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Abstract. An increasing awareness of the cost of landslides
on the global economy and of the associated loss of human
life has led to the development of various global landslide
databases. However, these databases typically report land-
slide events instead of individual landslides, i.e., a group of
landslides with a common trigger and reported by media, cit-
izens and/or government officials as a single unit. The lat-
ter results in significant cataloging and reporting biases. To
counteract these biases, this study aims to identify clusters
of landslide events that were triggered by the same rainfall
event. An algorithm is developed that finds a series of land-
slide events that (a) is continuous with no more than 2 d be-
tween individual events and where (b) precipitation at the
location of an individual event correlates with precipitation
of at least one other event. The developed algorithm is ap-
plied to the Global Landslide Catalog (GLC) maintained by
NASA. The results show that more than 40 % of all landslide
events are connected to at least one other event and that 14 %
of all studied landslide events are actually part of a landslide
cluster consisting of at least 10 events and up to 108 events
in 1 d. Duration of the detected clusters also varies greatly
from 1 to 24 d. Our study intends to enhance our understand-
ing of landslide clustering and thus will assist in the devel-
opment of improved, internationally streamlined mitigation
strategies for rainfall-related landslide clusters.

1 Introduction

The fatal and catastrophic nature of landslides has led
to the development and maintenance of various global
databases, such as the NASA Global Landslide Catalog
(GLC; e.g. Kirschbaum et al., 2015) and recently the Global
Fatal Landslide Database (GFLD) by Froude and Petley

(2018). Typically, these databases have a distinct focus.
For example, the GLC operated by NASA focuses on
rainfall-triggered landslides (Kirschbaum et al., 2010, 2015),
whereas the Global Fatal Landslide Database records fatal
landslides (Froude and Petley, 2018; Petley, 2012). Through
these databases we are able to provide first estimates on the
number of recorded fatalities, which were more than 55 000
between 2004 and 2016 (Froude and Petley, 2018) and map
near real-time risk for landslides almost on a global scale
(Kirschbaum and Stanley, 2018). Still, while they play a key
role in understanding the effects of landslides on our soci-
ety, it is important to note that they are primarily based on
news and government reports. These databases therefore do
not count landslides but instead count landslide events, which
contain either a single or a multitude of landslides within
an area that are assumed to be triggered by the same event
(Malamud et al., 2004). The exact number of slope failures
in each event is often unknown and depends on the quality
of the reporting. For some databases this number is included
in a parameter of intensity or size of each event. Typically,
for large databases, however, this is merely qualitative and
describes not only the number of individual landslides but
also impacts such as economic or human losses. This classi-
fication is commonly based on press releases and is therefore
heavily biased depending on the news outlet reporting each
event (e.g. Carrara et al., 2003).

Landslides triggered by catastrophic events, such as earth-
quakes or major storms, are often counted as one event con-
taining thousands of individual landslides (Kirschbaum et
al., 2015). In contrast, landslides caused by non-catastrophic
events such as reasonable rainfall are commonly counted as
individual events, disregarding their shared trigger. Conse-
quently, the overall extent of clustering in landslides is often
unknown. Once we better understand the extent of clustering
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between individual landslide events, we will be able to under-
stand the patterns they occur in and have the chance to utilize
these patterns to improve our forecast models (e.g. Martel-
loni et al., 2012).

Until now, few studies have focused on rainfall-triggered
landslide clusters and primarily on temporal clusters over a
long time period within a confined region (e.g. Samia et al.,
2017; Witt et al., 2010). Biasutti et al. (2016) investigated
the spatiotemporal clustering due to rainfall events for three
selected urban areas of the US west coast: Seattle, San Fran-
cisco and Los Angeles. Over the 9-year study period, they
found approximately 20 d within each city with multiple (up
to eight) landslide events. Additionally, they could identify
close to 40 landslide events that were followed by another
event within the next week. However, with a focus on only
selected study areas, they did not show the overall extent of
these clusters.

The objective of this study is therefore to develop an al-
gorithm, which is able to identify such clusters on a global
scale. By applying the algorithm to the GLC, the overall de-
gree of clustering in the database is shown and spatial pat-
terns of clusters with at least 10 landslide events are de-
scribed. Additionally, landslide events and rainfall patterns
of the most intense and longest clusters are comprehensively
discussed. In contrast to previous studies, such as by Bia-
sutti et al. (2016), clusters here are not constricted by a max-
imum spatial extent, instead they are grouped by analyzing
and comparing rainfall prior to the event at the event loca-
tions.

2 Material and method

2.1 Landslide data

All landslide events within this study are part of the GLC op-
erated by NASA and introduced in Kirschbaum et al. (2010,
2015). Data within the catalog is based on online news ar-
ticles that are found through search engine options such as
Google Alerts. In the presented study, only events with a lo-
cation accuracy ≤ 25 km are considered. As the rainfall data
used is only available within±50◦ Latitude, landslide events
outside of this range are not considered. Overall, a total of
9279 landslide events, ranging from 1988 to 2018, are an-
alyzed (Fig. 1). However, only 45 of these events occurred
before 2007, when the GLC was established.

For each event, the GLC provides a landslide type,
e.g. landslide or mudslide, and a landslide trigger, e.g. rain-
fall, downpour, earthquakes, or construction work. De-
tailed descriptions of these classifications can be found in
Kirschbaum et al. (2010, 2015). Furthermore, within the
GLC the intensity, impact, and number of landslides per
event is expressed in a variable called “size”. While events
classified as small in the database are only a single land-
slide, medium or larger landslide events may consist of mul-

tiple landslides within an unspecified range. About 64 % of
the studied events are classified as medium or larger in size.
However, a precise count of the number of landslides con-
tained within these events does not exist in this database nor
in any other of the global-scale databases currently available.
Within the GLC, most of the small events that contain only a
single landslide are located within the United States (Fig. 1).

2.2 Rainfall data

For the rainfall analysis, the Climate Hazards Group In-
fraRed Precipitation with Station data (CHIRPS) (Climate
Hazards Group, 2015) are used, which have a resolution of
0.05◦× 0.05◦ and daily time steps. For each landslide event
location, precipitation data were downloaded for 10 years
preceding the event and up to 2 d after the event using Google
Earth Engine (Gorelick et al., 2017).

2.3 Detection of landslide clusters

The main objective of this study is to identify clusters of
landslide events that occurred during, and are likely triggered
by, the same rainfall event. To determine if two events, A and
B, occurred during the same rainfall event, two conditions
have to be fulfilled: (i) A and B occurred within 3 d of each
other and (ii) the Spearman correlation between daily precip-
itation at A and at B is greater 0.7 and has a p value less than
0.05 for the 30 d preceding the later of the two events. Other
landslide events that fulfill these conditions with either A or
B are considered to be part of the cluster. A schematic draw-
ing of this algorithm is provided in Fig. 2, and a more detailed
flowchart is given in Fig. S1 in the Supplement. The thresh-
old value of 3 d maximum between two events was used fol-
lowing Biasutti et al. (2016), who found it unlikely that land-
slide events occurring more than 3 d apart occurred during
the same rainfall event. However, it is important to note that
their study was set in three metropolitan areas on the west
coast of the US and might not be applicable everywhere.

The threshold value of the Spearman correlation coeffi-
cient was determined by testing the robustness of the iden-
tified clusters for different threshold values between zero
and one (Fig. S2). Our results indicate that mean duration,
area, and number of landslides per cluster are comparably
robust to changes of the Spearman correlation coefficient. In
contrast maximum duration, area, and number of landslides
per cluster change drastically for different threshold values.
From a correlation coefficient threshold of 0.35 to 0.7, max-
imum number of landslide events per cluster decreases from
close to 500 to slightly above 100, maximum duration de-
creases from more than 80 d to approximately 25, and area
decreases from 60 000 000 km2 (approximately one-third of
the planet’s surface area) to 200 000 km2. For threshold val-
ues greater 0.7, only minor changes are observed. Hence, the
latter was set as the correlation threshold value for this study
(Fig. S2).
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Figure 1. Heat map of all landslide events analyzed in this study and their size and apparent trigger. Overall, a total of 9279 events were
tested for clustering.

Additionally, we tested the robustness of the method to the
time period of precipitation for which the correlation coeffi-
cient was determined (Fig. S3). It appears that the number of
days is much less influential than the set correlation coeffi-
cient threshold (Fig. S2). Again, maximum number of land-
slides, area, and duration are impacted most but remain stable
for time periods longer than 30 d prior to the second event.

It is important to note that the introduced method does not
limit the spatial extent of the found landslide clusters. While
this ensures that previously undetected, large-scale connec-
tions between individual landslide events are found, it is also
susceptible to linking landslides occurring in different parts
of the world, where rainfall coincidentally correlates. Hence,
when applying the method to another dataset, the robustness
of the threshold values for correlation coefficient and time
analyzed needs to be rechecked.

The introduced algorithm is independent of subsoil to-
pography and relief parameters. While these impact the pre-
cipitation intensity–duration threshold that is commonly ex-
pected to trigger landslides, locations with different thresh-
olds might still experience landslides triggered by the same
rainfall event.

2.4 Rainfall analysis

In order to compare rainfall during a landslide event to over-
all rainfall at the location, the 95th percentile of precipitation
excluding non-rainy days was determined for 10 years prior
to the event. This comparison was also previously used by
Kirschbaum et al. (2015) to identify rainfall-triggered land-
slide events. However, in their case, rainfall data from the
Tropical Rainfall Measuring Mission (TRMM) was used for
the time period 2000–2013, independent of the date of the

landslide event. Due to its higher spatial resolution, CHIRPS
data were used here instead.

In addition to the 95th percentile of rainfall, the global
rainfall threshold by Guzzetti et al. (2008) was also uti-
lized to determine the likelihood of the individual land-
slide events being triggered by rainfall. In their study 2626
rainfall events that have resulted in shallow landslides and
debris flows were analyzed in order to determine the fol-
lowing global rainfall intensity–duration threshold (http://
rainfallthresholds.irpi.cnr.it, last access: 26 June 2019):

I = 2.2 ·D−0.44. (1)

Here the threshold intensity (I ) was determined for each 24 h
starting with a duration (D) of 12 h. This results in an aver-
age precipitation of 0.73 mm h−1 for D = 12 h, 0.45 mm h−1

for D = 36 h, and 0.35 mm h−1 for D = 60 h. The rainfall
threshold was then compared to the cumulative mean precip-
itation of the rainfall event preceding each landslide event.

3 Results and discussion

3.1 Clustering characteristics

The presented algorithm divided the 9279 landslide events
of the GLC into 6474 clusters of events connected through
precipitation. However, 85 % of these clusters consist of
only a single landslide event, containing in total 59 % of all
recorded landslide events. This implies that a large number of
landslide events are in fact isolated events with no association
to other events. Nevertheless, 67 % of these “single landslide
event” – clusters are categorized as medium or larger and
might contain more that one landslide (in comparison 58 %
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Figure 2. Schematic drawing of the algorithm used to identify if two landslide events within the Global Landslide Catalog (GLC) occurred
during the same rainfall event, and hence belong to the same cluster. For Condition II, only events occurring within 3 d of each other are
compared.

of the landslide events in clusters ≥ one landslide event are
categorized as medium or larger). Hence, the number of iso-
lated landslides is likely to be significantly smaller than the
number of isolated landslide events.

In the GLC only 3 % of the analyzed landslide events are
linked to triggers unrelated to rainfall such as construction,
volcanos, or earthquakes. This number is reduced to 1.5 %
for landslides in a cluster of more than one event. Due to the
low number of events in this category, future research is nec-
essary to test and thoroughly validate these findings as well
as to assess possible reasons and implications of this phe-
nomenon. For now, we assume that this is mainly caused by
biased reporting and cataloging of landslide events, where
events linked to larger disasters such as earthquakes might
be reported as one large landslide event, whereas landslides
linked to rainfall might be individually reported. Similar ob-
servations were previously made by Kirschbaum et al. (2015)
for events in the GLC that are linked to major storms. An ex-
ample of this is the catastrophic magnitude 7.8 Gorkha earth-
quake in Nepal in 2015. While more than 25 000 landslides
occurred during the earthquake and its aftershock sequence
(e.g. Roback et al., 2018), they are only reported as 13 land-
slide events in the excerpt from the GLC analyzed here. In it,
they are described as ranging in size from small to large and
their trigger is given as “unknown”, “earthquake” and in one
case “snowmelt”. Our algorithm sorts these events into eight
clusters of up to three events.

Figure 3 provides histograms of the landslide events per
cluster, duration of clusters, and area covered by clusters
(convex hull). As expected, for all three aspects frequency

Figure 3. Histogram of the number of events per cluster, duration
of clusters, and area of the convex hull of each cluster. Clusters
with only a single landslide event were appointed an area of zero.
Within this study, all clusters with at least 10 landslide events were
analyzed more closely.
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reduces drastically for larger numbers. In the following sec-
tion all 50 clusters with at least 10 events (marked in red in
Fig. 3) are evaluated more closely.

3.2 Clusters with more than 10 landslide events

3.2.1 Global analysis

Table S1 in the Supplement gives more detail on the 50 clus-
ters with at least 10 events. In total, 13 % of all landslide
events are associated with one of these clusters (Table 1).
As the database is most likely incomplete, the true num-
ber is expected to be higher. Overall the algorithm detects
clusters in five distinct regions: (1) the west coast of North
America, (2) central and eastern US, (3) Central and South
America, (4) the Himalayan region and (5) Southeast Asia
(Fig. 4). However, close to three quarters of all clusters ≥ 10
events are found within the US mostly due to a bias in the
GLC database (Kirschbaum et al., 2015) (Fig. 1). This is also
shown in the size of recorded landslide events (Fig. 4 and Ta-
ble S2).

In North America events are often classified as small
in size, while clusters in the other regions contain mainly
medium events. This might be due to English-speaking me-
dia, on which the GLC is based, only picking up on large
international events that consist of multiple landslides within
an area and smaller ones are under or not reported at all.

The median clusters with at least 10 events last 6 d, consist
of 15 events, and span over an area of 15 000 km2 (Fig. 5).
As expected, there is a positive correlation between cluster
duration and area (Spearman correlation coefficient of 0.70,
p value: 0.001). However, this cannot be observed for clus-
ter duration and number of landslide events within the clus-
ter (Spearman correlation coefficient of 0.44 and p value of
0.001). When comparing the different regions, clusters lo-
cated on the west coast of North America are on average
the longest and cover the largest area. In contrast, clusters in
South America are shortest and smallest; nevertheless, they
have the highest number of events per day (Table 1).

On a global scale, no significant trend over time can be ob-
served and clusters with ≥ 10 events occur around the year
(Fig. S4). Similarly, the total number of reported landslide
shows no significant increase in the GLC (Kirschbaum et
al., 2015), as well as in other global databases such as the
Global Fatal Landslide Database (Froude and Petley, 2018).
More regional observations show seasonal variation and are
described more closely in the following chapters. However,
for three out of the five regions, there are only five clusters or
even fewer.

3.2.2 West coast of N orth America

Landslides in the west of North America have been inten-
sively investigated, mainly in the form of case studies that
discuss landslides along the Pacific coast in the states of Cal-

ifornia (Collins and Sitar, 2008; Wieczorek, 1988), Oregon
(Benda, 1990; Miller and Burnett, 2008) and Washington
(LaHusen et al., 2016; Perkins et al., 2017). This region is
also one of the few where the clustering of rainfall-triggered
landslide events was previously investigated, showing qual-
itatively that there are many instances in which landslides
occur on consecutive days (Biasutti et al., 2016).

About 31 % of all landslide events recorded in this area
belong to a cluster of at least 10 events. This is the high-
est number compared to the other regions of the world (Ta-
ble 1). However, this effect might be amplified by the high
number of reported landslides. The large number of events
and clusters is mainly due to geologic, topographic, climatic
conditions, and construction practices. For example, in Ore-
gon, steep slopes and heavy rainfall, as well as poor con-
struction practices, result in high economic losses (Wang et
al., 2002). Burns et al. (2017) estimated an average annual
loss of USD 15.4 million due to landslides in Oregon alone.
In years with heavy storms, such as 1996, this can accumu-
late to more than USD 100 million (Wang et al., 2002).

The observed clusters in this area are among the longest
and have the largest areas of all regions (Table 1). While
the size of landslide events (as given by the GLC) in the
west of North America are small compared to most other re-
gions, there is also a considerable amount of events, where
the size is unknown (43 %, Fig. 4, Table S2). While about
half of the landslide events within clusters ≥ 10 events are
classified as “trigger unknown” (47 %), landslide events with
a known cause are mainly triggered by downpour (27 %)
or rain (19 %) (Fig. 4, Table S3). However, when looking
at satellite-based rainfall data preceding the clusters, rain-
fall cannot always be identified as a trigger (Fig. S5). While
it generally exceeds the global rainfall threshold (Guzzetti
et al., 2008), the 95th percentile of precipitation on rainy
days is not reached for the majority of the clusters. Although
several studies linked landslides within California to earth-
quakes (e.g. Harp and Jibson, 1996; Keefer, 2000), they oc-
curred before 2007 and are not registered in the GLC.

While there appears to be no significant change in the
number of clusters over time (Fig. S4), most clusters occur
during the rainy season (November to March), when most
landslide events occur. Within the west of North America
this time period is therefore often referred to as the “landslide
season” (e.g. Mirus et al., 2018). Only one cluster in this re-
gion appears in June (Cluster ID 21, Table S1). However, the
center of this cluster is located more inland (in San Miguel
County, Colorado) and is also the shortest cluster (only 1 d)
within the region as well as the most local of all clusters in
this study, covering only 1 km2. While this cluster is trig-
gered by downpour according to the GLC, this is not appar-
ent from satellite-derived precipitation (Fig. S5). The small
size of the cluster might be the reason, why low-resolution
satellite-derived precipitation does not record any anomalies
here.
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Figure 4. Location of all landslide events within clusters ≥ 10 events (different colors indicate different clusters). Overall, clusters in five
distinct regions could be identified in the GLC (see Table S1 in the Supplement for more detail). Size and trigger (GLC categorization) of
the associated landslide events are also shown (also see Tables S2 and S3).

Table 1. Regional statistics for all landslide clusters (LCs) with at least 10 landslide events (LEs).

Region No. of LC No. of LE LE Average LEs Average Percentage
per duration day area of of LE in a
LC of LCs LCs (km2) LC≥ 10 LE

Global 50 1209 24.2 7 3.5 35 441 13
West coast of North America 29 829 28.6 9 3.3 52 970 31
Central and eastern US 8 107 13.4 6 2.4 23 357 12
South and Central America 5 168 33.6 3 11.2 1320 18
Himalayas 4 48 12.0 5 2.3 5476 3
Southeast Asia 4 57 14.3 5 3.2 5143 4

3.3 Central and eastern US

While most of the clusters with≥ 10 landslides events of this
region are located in the Appalachian Plateau (Ohio, West
Virginia, and Kentucky), one cluster can be found in Min-
nesota (ID 34 in Table S1 and Fig. S6). While it is consid-
erably smaller (580 km2 compared to more than 9000 km2),
it is comparable to the Appalachians cluster in its number
of landslide events and duration. The Appalachian Plateau
is well known for its landslides and the annual direct cost
in Kentucky exceeds USD 10 million (Crawford and Bryson,
2017).

Like the landslide clusters observed in the west of North
America, clusters here consist mainly of small landslides,
which is most likely linked to the news alerts on which the
GLC is based. Checking sources in the GLC, they are mainly

reported within smaller, more local news outlets compared
to landslide events outside of the US. To our knowledge
the individual events grouped by our algorithm into clusters
have never been linked before. Clusters in this region oc-
cur predominantly in spring (February to June), when rain-
fall is highest, slightly later than events on the west coast
(Fig. S4). According to GLC they are predominantly trig-
gered by downpours (64 %, Fig. 4, Table S3). However, ex-
treme rainfall is not always visible in satellite-derived precip-
itation (Fig. S6). For most clusters, it is below the 95th per-
centile but above the global threshold. It is worth noting that
one cluster located in West Virginia (Cluster ID 35) shows no
rainfall on the satellite before day 3 of the cluster. Following
the GLC, early landslide events within this cluster are linked
to snowmelt.
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Figure 5. Link between the duration of the individual clusters ≥ 10
events and (a) the covered area and (b) the number of landslide
events per cluster. The color of the scatter plots indicates the region
in which each cluster occurred.

3.3.1 Central and South America

In contrast to the clusters in North America, more than 95 %
of landslide events within clusters of this region are medium
in size or larger and might consist of several landslides them-
selves (Fig. 4). Thus, the number of landslides per cluster and
per day is likely to be significantly higher than the number of
events per cluster and per day. Still, clusters in this area are
on average only 2.5 d in length, covering an area of slightly
over 1500 km2, and they are the smallest and shortest of all
regions (Fig. 5, Table 1). It is important to note that this re-
gion covers the largest area, reaching from Rio de Janeiro in
Brazil to Guatemala in Central America. From the few clus-
ters we could identify, it appears that there are dissimilarities
between the clusters in Central America and South America.
The two clusters in Nicaragua (ID 42) and Guatemala (ID
39) are triggered by continuous rain and a tropical cyclone,
respectively. In contrast, all events located in South America
(IDs 38, 40, and 41) are triggered by downpour (Table S1 and
Fig. S7).

3.3.2 Himalayas

Like in South America, most landslide events (94 %) asso-
ciated with clusters with ≥ 10 events in the Himalayan re-
gion are categorized as medium and larger. Thus, the number
of landslides per cluster is again expected to be significantly
higher than the number of landslide events per cluster. How-

ever, there may be differences between regions. Event ID 44,
located in India and Pakistan around Jammu and Kashmir, is
classified as medium to small, much longer (10 d), and cov-
ers an area more than 10 times larger than the other clusters.
All of them are classified as medium or large and are located
in the east of India, with some events in Nepal (Table S1).
In both regions, clusters are triggered by continuous rain or
downpour. For all clusters, satellite-based rainfall data ex-
ceed the global threshold and, in most cases, the 95th per-
centile of rainfall on rainy days (Fig. S8). It is important to
note that while earthquake-triggered landslides are common
in the region (e.g. Parkash, 2013; Roback et al., 2018), the
presented algorithm is by design only able to pick up clus-
ters that are linked by rainfall.

3.3.3 Southeast Asia

As only four clusters are identified in this region, a detailed
analysis is impossible. Again, 96 % of the events associated
are categorized as medium or larger and the main triggers are
tropical cyclones (Cluster IDs 47 and 48), downpour (Clus-
ter ID 49), and rain (ID 50) (Table S1). Here, satellite-based
rainfall data before clusters are both above the global rain-
fall threshold and in most cases above the 95th percentile
(Fig. S9). While only one of the four clusters (ID 50) is
recorded outside of the Philippines (in Indonesia), there is
no apparent difference between both countries (Table 1).

3.4 Most intense cluster

The cluster with the most events in 1 d, i.e., the most intense
cluster, happened in Rio de Janeiro, Brazil, as well as neigh-
boring cities Niterói and Sao Gõnçalo in 2010. In an area of
approximately 2800 km2, 111 landslide events were recorded
within only 3 d, predominantly on 6 April 2010 (Table S1,
ID 38). This is almost 4 times as many landslide events in a
single day than the second most intense clusters (IDs 1 and
3) located in Washington and Oregon, US. Both recorded 29
events in 1 d.

Most of the 111 events associated with the cluster in Rio
de Janeiro were recorded as medium in size, all of which
were triggered by downpour (Fig. 6a). This is confirmed by
satellite-derived precipitation. Heavy rainfalls (Figs. 6a, 7)
occurred on 4 and 5 April of up to 210 mm per day. In com-
parison, the 95th percentile in the 10 years preceding this
cluster is on average only 62 mm d−1 (rainfall for each in-
dividual location shown in Fig. S10). While the rainfall cov-
ered a large area, landslide events were primarily reported for
steep slopes just outside the densely populated city center.
Due to its location close to and inside the urban area of Rio
de Janeiro, the cluster caused approximately 200 fatalities
according to CNN news reports (http://www.cnn.com/2010/
WORLD/americas/04/12/brazil.flooding.mudslides/, last ac-
cess: 27 June 2019).
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Figure 6. Daily precipitation for 30 d preceding the last landslide event of the cluster showing the size of the associated landslide events and
their trigger according to the GLC. Shown is the median precipitation for all landslide locations with the inner quartiles as an error bar. The
95th percentile of daily rainfall (rainy days only) in the 10 years preceding the event is given in blue, the global rainfall threshold ID in red
(Guzzetti et al., 2008), and the cumulative mean for the rainfall event preceding the cluster in orange. (a) The cluster with the most events
per day (ID 43) and (b) the longest-running cluster (ID 22).

Figure 7. Location of the events in the cluster with the most events per day located in Rio de Janeiro, Brazil. Also shown are daily precipitation
and elevation. Elevation data are taken from the US Geological Survey (GTOPO30).

The location in the city might also be the reason for the
large number of events being reported, as we can expect more
individual landslides being reported here compared to the
countryside.

While studies not based on English-speaking news alerts
report a large number of landslides within and around Rio
de Janeiro (Calvello et al., 2015; Sandholz et al., 2018), only
nine additional landslide events inside the area of this cluster
were reported in the GLC between 2009 and 2018. Addition-

ally, just northwest of the cluster, another cluster occurred
in January 2011 (ID 41 in Table S1, Fig. S7). Although this
cluster only counts 20 individual landslide events within the
GLC, it is being reported as thousands of individual land-
slides (Coelho Netto et al., 2013).
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Figure 8. Location and time series of the longest cluster, located mainly in Oregon, US. Also shown are daily rainfall and elevation. Elevation
data are available from the US Geological Survey (GTOPO30).

3.5 Longest cluster

The longest-running cluster identified in this study occurred
in Oregon and Washington, US, from 4 to 27 December
2015 for a total of 24 d with 132 landslide events (Cluster
ID 18, Table S1). The second longest cluster lasted 17 d
over January and February in 2012 and was also located in
Oregon and Washington, US (Cluster ID 7). Overall, most
events within the longest cluster are unknown in size (69 %)
and trigger (74 %) (Fig. 6b). However, inspecting satellite-

based rainfall data, continuous rainfall appears to be the
main trigger (Figs. 6b, 8 and S11 for rainfall at the individual
event locations). While daily rainfall is mainly below the
95th percentile, cumulative mean rainfall is continuously
above the global rainfall threshold. Although heavy rainfall
is common in this area during winter, for this cluster it lasted
longer than usual and was followed by shorter rain events
in short succession (Fig. 8). Thus, the series of landslides
did not halt, resulting in the longest cluster in the GLC.
Following the information on sources within the GLC,
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it appears that local media reported about the individual
landslide events, but did not detect the extreme length of the
continuous series of landslide events at this point in time
(e.g., https://kval.com/news/local/landslide-blocks-i-5-in-
sw-washington; https://q13fox.com/2015/12/09/landslide-
above-puget-sound-damages-several-homes-at-least-one-
vehicle/, last access: 27 June 2019). As landslide events are
such a common occurrence in this region and due to the
large area covered by this cluster, there is currently little
to no emphasis on the longevity of this specific series of
landslide events in media and scientific studies.

4 Conclusions

In this study an algorithm is presented that detects clusters
of landslide events that occur during and are likely triggered
by the same rainfall events. Here this algorithm is applied
to the Global Landslide Catalog (GLC), where it detects that
more than 40 % of all recorded events can be linked to at
least one other event. The global analysis shows that 14 % of
all landslide events are part of a cluster ≥ 10 events. How-
ever, this percentage varies dramatically by the region, rang-
ing from 30 % on the west coast of North America to 3 %
in the Himalayas. Part of this is caused by sampling and re-
porting bias. As the GLC is based on English-speaking me-
dia, events in the US are reported and cataloged in much
greater detail than events abroad. Nevertheless, within the
GLC we could detect clusters ≥ 10 landslide events in five
distinct regions: (1) the west coast of North America, (2) cen-
tral and eastern US, (3) Central and South America, (4) the
Himalayan region, and (5) Southeast Asia. In South Amer-
ica, the studied clusters are the shortest but contain the most
events per day. However, this is mainly due to a cluster in Rio
de Janeiro, where 108 of events were recorded on 6 April
2010. As most of these events are classified as medium or
larger, the absolute number of landslides is expected to be
significantly higher. In contrast, the longest and largest clus-
ters are observed on the west coast of North America. On
average, clusters here last 9 d and cover an area of more than
50 000 km2. The steep slopes and continuous rainfall present
in the area, combined with the above-average reporting of
landslide events, makes a more detailed analysis of rainfall-
related landslide clusters possible. The longest of all detected
clusters≥ 10 landslide events is also located in this region: in
December 2015, 132 landslide events were recorded over a
time period of 24 d spanning more than 120 000 km2, which
were all triggered by the same rainfall event. Detection of
large-scale clusters such as this one can not only help to
improve our understanding of the link between individual
events but also be used in our mitigation strategies. Only
once we improve our understanding of the relation between
individual landslide events, we will be able to predict their
behavior and forecast their economic losses and fatalities.
While our study does not replace case-specific and small-

scale studies, as well as the identification of threshold values,
it can provide an improved understanding for managing land-
slide mitigation on a larger scale. Within the area covered by
individual clusters, the same mitigation strategies, including
early warning systems (EWS) based on weather forecast sim-
ulations, can be developed and validated. For future research
we recommend using the presented algorithm not only for
the correlation with precipitation data but also to include the
geometry of atmospheric rivers during cluster detection. Fi-
nally, the algorithm could be applied to more regional and
other global landslide databases thereby improving our un-
derstanding of the spatial and temporal occurrence of land-
slide clusters.

Data availability. The Global Landslide Catalog is available
through NASA’s Open Data Portal with the permalink https://data.
nasa.gov/Earth-Science/Global-Landslide-Catalog/h9d8-neg4 (last
access: 3 May 2018) (GLC, 2018);

CHIRPS precipitation data were acquired through Google Earth
Engine. Our script can be accessed from https://code.earthengine.
google.com/a6855bd24aae16adf5f62ad72abad9b7.

The algorithm for detecting clusters is written for MATLAB. We
ask interested researchers to please contact the authors of this arti-
cle.
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