
Nat. Hazards Earth Syst. Sci., 19, 1415–1431, 2019
https://doi.org/10.5194/nhess-19-1415-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

What’s streamflow got to do with it? A probabilistic
simulation of the competing oceanographic and fluvial
processes driving extreme along-river water levels
Katherine A. Serafin1,2, Peter Ruggiero1, Kai Parker3, and David F. Hill3
1College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR, USA
2Department of Geophysics, Stanford University, Stanford, CA, USA
3School of Civil and Construction Engineering, Oregon State University, Corvallis, OR, USA

Correspondence: Katherine A. Serafin (kserafin@stanford.edu)

Received: 14 November 2018 – Discussion started: 9 January 2019
Accepted: 24 May 2019 – Published: 16 July 2019

Abstract. Extreme water levels generating flooding in estu-
arine and coastal environments are often driven by compound
events, where many individual processes such as waves,
storm surge, streamflow, and tides coincide. Despite this, ex-
treme water levels are typically modeled in isolated open-
coast or estuarine environments, potentially mischaracteriz-
ing the true risk of flooding facing coastal communities. This
paper explores the variability of extreme water levels near
the tribal community of La Push, within the Quileute In-
dian Reservation on the Washington state coast, where a river
signal is apparent in tide gauge measurements during high-
discharge events. To estimate the influence of multiple forc-
ings on high water levels a hybrid modeling framework is
developed, where probabilistic simulations of joint still wa-
ter level and river discharge occurrences are merged with a
hydraulic model that simulates along-river water levels. This
methodology produces along-river water levels from thou-
sands of combinations of events not necessarily captured in
the observational records. We show that the 100-year still wa-
ter level event and the 100-year discharge event do not always
produce the 100-year along-river water level. Furthermore,
along specific sections of river, both still water level and
discharge are necessary for producing the 100-year along-
river water level. Understanding the relative forcing driving
extreme water levels along an ocean-to-river gradient will
help communities within inlets better understand their risk to
the compounding impacts of various environmental forcing,
which is important for increasing their resilience to future
flooding events.

1 Introduction

Coincident or compound events are a combination of phys-
ical processes in which the individual variables may or may
not be extreme; however, the result is an extreme event with a
significant impact (Zscheischler et al., 2018; Bevacqua et al.,
2017; Wahl et al., 2015; Leonard et al., 2014). Flooding is
often caused by compound events, where multiple factors
impact both open-coast and estuarine environments. Storm
events, for example, often generate concurrently large waves,
heavy precipitation driving increased streamflow, and high
storm surges, making the relative contribution of the actual
drivers of extreme water levels difficult to interpret. Studies
at the global (e.g., Ward et al., 2018), national (e.g., Wahl
et al., 2015; Svensson and Jones, 2002; Zheng et al., 2013)
and regional scale (e.g., Odigie and Warrick, 2017; Mof-
takhari et al., 2017) have evaluated the likelihood for vari-
ables such as high river flow and precipitation to occur dur-
ing high coastal water levels, demonstrating that dependen-
cies often exist between these individual processes.

Around river mouths, the elevation of the water level mea-
sured by tide gauges, or the still water level (SWL), varies
depending on the mean sea level, tidal stage, and the non-
tidal residual contributors which may include the follow-
ing forcings: storm surge, seasonally induced thermal ex-
pansion (Tsimplis and Woodworth, 1994), the geostrophic
effects of currents (Chelton and Enfield, 1986), wave setup
(Sweet et al., 2015; Vetter et al., 2010), and river discharge.
Most commonly, estimates of nontidal residuals are deter-
mined by subtracting predicted tides from the measured wa-
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ter levels. However, residuals computed in this way often
contain artifacts of the subtraction process from phase shifts
in the tidal signal and/or timing errors (Horsburgh and Wil-
son, 2007). Another approach for extracting the nontidal
residual is through the skew surge, which is the absolute dif-
ference between the maximum observed water level and the
predicted tidal high water (de Vries et al., 1995; Williams
et al., 2016; Mawdsley and Haigh, 2016). While this method-
ology removes the influence of tide–surge interaction from
the nontidal residual magnitude, it does not differentiate be-
tween the many factors contributing to the water level, an
important step for distinguishing when and why high water,
and thus flooding, is likely to occur.

Hydrodynamic and hydraulic models have recently been
used in attempts to quantify the relative importance of river-
and ocean-forced water levels to flooding. The nonlinear cou-
pling of wind- and pressure-driven storm surge, tides, wave-
driven setup, and riverine flows has been found to be a vi-
tal contributor to overall water level elevation (Bunya et al.,
2010). Furthermore, river discharge is often found to inter-
act nonlinearly with storm surge (Bilskie and Hagen, 2018),
exacerbating the impacts of coastal flooding (Olbert et al.,
2017), which suggests that the extent or magnitude of flood-
ing is often underpredicted when both river and oceanic pro-
cesses are not modeled (Bilskie and Hagen, 2018; Kumbier
et al., 2018; Chen and Liu, 2014). The computational demand
of two- and three-dimensional hydrodynamic models, how-
ever, typically precludes a large amount of events to be ex-
amined. Therefore, while accurately modeling the physics of
the combined forcings, researchers taking this approach are
often limited to modeling only a select number of boundary
conditions. On the other hand, statistical models allow for
the investigation of compound water levels through the sim-
ulation of combinations of dependent events which may not
have been physically realized in observational records (Be-
vacqua et al., 2017; van den Hurk et al., 2015). In addition,
researchers have recently begun to generate hybrid models
that link statistical and physical modeling approaches for un-
derstanding compound flood events (Moftakhari et al., 2019;
Couasnon et al., 2018). Similar to the results solely from
hydrodynamic and hydraulic models, statistical and hybrid
modeling strategies show that simplifications of the depen-
dence between multiple forcings may lead to an underesti-
mation of flood risk.

This study explores the influence of oceanographic and
riverine processes on extreme water levels along a coastal
river where there is a substantial river signal recorded in
the tide gauge. In order to better understand the river- and
ocean-forced water levels at this location, a hybrid methodol-
ogy is developed for linking statistical simulations of ocean
and river boundary conditions with a hydraulic model that
simulates along-river water levels. First, river-influenced wa-
ter levels are defined and removed from SWLs. Then, both
river discharge and river-influenced water levels are incor-
porated into a nonstationary, probabilistic total water level

model, which allows for multiple synthetic representations
of joint ocean and riverine processes that may not have oc-
curred in the relatively short observational records. Next, a
one-dimensional hydraulic model is used to simulate water
surface elevations along a 10 km stretch of river. Surrogate
models are generated from the hydraulic model simulations
and used to extract along-river water levels for each prob-
abilistic joint occurrence of SWL and river discharge in a
computationally efficient manner. Rather than determining
the along-river return level from an equivalent return level
forcing (e.g., the 100-year discharge event drives the 100-
year water level), spatially varying along-river return levels
are extracted and matched to the driving boundary condi-
tions. This technique allows for a spatially explicit analysis
of the ocean and river conditions generating extreme water
levels.

The following sections describe the study area, present the
hybrid modeling framework linking oceanographic and river-
ine systems, and evaluate the compounding drivers of along-
river extreme water levels.

2 Study area

The Quillayute River is located in Washington state along
the US west coast and drains approximately 1630 km2 of
the northwestern Olympic Peninsula into the Pacific Ocean
(Czuba et al., 2010). The Quillayute River is approximately
10 km long; is formed by the confluence of the Bogachiel
and Sol Duc rivers (Fig. 1); and enters the Pacific Ocean
at La Push, Washington, home to the Quileute Tribe. The
Quileute Indian Reservation is approximately 4 km2 and the
majority of community infrastructure sits at the river mouth,
bordering the river and open coast. The Quileute Harbor Ma-
rina is also situated just inside the river mouth and is the
only port between Neah Bay and Westport, Washington. Ri-
alto Spit, which connects Rialto Beach to Little James Island,
contains a rocky revetment which protects the marina and the
community from ocean and storm wave impact.

The Quillayute River is a natural, unstabilized river that
is relatively straight at the confluence of the Bogachiel and
Sol Duc rivers and increases in sinuosity moving towards
the river mouth. Channel-bed materials are coarse (gravel
and cobble) in the free-flowing channels and dominated by
sand in the small estuary (Czuba et al., 2010). Upstream of
river kilometer 3 there are numerous point bars and bends in
the river. Between river kilometer 1.5 and 3, the Quillayute
River is braided with several side channels, usually contain-
ing woody debris (Czuba et al., 2010). The channel is straight
near the river mouth and is confined by the Rialto Spit revet-
ment before draining into the Pacific Ocean.

The oceanic climate of the coastal Pacific North-
west (PNW) is cool and wet with a small range in temper-
ature variation and the majority of rainfall between October
and May. Four river basins, the Sol Duc, Bogachiel, Calawah,
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Figure 1. Map of study area (a), which is denoted on the regional map (b) in the black box. The La Push tide gauge is represented as
a red square while other regional tide gauges are represented as blue squares. The Calawah and Sol Duc River gauges are represented as
black triangles, and USGS measurement sites from the May 2010 survey (see information in the Supplement) are depicted as yellow circles.
Approximate river kilometers are denoted as black crosses on the study area map.

and Dickey rivers, feed into the Quillayute River and com-
prise the majority of the watershed. Streamflow in the re-
gion is primarily from storm-derived rainfall in the winter
and snowmelt during the spring and summer (WRCC, 2017).

Oceanographically driven SWLs are generally comprised
of mean sea level, tides, and nontidal residuals, which in-
clude storm surge. Regional variations in shelf bathymetry,
shoreline orientation, storm tracks (Graham and Diaz, 2001),
seasonality (Komar et al., 2011), and winds drive differ-
ences in storm surge along the US west coast. However,
the US west coast’s narrow continental shelf, in relation
to broad-shelved systems, controls the magnitude of storm
surge, which is rarely larger than 1 m (Bromirski et al., 2017;
Allan et al., 2011). The PNW is also influenced by a unique
interannual climate variability due to the El Niño–Southern
Oscillation. During El Niño years, the PNW experiences in-
creased water levels for months at a time, along with changes
in the frequency and intensity of storm systems (Komar et al.,
2011; Allan and Komar, 2002). In the PNW, tides are micro-
and mesotidal, and at La Push the tidal range is mixed, pre-
dominantly semidiurnal, with a mean range of 1.95 m and a
great diurnal range of 2.58 m (https://tidesandcurrents.noaa.
gov/datums.html?id=9442396, last access: October 2017).

Global rise in sea level and local changes in vertical land
motions result in significant longshore variations of rela-

tive sea level along the Washington coastline. The north-
ern Washington coast is experiencing relative sea level rates
of −1.85± 0.42 mm year−1 due to a rising coastline, while
relative sea level in Willapa Bay in southern Washington
is 0.94± 2.14 mm year−1 (Komar et al., 2011). Tide gauge
records at La Push are too short to calculate robust trends
in sea level; however, sea level is likely rising in this location
rather than falling, partly due to local land subsidence (Miller
et al., 2018).

3 Data

Observational records in the region are generally sparse; one
tide gauge exists in the marina near the river mouth and only
two of the four rivers which feed into the Quillayute water-
shed are gauged (Fig. 1). The Sol Duc River gauge (WA Dept
of Ecology 12A070) is located 12 km upriver from the Quil-
layute River and measures hourly discharge and stage obser-
vations from 2005 to 2014. The second river gauge is located
on the Calawah River (USGS 12043000), approximately
25 km upriver from the Quillayute River. The Calawah River
flows into the Bogachiel River and has hourly discharge and
stage measurements from 1989 to 2016. The hourly record
of discharge measurements from the Sol Duc River is 100 %
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Figure 2. (a) The joint relationship between storm surge and wave height for La Push, Washington (black); and Westport, Washington (pink).
Example storm surge and discharge relationship at (b) La Push and (c) Westport, Washington.

complete, while the Calawah River is 99 % complete. An
area scaling watershed analysis (Gianfagna et al., 2015) is
undertaken to rectify the discharge by the amount of un-
gauged watershed. The watershed delineation shows that the
Bogachiel, Calawah, Sol Duc, and Dickey rivers account for
24 %, 22 %, 37 %, and 17 % of the total Quillayute River wa-
tershed area, respectively. Noting the similar watershed char-
acteristics and proportional watershed areas, the contribution
of the Bogachiel River is estimated by scaling the Calawah
River discharge measurements by a factor of 2.09. This scal-
ing factor for estimating Bogachiel River discharge is val-
idated by comparing to eight discharge point measurements
taken during a US Geological Survey (USGS) survey in 2010
(see Supplement). Discharge for the Quillayute River is es-
timated by adding together discharge from the Sol Duc and
Bogachiel rivers.

Hourly measured SWLs at the La Push tide gauge (NOAA
station 9442396, 2004–2016) relative to Mean Lower Low
Water (MLLW) are downloaded, transformed into NAVD88,
and decomposed into mean sea level (ηMSL), tide (ηA), and
nontidal residual (ηNTR). The ηNTR is further decomposed
into monthly mean sea level anomalies (ηMMSLA), seasonal-
ity (ηSE), and storm surge (ηSS), using methods described in
Serafin et al. (2017). Peak ηSS events at La Push are found
to be the highest on record compared to all US west coast
tide gauge stations (Serafin et al., 2017). Upon further in-
vestigation of the ηSS record, a large portion of extreme
ηSS events occur during low-wave events (Fig. 2a) and high-
river-discharge events (Fig. 2b). This is inconsistent with ηSS
in Westport, Washington (Fig. 2a and c), just south of La
Push, and with other tide gauges along the US west coast (not
shown). It is therefore hypothesized that the anomalously
large signal seen in the ηSS is river-induced.

To further investigate the anomalously large ηSS at the
La Push tide gauge, the hydrodynamic model ADvanced
CIRCculation (ADCIRC, Luettich Jr. et al., 1992) and Simu-
lating Waves Nearshore (SWAN, Zijlema, 2010) model (AD-
CSWAN; Dietrich et al., 2011) is used to simulate water
levels at the tide gauge during a storm event correspond-
ing with the peak river discharge on record occurring on
8 January 2009. ADCIRC is run in 2-D depth-integrated
barotropic mode which performs well for calculating water
surface elevations during storm events (Weaver and Luet-
tich Jr., 2010). SWAN is run in nonstationary mode on an
unstructured grid, allowing for tight coupling to ADCIRC.
The model is run with two forcing implementations: one in-
cluding a full forcing of waves, wind, pressure, streamflow,
sea level anomalies, seasonality, and tides and one including
only streamflow and tides. Once the river-influenced water
level is validated, it is removed from the ηSS signal and saved
as a sixth geophysical variable (ηRi; see Supplement for re-
moval technique).

Because of the short length of the La Push tide gauge
record, decomposed water levels from the La Push tide gauge
are merged with decomposed water levels from the Toke
Point tide gauge (NOAA station 9440910) to create a com-
bined water level record with a length of 36 years. Details
of this methodology are explained in the corresponding Sup-
plement, as well as in Serafin et al. (2019). Once the two tide
gauges are merged, the combined hourly tide gauge record
extends from 1980 to 2016 and is 97 % complete.
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4 Methods

Return level flood magnitudes, such as the 100-year event,
are typically assumed to be driven by a specific forcing event,
such as the 100-year rainfall or storm surge. However, for
processes driven by multiple dimensions, different sizes and
combinations of forcing conditions could potentially gener-
ate extreme flood magnitudes. To explore the role of com-
pounding forcings in generating extreme water levels, a hy-
brid modeling framework is developed by merging a hy-
draulic model simulating river flow with probabilistic simu-
lations of jointly occurring boundary conditions, in this case
SWL and river discharge (Fig. 3). Statistical simulations al-
low for long, synthetic records of joint forcings that may not
have occurred in the short observational records but are phys-
ically capable of co-occurring. Modeling all of the statisti-
cally simulated boundary conditions in a hydraulic model to
output along-river water levels would be prohibitively expen-
sive. As an alternative to time-consuming simulations, surro-
gate models (Razavi et al., 2012) are developed to approx-
imate the response of a hydraulic model simulation at each
along-river location. This technique allows for the analysis
of along-river water levels driven by a variety of boundary
conditions. Long synthetic records on the order of 500 years
allow for the direct empirical extraction of water level re-
turn levels rather than an extrapolation from historic observa-
tional forcing conditions. In addition, the large sample space
of simulated variables permits a comparison of event-based
return levels, where the 100-year water level is determined by
the 100-year forcing, to response-based return levels, where
the 100-year water level is derived and then mapped to its
respective forcing conditions. This novel framework is flexi-
ble for input of any statistical or hydraulic model. In this ap-
plication, we use the Serafin and Ruggiero (2014) full sim-
ulation total water level model and the US Army Corps of
Engineers’ (USACE) Hydrologic Engineering Center’s River
Analysis System (HEC-RAS; Brunner, 2016), which are de-
scribed in more detail below.

4.1 Probabilistic simulations of boundary conditions

The nonstationary, probabilistic simulation model of Serafin
and Ruggiero (2014) (hereinafter SR14) was developed to
produce synthetic time series of daily maximum total water
levels (TWLs), the combination of waves, tides, and nontidal
residuals, on open-coast sandy beaches. SR14 simulates the
individual components of the TWL in a Monte Carlo sense,
while appropriately accounting for any dependencies exist-
ing between the variables. This modeling technique is able
to include nonstationary processes influencing extreme and
nonextreme events, such as seasonality, climate variability,
and trends in wave heights and water levels. SR14 outputs
a number of synthetic records of all variables driving TWLs
that produce alternate, but physically plausible, combinations
of waves and water levels along an identified stretch of coast-

Figure 3. Schematic of hybrid statistical–physical modeling tech-
nique. Models are portrayed as squares, while circles portray model
outputs.

line. This technique is flexible to allow for both (i) the simu-
lation of the present-day climate for computing robust statis-
tics on extreme TWL events and (ii) the simulation of future
climates and their impact on extreme TWLs. Because SR14
was developed for use in open-coast environments, it does
not include a procedure for simulating estimates of river dis-
charge, which is present in the local tide gauge at the La Push
study site. SR14 is therefore modified to produce synthetic
time series of river discharge as well as a river-induced water
level.

High-discharge events on the two gauged rivers in the wa-
tershed, the Sol Duc and Calawah rivers, tend to occur within
hours of peak wave events recorded in offshore wave buoy
records and water level events recorded in the tide gauge
data. Due to the interrelated nature of these forcings, daily
maximum estimates of Calawah River discharge (QC) are
compared to all variables simulated in the SR14 model (e.g.,
wave height, ηSS, ηNTR, ηMMSLA) to capture any dependen-
cies between these processes. The variable with the highest
monthly correlation to QC is wave height (Hs). Extreme QC
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Figure 4. (a) Joint relationship between wave height (Hs) and discharge (Q) for the observational record (black) and one example 500-year
simulation (red). (b) Seasonal model fit for the probabilistic simulation of the Sol Duc River Q in relation to the Bogachiel River Q. The
inset displays the model fits for discharge less than 100 m3 s−1.

events are simulated using a bivariate logistic model, which
is the same technique used to simulate ηSS. The bivariate lo-
gistic model preserves the dependency and frequency of oc-
currence of joint Hs−Q events in extreme and nonextreme
space. This technique generates a synthetic record ofQC that
is seasonally varying, related to larger-scale climate variabil-
ity through wave height (essentially as a proxy for storms),
and carries the same dependency between variables as the ob-
servational record (Fig. 4a). QC is then multiplied by 2.09 to
represent inflow from both the Bogachiel and Calawah rivers.

Discharge measurements at the Sol Duc River are
highly correlated with the discharge measurements at the
Calawah River (ρ = 0.9, τ = 0.83); thus Sol Duc River dis-
charge (QSD) is modeled based on a relationship with the
scaledQC, representing the Bogachiel River (QB). Estimates
of QSD are related to QB during the summer and winter sea-
sons. First, daily maximum Q is split into summer (May,
June, July, August, September, and October) and winter (Jan-
uary, February, March, April, November, and December)
seasons. Next, models are fit to the joint relationship between
the QSD and QB each season, such that for the summer sea-
son,

QSD = 1.186QB+ 0.226 (1)

is used when QB falls between 0 and 10 m3 s−1, and

QSD =−1.0× 10−4Q2
B+ 0.38QB+ 14.07 (2)

is used when QB falls between 10 and 700 m3 s−1 (Fig. 4b).
When QB is greater than 700 m3 s−1, QSD is determined us-
ing

QSD = 0.216QB+ 61.25. (3)

For the winter season,

QSD = 0.816QB+ 1.168 (4)

is used when QB falls between 0 and 25 m3 s−1, and

QSD =−1.0× 10−4Q2
B+ 0.46QB+ 16.11 (5)

is used whenQB falls between 25 and 2300 m3 s−1 (Fig. 4b).
When QB is greater than 2300 m3 s−1, QSD is determined
using

QSD = 0.075QB+ 500.42. (6)

Summer and winterQB is binned and residuals ofQSD from
the above model fits are generated. Normal distributions are
fit to QSD residuals in each bin, except for low bins (less
than 25 m3 s−1) where residuals are fit to exponential dis-
tributions. QSD is then directly related to simulated esti-
mates ofQB;QSD is first determined by fitting the prescribed
model to each estimate of QB, and then a random sample
is taken from the residuals per binned QB and added to the
model. This technique captures the joint peaks of the river
systems visible in the observed dataset, while allowing for
variability between the simulated estimates (Fig. 4b).

4.1.1 Modeling the river-induced water level

At tide gauges along the US west coast, the maximum daily
SWL generally occurs during, or close to, the daily high tide
(Serafin and Ruggiero, 2014; Serafin et al., 2017). Modeling
peaks in ηRi that occur during low tide would therefore erro-
neously increase simulated estimates of the SWL occurring
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Figure 5. (a) The relationship between the river-influenced water level (ηRi) and Bogachiel River discharge on a log-linear scale. The solid
black line represents the model fit to the observational records (black dots). (b) The percentage of time ηRi occurs in the record during a
specific QB. In both panels, black represents the observational record and red represents one example 500-year simulation.

during high tide. Thus, instances of ηRi occurring approxi-
mately during high tide are retained and all other ηRi peaks
are discarded, resulting in 155 ηRi events.

Synthetic estimates of ηRi are developed by relating QB
and ηRi. This relationship is modeled using

ηRi = 0.039QB+ 0.854× 10−3 (7)

when QB is below 190 m3 s−1 and

ηRi = 0.093QB+ 0.284× 10−3 (8)

when QB is above 190 m3 s−1 (Fig. 5a). Next, coarse bins
ranging from 100 to 4000 m3 s−1 are created and the stan-
dard deviation (σ ) of ηRi within each bin is saved. For bins
that contain less than 10 observations, observations from the
previous bins are included until there are more than 10 obser-
vations per bin for σ calculations. Finally, a two-point run-
ning average is used to smooth σ from each bin to ensure
continuous transitions and to avoid the edge effects from bin-
ning a sparse dataset.

There are times of high QB without a distinguishable ηRi
in the tide gauge record; thus a model is also developed to
simulate the frequency of occurrence of ηRi during daily
maximum SWLs. The frequency of occurrence of ηRi is de-
fined as the percentage of time ηRi occurs in the observa-
tional record, which is less than 10 % of the time whenQB is
less than 840 m3 s−1 and 10 %–25 % of the time when QB is

between 840 and 2090 m3 s−1 (Fig. 5b). For QB greater than
2090 m3 s−1, ηRi occurs approximately 50 % of the time. The
frequency of occurrence of ηRi is modeled using a best-fit cu-
bic function, where the frequency of occurrence is a function
of QB based on the percentage of time the values have oc-
curred in the record. Because there are no events greater than
2500 m3 s−1 on record, we represent the percentage of occur-
rence over this value as 100 % (Fig. 5b).

Once QB is simulated using SR14, ηRi is simulated for
every day in time by selecting the synthetic daily estimate
ofQB and randomly sampling from a normal distribution for
each QB bin, where µ is the regression model and σ is the
standard deviation from each bin (Fig. 5a). The frequency-of-
occurrence model is then used to select the correct proportion
of ηRi events to retain for each synthetic simulation. These
techniques capture both the spread of ηRi related to QB and
the percentage of time of occurrence (Fig. 5).

4.2 Hydraulic model for along-river water levels

While a variety of hydraulic models can be used for deter-
mining the elevation of along-river water levels, we employ
the Hydraulic Engineering Center’s River Analysis System
(Brunner, 2016). HEC-RAS is used to estimate water sur-
face elevations in rivers and streams in both steady and un-
steady flow and under subcritical, supercritical, and mixed
flow regimes (Goodell, 2014). HEC-RAS has been previ-
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Figure 6. Digital elevation model (DEM) used for the HEC-RAS simulations of the Quillayute River. HEC-RAS cross sections are depicted
as grey lines. Approximate river kilometer and the location of the tide gauge are depicted as diamonds and a square, respectively.

ously used to model water surfaces for a range of applications
including, but not limited to, floodplain mapping (Yang et al.,
2006), flood forecasting (Saleh et al., 2017), dam breaching
(Butt et al., 2013), and flood inundation (Horritt and Bates,
2002). HEC-RAS computes water levels by solving the 1-D
energy equation with an iterative procedure, termed the step
method, from one cross section to the next (Brunner, 2016).
For subcritical flows, the step procedure is carried out mov-
ing upstream; computations begin at the downstream bound-
ary of the river and the water surface elevation at an upstream
cross section is iteratively estimated until a balanced water
surface is obtained. Energy losses between cross sections are
comprised of a frictional loss via the Manning equation and
a contraction/expansion loss via a coefficient multiplied by
the change in velocity head (see Brunner, 2016, for more de-
tails).

In this application, HEC-RAS is used to model 1-D wa-
ter levels under gradually varied, steady-flow conditions at
transects along the Quillayute River. While a simplification
of flood processes, the 1-D application is commonly used
to create flood hazard maps. A detailed digital elevation
model (DEM) is developed for the river network, includ-
ing bathymetry and topography for the floodplains of inter-
est (Fig. 6). Model domain boundary conditions are chosen
as the SWL at the tide gauge (m; downstream boundary)
and river discharge from the Sol Duc and Bogachiel rivers
(m3 s−1; upstream boundary). The HEC-RAS model is val-
idated using water surface measurements from a 2010 sur-
vey. Details of the HEC-RAS model validation and calibra-
tion procedures are documented in the Supplement.

4.3 Hybrid statistical–physical modeling

The modified simulation technique of SR14 is used to
produce 70 500-year-long synthetic records representing
present-day climate for the time period of 1980–2016 of
daily maximum SWL and Q for both the Sol Duc and Bo-
gachiel rivers. Rather than run the ∼ 13 million simulated
conditions through a numerical model, a limited set of joint
boundary conditions of SWL andQ (at the Bogachiel and Sol
Duc rivers) are run through HEC-RAS, outputting the eleva-
tion of the along-river water level at each HEC-RAS transect.
Surrogate models are generated from the HEC-RAS runs for
each transect using a scattered linear interpolation of the 3-D
surface of boundary conditions. The number of combinations
of SWL andQ used to develop the surrogate models are cho-
sen to minimize interpolation errors during validation runs.
A daily estimate of water level elevation at each transect is
produced by inputting all daily maximum SWL and Q con-
ditions into the surrogate models, which efficiently extract
along-river water levels for any set of SWL and Q inputs.
Using the count-back method, where for example the fifth
largest event for each synthetic record would be the 100-year
event, water level return levels are extracted for all 70 500-
year synthetic records for the (1) along-river water levels at
each transect, (2) SWLs, and (3) Q. This methodology pro-
vides both an estimate of the return level magnitude (e.g.,
the average of the 70 100-year events) and the uncertainty
around that magnitude (e.g., the distribution of the 70 100-
year events). It also provides a technique to compare the
response-based return level (e.g., the 100-year water level)
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Figure 7. Resulting storm surge (a) and still water level (b) at the
La Push tide gauge modeled using ADCIRC for a simulation in-
cluding full forcing (red) and a simulation including only discharge
and tides (blue) compared to the observational record (black). The
ADCIRC simulation was run for the maximum discharge event on
record occurring on 8 January 2009.

to the event-based return level (e.g., the water level driven by
the 100-year SWL or 100-year Q event).

5 Results

The following section first validates the presence of a river-
induced water level within the tide gauge signal and then
demonstrates the effectiveness of the surrogate models in
representing along-river water levels for unmodeled HEC-
RAS boundary conditions. Next, the spatial and tempo-
ral variability of the magnitude of along-river water lev-
els and their driving conditions are examined. Finally, low-
probability water levels, like the 100-year event, are extracted
from the simulated records of along-river water levels, and
the dominant drivers are evaluated.

5.1 River-induced water level validation

Results from ADCSWAN modeling of the 8 January 2009
storm event show that the simulation including only river
discharge and tides is nearly able to recreate the measured
peak ηSS signal at the tide gauge (Fig. 7a). The addition of
wind, pressure, waves, sea level anomalies, and seasonality is
found to have minimal impact on the peak observed ηSS. Fur-
thermore, the maximum ηSS occurs during low tide (Fig. 7b),
which indicates a potential relationship between water sur-
face elevation, tidal level, and river discharge. While the
ADCSWAN runs only explore one instance of this phe-
nomenon, it provides physics-based evidence that anoma-
lously high ηSS at the La Push tide gauge is likely being
driven by large discharge events.

5.2 Surrogate model validation

A number of validation scenarios are modeled in HEC-
RAS to determine whether the combinations of Q and SWL
boundary conditions used to develop the surrogate models
represent a large enough sample space of forcing conditions
for the interpolation of along-river water levels. The valida-
tion scenarios are chosen to cross through both HEC-RAS
modeled and unmodeled conditions (Fig. 8a). Across all vali-
dation scenarios, the average root mean square error (RMSE)
between the HEC-RAS directly modeled and the surrogate
model-interpolated water levels is 1 cm. Only 1.5 % of the
validation scenarios have a bias greater than 10 cm, and the
largest RMSE at any transect is 20 cm across all scenarios
(Fig. 9). The validation scenario with the worst performance
occurs during high QB and low QSD paired with low-SWL
events. However, even during the worst-performing case,
the difference between the HEC-RAS directly modeled wa-
ter level and the surrogate model-interpolated water level is
small (Fig. 8b). The main research focus here is extreme wa-
ter levels, and the conditions driving low-probability return
level events rarely fall around the scenarios with the highest
bias.

5.3 Hybrid modeling of along-river water levels

5.3.1 Temporal variability

Seasonal variability exists in the elevation of along-river
water levels. The highest elevation water level occurs dur-
ing the winter (here defined as December, January, Febru-
ary), while the lowest elevation water level occurs during
the spring (March, April, May) (Fig. 10a). The spring along-
river water level is on average 0.50 m lower than the winter
along-river water level, 0.33 m lower than the fall (Septem-
ber, October, November) along-river water level, and 0.03 m
lower than the summer (June, July, August) along-river wa-
ter level (Fig. 10b). The difference between seasonal along-
river water levels is nonlinear upstream, and certain sections
of the river have larger changes in elevation between months
(Fig. 10b). However, this variation becomes relatively linear
downstream of river kilometer 3.

The seasonal variability of the along-river water level is
driven by the seasonality of the forcings, which are well
represented in the simulations compared to the observations
(Fig. 11). The monthly median SWLs and ηNTR’s are higher
in the winter than in the summer (Fig. 11a and b). This
cyclical variability is also depicted in the monthly median
river discharge from the Quillayute River (combined Sol Duc
and BogachielQ) and is approximately 200 m3 s−1 higher in
winter months than summer months (Fig. 11c). The 98th per-
centile values of SWL, ηNTR, and Q have a similar seasonal
variability to the median conditions (Fig. 11d–f).
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Figure 8. (a) Modeled HEC-RASQ boundary conditions used to generate the surrogate models (red-dotted lines) compared to the simulated
conditions used for surrogate model validation (green dots). The black dots represent the observational daily max conditions, while the
colored circles represent the worst performing of the validation tests. The red and blue colored circles represent the scenarios where the
interpolated water surface had a bias of over 10 cm lower than the model. (b) Example along-river water level for the worst-performing
condition in the validation tests.

5.3.2 Spatial variability

The large number of joint SWL and Q conditions allows for
the direct extraction of water level return levels and the corre-
sponding univariate or multivariate drivers along each HEC-
RAS transect. The magnitude of the 100, 25, 10, and annual
return level water levels is between 3 and 17 m (NAVD88,
Fig. 12a). While the peaks in return level events occur at
similar locations, the difference between return level events
varies spatially moving upriver. For example, at river kilome-
ter 1, the difference between the average (of all simulations)
annual and 100-year event is approximately 0.9 m, whereas
at river kilometer 8 and upstream, the difference between
these two events is closer to 2 m (Fig. 12b).

The dominant forcing conditions driving water level return
levels vary along-river. At the river mouth, the annual water
level event (e.g., the event that is expected every year) in each
simulation occurs during Q ranging from 40 to 2600 m3 s−1

and SWLs around 3.3 m, which corresponds with the annual
SWL event (Fig. 13a). Moving upstream to river kilometer 1
and 2, the annual water level event is driven by both high
SWL occurring during low Q and low SWL occurring dur-
ing highQ. At river kilometer 4, the annual water level event
occurs during the annual Q event coincident with SWLs that
range from 1.8 to 3.9 m (Fig. 13a). These results are simi-
lar, albeit events are larger magnitude, for the 100-year wa-

ter level event. Downstream 100-year water levels are driven
by SWLs, upstream 100-year water levels are driven by Q,
and the 100-year water level between kilometer 1 and 2 is
driven by different combinations of high- and low-SWL and
Q events (Fig. 13b).

The relative importance of both oceanic and riverine forc-
ing to extreme water levels emerges when averaging the mag-
nitude of the drivers of the water level return levels at each
transect from all 70 500-year-long simulations (Fig. 14). The
magnitude of the average Q driving water level return lev-
els gradually increases by approximately 1000 m3 s−1 over
river kilometer 0–2 and then is consistent from river kilome-
ter 2 to 10 (Fig. 14a). Downstream, between river kilometer 0
and 0.25, the magnitude of the average SWL driving water
level return levels is consistent and then gradually decreases
over a 1 km zone (Fig. 14b).

When comparing to water level return levels driven by a
univariate forcing or event return level (e.g., along-river wa-
ter levels modeled from the 100-year Q or SWL event), we
find that the stretches of river driven by a consistent SWL
or Q forcing approximate the univariate return level event.
Therefore, the 100-year SWL does indeed cause the 100-year
water level downstream, between river kilometer 0 and 0.25,
while the 100-year Q event drives the 100-year water level
upstream, between river kilometer 2 and 10 (dashed lines,
Fig. 14). However, between river kilometer 0.25 and 1.75 a
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Figure 9. (a) Average root mean square error (RMSE) and (b) bias for all 197 discharge validation scenarios across 4 out of the 15 SWL
scenarios. The worst-performing model is discharge scenario 153.

Figure 10. (a) Variability of along-river water levels averaged
over spring (MAM), summer (JJA), fall (SON), and winter (DJF).
(b) The difference between the spring and summer, fall, and winter
along-river water levels.

flood transition zone is present, where neither the SWL re-
turn level or the Q return level events drive the water level
return level. This is consistent across all return level events.

6 Discussion

The hybrid model developed in this study, which combines
statistical simulations with a physics-based model, provides
an approach for probabilistically evaluating the conditions
that drive extreme water levels not only in an open-coast
setting, but also kilometers upriver. The ability to simulate
millions of combinations of Q and SWL events allows for a
robust estimate of resulting along-river water levels, which
numerical models alone are unable to consider due to large
computational expenses. While some of our modeling tech-
niques are specific to this location, the overall framework
for combining statistical and physics-based models is gen-
eral enough for use in coastal locations throughout the globe
where flooding arises from compounding processes.

The decomposition of the SWL into low- and high-
frequency signals, including a river-influenced component,
helps identify the importance of physical processes for gener-
ating high water levels across various regional settings. This
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Figure 11. (a–c) Observational (black) and simulated (red) monthly median still water level (SWL), nontidal residual (etaNTR), and dis-
charge (Q). (d–f) Observational (black) and simulated (red) monthly 98th percentile of the SWL, ηNTR, and Q. Red shading indicates the
bound from each simulation.

Figure 12. (a) The water level return level at each transect for all 70 probabilistic simulations. Each return level event displays the average of
the simulations (solid line) as well as the range around the average (shaded). (b) The along-river difference between the annual and 100-year
event, averaged over 70 simulations.

is especially important in locations like the US west coast,
where the steep, narrow continental shelf prevents wind-
and pressure-driven storm surge from being overwhelmingly
large (Allan et al., 2011). The influence of the river signal in
the tide gauge is directly related to the setting of our study
site. The estuary is relatively small and narrow with the river

discharging directly into the ocean. This is dissimilar to other
tide gauges in the region which are located in larger estuar-
ies, situated away from river input. Estuaries typically exhibit
wave, tide, or river-dominant morphology, based on the rel-
ative energy of each process (Dalrymple et al., 1992). The
Quillayute River outlets directly to a high-wave-energy en-
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Figure 13. The individual Q or SWL condition driving the (a) annual and (b) 100-year water level event at specific along-river locations for
each 70 500-year simulation. In both figures, the black lines represent the annual and 100-year return level magnitude for Q and SWL.

Figure 14. The average forcing condition driving along-river return levels at each transect where (a) displays the Quillayute Q conditions
and (b) displays the SWL conditions. The dashed lines depict the univariate forcing conditions, where the along-river return level is assumed
to be driven by eitherQ or SWL. Red, orange, blue, and black lines represent the 100, 25, 10, and annual return level event. The grey shaded
area represents a transition zone, where the water level is driven by a combination of SWL and Q events.

vironment and has a small estuary volume compared to its
river input volume. The steep catchment of the mountain-
ous environment means a short response time for rainfall,
therefore producing peak discharges temporally similar to
peak storm-induced still water levels, allowing for interac-
tion between the two. In contrast, water level elevations with

large estuary volume compared to river discharge are less in-
fluenced by fluvial processes. Furthermore, a larger estuary
may experience variability in the water surface elevation due
to wave-induced setup and/or other local storm-induced pro-
cesses (Cheng et al., 2014; Olabarrieta et al., 2011), which
may further dampen the influence of a river signal.
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This research confirms the presence of an oceanographic–
fluvial transition zone, where traditional, univariate method-
ologies for defining return level events are insufficient for
defining water level return levels. Between river kilometer 1
and 2, we find that a range of SWL and Q conditions drive
all return level events, and water levels are driven by nei-
ther the univariate SWL or Q return level event. A similar
flood zone transition was recently modeled numerically and,
albeit for a single event, physically demonstrates the impor-
tance of including multiple variables to reproduce accurate
flooding (Bilskie and Hagen, 2018). Thus, flood hazard as-
sessments on systems with multivariate forcings may mis-
represent water level elevations for low-probability events if
only univariate variables are modeled. This has large implica-
tions for characterizing the risk to flooding, especially in the
context of mapping flooding hazards. Furthermore, we show
that return level water levels can occur over a range of com-
bined extreme and nonextreme forcing in the flood transition
zone. This illustrates that, in order to properly understand
the impacts of compounding flooding, more than just design
scenarios need to be considered for the proper assessment of
risk.

Many of our results can be explained by dynamics that
occur during interacting ocean and river flows. For exam-
ple, a coincidence of high SWL and peak river discharge
may induce blocking, where river-induced water levels are
trapped upstream and either flood overbank or outlet to the
ocean as the tide recedes (Kumbier et al., 2018; Chen and
Liu, 2014). The outletting to the ocean as the tide recedes
artificially inflates SWLs at the tide gauge, increasing water
levels for days at a time and prolonging exposure to flood-
ing. When subtracting a tide time series from this signal,
storm surge would appear to be elevated at low tide. While
the ADCSWAN simulation confirms the presence of this ef-
fect by matching the peak storm surge at low tide, our hybrid
methodology only models steady-flow scenarios. Thus, with
co-occurring daily maximum SWL and discharge, our model
may miss certain dynamics important for flooding over un-
steady conditions. Furthermore, interactions between storm
surge and river discharge may increase the overall elevation
of the residual (Maskell et al., 2013). While beyond the scope
of our present study, these unsteady characteristics are impor-
tant to consider in future research.

Because sea level rise, along with other changes to the
climate, will exacerbate the compounding effects of flood
drivers (Moftakhari et al., 2017; Wahl et al., 2015), it is
also important to consider the impact of changes to pro-
cesses driving flooding events in the future (Zscheischler
et al., 2018). By 2100, the likely range of relative sea level
rise in the La Push area is projected to be between 18 and
80 cm, considering vertical land motion and various emis-
sions scenarios (Miller et al., 2018). The western Olympic
Peninsula is projected to experience increased winter pre-
cipitation (Mote et al., 2013; Halofsky et al., 2011), which
could subsequently increase either the frequency or intensity

of high-Q events along the Quillayute River. While we have
characterized the spatial variability in extreme water levels
in the present day, there is a high likelihood changes in the
future climate will shift the importance of these interacting
processes.

7 Conclusions

This research illustrates the importance of considering a large
number of forcing conditions to model compounding pro-
cesses when evaluating extreme water levels. Here we find
that, in coastal settings, river discharge can be an important
driver of high water levels measured in a tide gauge. We also
find that the univariate, event-based return level event, like
the 100-year discharge, does not always match the response-
based return level, like the 100-year water level. Further-
more, when processes compound, along-river return levels
may be driven by events that are not considered extreme
themselves. Probabilistic techniques allowing for the anal-
ysis of thousands to millions of combinations of events not
captured in the observational record provide a characteriza-
tion of where river, ocean, or the combination of the two may
be important for generating extreme events.

Overall, the hybrid merging of a statistical and numeri-
cal model provides a methodology for better understanding
the drivers of flooding along the length of a river. While our
model does not actively resolve the physical interaction of
river and oceanographic flow, it develops an approach for
characterizing and extracting river-influenced water levels
measured at tide gauges while robustly modeling the drivers
of extreme along-river water levels. Understanding the dom-
inant, spatially variable drivers of flooding events will help
coastal communities better understand their risks, which is
important for increasing resilience to future events.
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