mud mortar, with bamboo or rope reinforcement	I	S2	Steel braced frame	IV	C6L	Concrete moment resisting frame with shear wall- dual system low-rise	IV
RE	Rammed Earth/Pneumaticallyimpacted stabilized earth	I	S2L	Steel braced frame low-rise	IV	C6M	Concrete moment resisting frame with shear wall- dual system mid-rise	IV
INF	Informal constructions.	Ι	S2M	Steel braced frame mid-rise	IV	C6H	Concrete moment resisting frame with shear wall- dual system high-rise	IV
W	Wood		S2H	Steel braced frame high-rise	IV	C7	Flat slab structure	IV
W1	Wood stud-wall frame with plywood/gypsum board sheathing.	Ш	S3	Steel light frame	IV	PC1	Precast concrete filt-up walls	IV
W2	Wood frame, heavy members (with area > 5000 sq. ft.)	Ш	S4	Steel frame with cast-in-place concrete shear walls	IV	PC2	Precast concrete frames with concrete shear walls	IV
W3	Wood light unbraced post and beam frame.	Ш	S4L	Steel frame with cast-in-place concrete shear walls low-rise	IV	PC2L	Precast concrete frames with concrete shear walls low-rise	IV
W4	Wood panel or log construction.	Ш	S4M	Steel frame with cast-in-place concrete shear walls mid-rise	IV	PC2M	Precast concrete frames with concrete shear walls mid-rise	IV
W6	Wood unbraced heavy post and beam frame with mud or other infill material.	=	S4H	Steel frame with cast-in-place concrete shear walls high-rise	IV	PC2H	Precast concrete frames with concrete shear walls high-rise	IV
W7	Wood braced frame with load-bearing infill wall system.	=	S5	Steel frame with unreinforced masonry infill walls	IV	PC3	Precast reinforced concrete moment resisting frame with masonry infill walls	IV
мн	Mobile homes	Ш	S5L	Steel frame with unreinforced masonry infil walls low-rise	IV	PC3L	Precast reinforced concrete moment resisting frame with masonry infill walls low-rise	IV
RS	Rubble stone (field stone) masonry	ш	S5M	Steel frame with unreinforced masonry infill walls mid-rise	IV	PC3M	Precast reinforced concrete moment resisting frame with masonry infill walls mid-rise	IV
RS1	Local field stones dry stacked (no mortar) with timber floors, earth, or metal roof.	=	S5H	Steel frame with unreinforced masonry infill walls high-rise	١v	PC3H	Precast reinforced concrete moment resisting frame with masonry in fill walls high-rise	IV
RS2	Local field stones with mud mortar.	=	С	Reinforced concrete	IV	PC4	Precast panels (wall made of number of horizontal precast panels, construction from former Soviet Union countries)	IV
RS3	Local field stones with lime mortar.	Ш	C1	Ductile reinforced concrete moment frame with or without infill	IV	RM	Reinforced masonry	IV
RS4	Local field stones with cement mortar, vaulted brick roof and floors		C1L	Ductle reinforced concrete moment frame with or without in fill low-rise	IV	RM1	Reinforced masonry bearing walls with wood or metal deck diaphragms	IV
RS5	Local field stones with cement mortar and reinforced concrete bond beam.	Ш	C1M	Ductle reinforced concrete moment frame with or without infill mid-rise	IV	RM1L	Reinforced masonry bearing walls with wood or metal deck diaphragms low-rise	IV
DS	Rectangular cut-stone masonry block	=	C1H	Ductile reinforced concrete moment frame with or without infill high-rise	IV	RM1M	Reinforced masonry bearing walls with wood or metal deck diaphragms mid-rise (4+ stories)	IV
DS1	Rectangular cut stone masonry block with mud mortar, timber roof and floors	Ш	C2	Reinforced concrete shear walls	IV	RM2	Reinforced masonry bearing walls with concrete diaphragms	IV
DS2	Rectangular cut stone masonry block with lime mortar	Ш	C2L	Reinforced concrete shear walls low-rise	IV	RM2L	Reinforced masonry bearing walls with concrete diaphragms low-rise	IV
DS3	Rectangular cut stone masonry block with cement mortar		C2M	Reinforced concrete shear walls mid-rise	IV	RM2M	Reinforced masonry bearing walls with concrete diaphragms mid-rise	IV
DS4	Rectangular cut stone masonry block with reinforced concrete floors and roof		C2H	Reinforced concrete shear walls high-rise	IV	RM2H	Reinforced masonry bearing walls with concrete diaphragms high-rise	IV
UFB	Unreinforced fired brick masonry		C3	Nonductle reinforced concrete frame with masonry in fill walls	IV	СМ	Confined masonry	IV
UFB1	Unreinforced brick masonryin mud mortar without timber posts	Ш	C3L	Nonductle reinforced concrete frame with masonry in fill walls low-rise	IV	CML	Confined masonry low-rise	IV
UFB2	Unreinforced brick masonryin mud mortar with timber posts		C3M	Nonductile reinforced concrete frame with masonry infill walls mid-rise	IV	СММ	Confined masonry mid-rise	IV
UFB3	Unreinforced brick masonryin lime mortar	Ш	СЗН	Nonductle reinforced concrete frame with masonry infill walls high-rise	IV	СМН	Confined masonry high-rise	IV
UFB4	Unreinforced fired brick masonry, cement mortar.	Ш						

Table S2. Confusion matrix of urban settlement map of the ImageCat data as reference with different classification maps.

		ImageC	at	
		Other land use	Settlement (urban)	
MP	Other land use	9,967	7,363	
GRU	Settlement	33	2,637	
500 -	Other land use	9,995	9,403	
AOD	Settlement	5	597	
ч Ц	Other land use	9,997	8,792	
GU	Settlement	3	1,208	
SE	Other land use	9,999	8,618	
HBA	Settlement	1	1,382	
IOD	Other land use	9,855	5,150	
GHS-SN	Settlement (urban centre/cluster)	145	4,850	
IOD	Other land use	9,855	5,150	
GHS-SN	Settlement (urban centre)	145	4,850	

5 Table S3. Confusion matrix of urban-rural map of the ImageCat data as reference with GHS-SMOD as classification maps.

		ImageCat			
		Other land use	Rural	Urban	
Δ	Other land use	9,484	8,231	3,123	
[OMS-	Rural	411	1,101	2,004	
GHS	Urban (centre/cluster)	105	668	4,873	

Table S4. Results of agreement for Ethiopia using the ImageCat data classified to urban settlement and other land use as the reference map.

	Settlement (urban)		Other la	and use	Overall		
Settlement Map	Producer's Accuracy (%)	User's Accuracy (%)	Producer's Accuracy (%)	User's Accuracy (%)	Accuracy (%)	Kappa	
GRUMP	26.4	98.8	99.7	57.5	63.0	0.26	
MOD500	6.0	99.2	100.0	51.5	53.0	0.06	
GUF	12.1	99.8	100.0	53.2	56.0	0.12	
HBASE	13.8	99.9	100.0	53.7	56.9	0.14	
GHS-SMOD (urban centre/cluster)	48.5	97.1	98.6	65.7	73.5	0.47	
GHS-SMOD (urban centre)	25.0	99.2	99.8	57.1	62.4	0.25	

5 Table S5. Building footprints for sensitivity analysis derived from the ImageCat data of flood risk assessment for Ethiopia.

Vuln. class	Building footprint [m ²]
Ι	35
II	35
III 1 floor	35
III 2 floors	251
IV	467

Reference	Reference						
				Class 1	Class 2	Class 3	Sum
		son	Class 1	p11	p ₁₂	p13	p1_
Comparison		mpari	Class 2	p ₂₁	p ₂₂	p ₂₃	p2_
	<u> </u>	Co	Class 3	p31	p ₃₂	p33	p _{3_}
			Sum	p_1	p_2	p_3	1
Metric	Equation	Sl	nort Explar	nation			
Overall accuracy $OA = \sum_{j=1}^{q} p_{jj}$		proportion of samples classified correctly; refers to the probability that a randomly selected location on the comparison map is classified correctly					
Kappa	see Congalton (1991)	agreement between the maps, corrected for the agreement as can be expected from random allocation of classes					
$Producer's \ accuracy \qquad P_j = p_{jj} \ / \ p_{_{_j}j}$		proportion of the samples of reference class j that is mapped as class j; probability that class j in the reference is mapped as the same class					
User's accuracy $U_i = p_{ii} / p_i$		proportion of the samples mapped as class i that has reference class i; probability that an area of class i on the comparison map is also that class in the reference					

Figure S1. Example accuracy assessment using a confusion matrix of q classes and p_{ij} representing the proportion of samples that has classification class i and reference class j.

5 Figure S2. Process of calculating the maximum damage value for the example of a class I building.

References

15

Congalton, R. G.: A Review of Assessing the Accuracy of Classifications of Remotely Sensed Data, Remote Sensing of Environment, 37, 35-46, 1991.

Huizinga, J., De Moel, H., and Szewczyk, W.: Global flood depth-damage functions. Methodology and the database with guidelines, European Commission Joint Research Centre, doi:10.2760/16510, 2017.

Huyck, C. K. and Eguchi, M.: GFDRR Africa Disaster Risk Financing - Result Area 5 Exposure Development. Replacement Cost Refinements to the Exposure data, Prepared for World Bank, GFDRR, 2017.

ImageCat, CIESIN, and Porter, K.: Africa Disaster Risk Financing Phase 1 - Result Area 5, Exposure Development for 5 Sub-Saharan African countries - Ethiopia, Kenya, Uganda, Niger, Senegal, 2017.

 10
 UNISDR: Global Assessment Report on Disaster Risk Reduction 2015. Ethiopia country risk profile, United Nations Office for Disaster Risk Reduction, Geneva, Switzerland, https://preventionweb.net/english/hyogo/gar/2015/en/home/data.php?iso=ETH, 2015.

Ward, P. J., Jongman, B., Aerts, J. C. J. H., Bates, P. D., Botzen, W. J. W., Diaz Loaiza, A., Hallegatte, S., Kind, J. M., Kwadijk, J., Scussolini, P., and Winsemius, H. C.: A global framework for future costs and benefits of river-flood protection in urban areas, Nature Climate Change, 7, 642, doi:10.1038/nclimate3350, 2017.