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Abstract. Landslide displacement prediction has great prac-
tical engineering significance to landslide stability evalua-
tion and early warning. The evolution of landslide is a com-
plex dynamic process, and applying a classical prediction
method will result in significant error. The data assimila-
tion method offers a new way to merge multisource data
with the model. However, data assimilation is still deficient
in the ability to meet the demand of dynamic landslide sys-
tems. In this paper, simultaneous state and parameter esti-
mation (SSPE) using particle-filter-based data assimilation
is applied to predict displacement of the landslide. A land-
slide SSPE assimilation strategy can make use of time-series
displacements and hydrological information for the joint es-
timation of landslide displacement and model parameters,
which can improve the performance considerably. We select
Xishan Village, Sichuan Province, China, as the experiment
site to test the SSPE assimilation strategy. Based on the com-
parison of actual monitoring data with prediction values, re-
sults strongly suggest the effectiveness and feasibility of the
SSPE assimilation strategy in short-term landslide displace-
ment estimation.

1 Introduction

Landslide is a common geological hazard which greatly en-
dangers the security of property and lives of the people
(Huang et al., 2017; Froude and Petley, 2018; Zhang and
Huang, 2018; Pham et al., 2018). The landslide in Sri Lanka
in May 2017 resulted in more than 200 casualties and injured
698 289 people. (Kumarasiri, 2018). In China alone, land-

slide hazards account for about 72.6 % of the total geological
disasters from 2005 to 2014 (Xue et al., 2016). Therefore,
landslides are important to study, lending themselves for pre-
vention studies like early warning systems and deformation
predictions (Liu et al., 2014; Jiang et al., 2016; Michoud et
al., 2016).

Landslide prediction and forecast methods have been de-
veloped and improved continually (Crosta et al., 2013; Li et
al., 2018). Chaussard et al. (2014) used the time-series anal-
ysis method applied to ALOS (Advanced Land Observing
Satellite) data to resolve land displacement in the Mexico re-
gion. Dong and Li (2012) proposed a model that coupled the
Gray method and general regression neural networks (GM-
GRNN) and applied it to the prediction of sliding defor-
mation of the Dahu landslide. Li and Kong (2014) carried
out a genetic algorithm and support vector machine (GA-
SVM) method to establish a mathematical function predic-
tion model. Although the above methods have certain prac-
ticability in the prediction of landslides, it is still problem-
atic to carry out forecasts of rainfall-induced landslides in
real time (Yin et al., 2010) – for the reason that surveillance
photographs or optical remote-sensing satellites are not im-
mediately available (Lee et al., 2019). It may take days, even
months, to obtain field data and establish a process model of
the study area. Moreover, most of the current model-based
predictions cannot use the newest observation data effec-
tively and therefore most likely deviate from the actual ob-
servations. The data assimilation method is a new technol-
ogy that can help to overcome these challenges. By combin-
ing surface observational data with the process model, data
assimilation provides an optimal true value that is continu-
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ously distributed over time and space (Xue et al., 2018). Data
assimilation has been widely tested and used in geoscience
fields like hydrologic and atmospheric sciences (Reichle et
al., 2002; Abbaszadeh et al., 2017; Wikle, 2002). And al-
though very promising, there have been only a few prelimi-
nary studies using data assimilation techniques that involve
studying landslides.

Data assimilation can be divided into two types: the
sequential-based method and the continuous-based method
(Qin et al., 2009). The sequential-based method is an online
approach that updates the prediction each time (Nakano et
al., 2007), so it is more suitable for landslide systems than the
continuous-based method. A particle filter (PF) is a typical
sequential data assimilation algorithm which was initially put
forward by Gordon (Gordon et al., 2002). Because the PF is
nonlinear filtering based on Bayesian estimation, it can solve
nonlinear and non-Gaussian problems (Moradkhani and Wei-
hermüller, 2011). Landslides and parameters that describe
landslides are typically nonlinear (Leeuwen, 2010), so we
choose PF as the algorithm to integrate multisource data with
the model.

The evolution of a landslide is a time-varying process, so
the model parameters are required to be adjusted over time.
However, primal sequential data assimilation only updates
state vectors, and the model parameters are generally given
by known information, which will result in discrepancies be-
tween state and model parameters under a particular model
relationship (Nearing et al., 2012). To meet the requirements
of updating state values and model parameters simultane-
ously, we apply the simultaneous state and parameter esti-
mation (SSPE) here. The SSPE method can continuously re-
new the output by sequentially merging new measurements.
Moradkhani et al. (2005) optimized this process in the hydro-
logical field. Vrugt et al. (2006) combined the simultaneous
optimization with data assimilation. Joint estimation of the
state parameter has proven to be a useful strategy to improve
prediction performance (Qin et al., 2009; Lü et al., 2011).

In this paper, we applied the SSPE assimilation strategy to
predict landslide displacement. In landslide SSPE assimila-
tion, an external factor, hydrological data, has been integrated
into the dynamic model of landslide deformation data, which
can adjust model parameters and the state vector simultane-
ously according to the hydrologic information. During the
process, internal factors of a landslide are combined with ex-
ternal observation factors, reducing the simulation error.

First, we will present the applied research method by de-
scribing the time-series decomposition and how we estab-
lished the model and landslide SSPE assimilation strategy
applying the PF algorithm. The Xishan Village landslide is
used here as the study area to examine the SSPE assimilation
strategy. The prediction of deformation will be optimized by
coupling GPS observation data with a hydrological factor.
Finally, we will present and discuss the results.

2 Method

2.1 Time-series displacement decomposition

Landslide deformation is the interaction between internal ge-
ological conditions and the external environment (Desai et
al., 1995). Therefore the displacement can be divided into
(a) a trend-term displacement generated by internal factors,
(b) a periodic-term displacement caused by external fac-
tors (such as rainfall and reservoir water level) and (c) a
stochastic-term displacement (human impacted, snowpack,
etc.) (Zhou et al., 2016). However, after noise filtering, the
stochastic term is too small and can be neglected. So the
time-series displacement decomposition is as follows:

S(i)= ϕ(i)+ x(i), (1)

where S(i) is the cumulative displacement of landslides,
ϕ(i) denotes the trend term and x(i) denotes the periodic
term.

The trend term of time series is extracted with the moving
average method because it can remove the disturbance effec-
tively and leave long-term signals for research (Seng, 2013).

ϕi =
Si−1+ Si−2+ ·· ·Si−n

n
, (2)

where ϕi is the periodic term of step i, Si−1 is the cumulative
displacement of step i−1 and n is the moving average period.

So the periodic-term displacement can be calculated by
subtracting the trend term from the total displacement.

2.2 Landslide periodic displacement modeling

For rainfall-induced landslides, atmospheric rainfall is one of
the most susceptible disaster-causing factors and directly af-
fects the periodic displacement of a landslide (Lian et al.,
2015; Ren et al., 2015). So the periodic term can be re-
garded as a function of time and rainfall. The numerical func-
tion method is adopted here to establish a periodic displace-
ment model. The periodic displacement variation is minimal
for short periods of time. Therefore, the model can be de-
rived through expanding periodic displacement value using a
Taylor-series expansion method:
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where x denotes displacement of the landslide, ri+1 is the
rainfall of time i+ 1, ∂x

∂t
and ∂x

∂r
are the first-order partial
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derivative of displacement, ∂
2x
∂t2

and ∂2x
∂r2 are the second-order

partial derivative, and gi is the remainder of Taylor’s expan-
sion.

2.3 Landslide SSPE assimilation strategy using PF

2.3.1 State estimation

The general state-space model for a nonlinear dynamic sys-
tem is defined to be

State model : xi+1 = f (xi,ui)+ vi+1, (4)
Observation model : yi+1 = g (xi+1)+wi+1, (5)

where x is the state vector and y is the observation vector,
i is a time step, f and g are nonlinear functions forecasting
the state and observation, u represents the model parameters,
v is the model error and w is observation noise.

2.3.2 Landslide SSPE method

In sequential data assimilation, the SSPE algorithm can be
applied through the state augmentation method (Chen et al.,
2005). Considering the model in Eq. (4), the original state
vector xi is now augmented with the parameters u(t) to be

Xi =

[
xi
ui

]
. (6)

By incorporating the simultaneous state–parameter estima-
tion method into the practical landslide state model Eq. (3),
the extended state vector can be expressed as

Xi =

[
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where mi , ni , ui and vi are noise.

So the next moment Xi+1 is
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In Eq. (12) we make
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so Eq. (12) can be expressed as

Xi+1 = ωi+1 ·Xi + εi+1. (13)

The observation of landslide deformation can be expressed
as

yi+1 = xi +wi+1. (14)

Combining the two expressions, Eqs. (13) and (14), we can
build the landslide SSPE state-space model to jointly esti-
mate the landslide periodic displacement and the model pa-
rameters.

2.3.3 PF algorithm

However, some parameters in the landslide state-space
model, Eqs. (13) and (14), are difficult to obtain (e.g.,

(
∂x
∂t

)
ti

,(
∂2x
∂t2

)
ti

). By applying Monte Carlo simulations, the PF can

be adjusted to solve this. Instead of calculating the partial
derivative directly, PF generates a large number of samples
(particles) to approximate the posterior probability of the
states, thus obtaining an optimal result (Maskell and Gordon,
2002).

From the Bayesian theorem, the posterior probability of
the states can be inferred through

1. forecast,

p(xi |y1:i−1)=

∫
p(xi |xi−1)p (xi−1|y1:i−1)dxi−1, (15)

2. and update,

p(xi |y1:i)=
p
(
yi |xi

)
p(xi |y1:i−1)

p
(
yi |y1:i−1

) , (16)

where i is time, xi is the state vector, yi is the ob-
servation vector, y1:i = {y1, y2, · · ·, yi}, p(xi−1|y1:i−1)

is the posterior distribution function (PDF) for time
step i− 1, p(xi |y1:i−1) is the prior distribution for time
step i and p(xi |xi−1) can be derived from the model.

In PF, the posterior probability of the states is approxi-
mated by discrete random measures defined by particles and
a set of weights associated with particles:

p̂ (xi |y1:i)≈

N∑
k=1

wki δ
(
x0:i − x

k
0:i

)
, (17)

where p̂(xi |y1:i) is the approximate value of p(xi |y1:i), xk0:i

and wki are particles and associated weight,
N∑
i=1
wki = 1 and

δ denotes the Dirac delta function.
Direct sampling of target p(xi |y1:i) can be problematic, so

sequential importance sampling (SIS) is considered here to
overcome this. The SIS gathers particles from a known den-
sity function and updates the importance weights by using an
iterative method (Doucet et al., 2000). Meanwhile, the sam-
pling importance resampling (SIR) is used to avoid particles
deviates away from the true value (Gordon et al., 2002). The
SIR algorithm gathers particles by their importance weight.
So the estimates of the state vector can be described as

x̂i =

N∑
k=1

xkiw
k
i . (18)

The procedure of the landslide SSPE assimilation strategy is
shown in Fig. 1.

3 Study area and data

3.1 Study area

Our study area is located in Xishan Village, Li County,
Sichuan Province, China (Fig. 2), in the upper part of the
northern bank slope of the Zagunao River. The slope of this
landslide is about 25–45◦. The length is about 4200 m, and
the width is around 1700 m. The altitude of the leading edge
is 1500 m, and the trailing edge is 3400 m. Thus the elevation
is 1900 m. This landslide can be best described as a mas-
sive accumulative landslide. It can be divided into three parts
according to geomorphogenesis: (i) erosional with a dip di-
rection of about 178◦, (ii) erosional and denudational with a
dip direction of about 200◦, and (iii) glacial and periglacial
with a dip direction of about 208◦. The distribution of the
three parts is shown in Fig. 3. The Xishan landslide is a
soft rock, layered structure slope. Exposed strata in the study
area resemble mainly blue grey phyllite. The upper deposit
is formed due to the collapse of slope and ice water accumu-
lation and is mainly composed of silt and gravel soil.

Landform undulation leads to apparent local variations.
The Xishan Village landslide has a 52 m thick active slid-
ing layer which can lead to the movement of about 85 mil-
lion cubic meters. Before 2008, many cracks appeared in the
front and middle of this landslide, causing a direct economic
loss of Yuan 0.5 million and affecting 189 people. The creep
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Figure 1. The flow chart of the landslide SSPE assimilation strategy.

Figure 2. Location of the Xishan landslide in China (a); the Xishan
landslides in the west of Wenchuan County associated with land-
form. Map obtained from Google Earth (b).

deformation intensified after the Wenchuan earthquake (May
2008), which threatened the security of residents’ lives and
properties. The estimated potential economic loss was about
Yuan 50 million. For the purpose of reducing damage by pro-
viding early warning, this study was used to forecast the de-
formation of this landslide.

3.2 Data introduction

3.2.1 GPS-derived time-series displacement

Five continuous GPS observation stations have been set up
for the Xishan Village landslide to obtain any deformation
observations. The GPS receivers were connected to a net-
work so the observations could be transferred in real time.
At the same time, a GPS reference station was placed in a
stable area and used for reference. Figure 3 shows the distri-
bution of all stations. After the GPS baseline calculation, we
calculated the deformation of every observation station from
August 2015 to June 2017. Figure 4 shows the final results.
Due to transmission problems, there are several gaps in the
data. An interpolation method was applied to overcome these
data gaps (Velicer and Colby, 2005; Lenda et al., 2016).

3.2.2 Rainfall data

There are two rain gauges on the landslide, which can trans-
mit rainfall data in real time. Figure 3 shows the location of
the rain gauges. Both are near GPS stations. The daily rainfall
data are illustrated in Fig. 6. Since the rain gauges are located
near the GPS station, the mean values of the two gauges are
taken as the rainfall of the Xishan landslide.

4 Results and analysis

In this experiment, the performance of the proposed SSPE
using the particle-filter-based data assimilation strategy is
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Figure 3. The distribution of the three parts (I–III), GPS stations
and rain gauges at the Xishan landslide.

benchmarked with the SSPE method. The SSPE method only
applied the SSPE strategy and updated the state value with
Eq. (13), without using data assimilation to optimize model
and state parameters. All the experimental data were ob-
tained at the Xishan Village landslide between August 2015
and June 2017. We only present our findings for two stations,
GPS03 and GPS04, because the deformation is more evident
there. Due to the complex terrain and insufficient power sup-
ply of Xishan Village, the monitoring GPS sequence con-
tained significant noise or errors. In order to reduce the influ-
ence of this, we need to modify the time step. After exper-
iment and evaluation among different time steps, a 5 d time
step gives the best correlation with rainfall data. Therefore
the time step is set to 5 d. The predicted displacement can
be separated by a trend term, a period term and a cumula-

Figure 4. The GPS-derived time-series displacement of the Xishan
landslide.

tive term. Then the error analysis is taken to validate the effi-
ciency of our method.

4.1 Prediction of trend-term displacement

The trend-term displacement is a time monotone function so
that it can be fitted to a polynomial. The most optimal results
of the trend-term prediction and the fitting formula are shown
in Fig. 5.

4.2 Prediction of period-term displacement

The periodic-term displacement can be calculated using the
difference between the total displacement and the trend term.
Figure 6 shows the periodic displacement in station GPS03
and GPS04 and the rainfall data. It can be seen clearly that
the period term is a complex nonlinear sequence series. Be-
sides, fluctuation of the period term of the two stations shows
relatively the same changing tendency for both, which lags
behind that of rainfall. However, there are small differences
in fluctuation like time step 40 to 50 and 70 to 76. This
could be attributed to the impact of geology. The GPS04 sta-
tions monitor the first part of the landslide. There are a large
number of people living here. The combined contribution of
surface water, domestic water and ground water reduces the
friction of the sliding belt, thus leading to drastic distortion.
Station GPS03 monitors part III, the upper part of the land-
slide (Fig. 3). This part with rare plant cover is susceptible to
heavy rainfall season.

We applied the SSPE assimilation method to predict pe-
riodic displacement. The prediction results are as shown in
Fig. 7. It can be seen that the SSPE assimilation method gets
closer to the measured value than the SSPE method without
assimilation.

4.3 Prediction of cumulative displacement

The predicted values of cumulative displacement can be ob-
tained by summation of the predicted values of trend and pe-
riodic displacement. The prediction results for each station
are shown in Fig. 8. Additionally, some detailed prediction
data, differences between predicted and measured displace-
ment, and the error rates are enumerated in Tables 1 and 2.
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Figure 5. The trend-term displacement prediction of (a) station GPS03 and (b) station GPS04.

Figure 6. The periodic-term displacement combined with rainfall data in GPS03 and GPS04.

Experimental results verify the feasibility of the SSPE assim-
ilation method.

4.4 Relative error analysis

In this section, a more quantitative analysis is carried out to
assess the performance of each method. Three criteria – mean

www.nat-hazards-earth-syst-sci.net/19/1387/2019/ Nat. Hazards Earth Syst. Sci., 19, 1387–1398, 2019
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Figure 7. The periodic-term displacement prediction of (a) station GPS03 and (b) station GPS04.

Table 1. Comparison between the predicted values of cumulative displacement and measured displacement using different methods in station
GPS03.

Time Measured SSPE SSPE assimilation

(mm) Prediction Difference Error Prediction Difference Error
(mm) (mm) rate (mm) (mm) rate

(%) (%)

11 Oct 2015 32.2674 40.2287 −7.9614 −24.67 29.1589 3.1085 9.63
16 Dec 2015 63.3499 68.1207 −4.7708 −7.53 61.8590 1.4909 2.35
6 Apr 2016 116.0395 105.4518 10.5878 9.12 115.0090 1.0305 0.89
11 Jun 2016 144.7729 133.5143 11.2586 7.78 145.9559 −1.1830 −0.82
6 Jul 2016 157.6520 146.3509 11.3011 7.16 156.2981 1.3539 0.86
11 Aug 2016 191.482 180.9944 10.4876 5.48 190.1751 1.3069 0.68
16 Oct 2016 215.3067 224.5674 −9.2607 −4.30 215.4657 −0.1590 −0.07
21 Nov 2016 233.1672 220.3506 12.8166 5.49 231.5734 1.5938 0.68

absolute error (MAE), mean squared error (MSE) and root
mean square error (RMSE) – were used to evaluate the pre-
diction effect. They can measure the deviation between the
predicted value and the measured value and are calculated
by

MAE=
1
N
·

N∑
i=1

∣∣xi − x̂i∣∣ , (19)
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Figure 8. The cumulative displacement prediction of (a) station GPS03 and (b) station GPS04.

Table 2. Comparison between the predicted values of cumulative displacement and measured displacement using different methods in
station GPS04.

Time Measured SSPE SSPE assimilation

(mm) Prediction Difference Error Prediction Difference Error
(mm) (mm) rate (mm) (mm) rate

(%) (%)

26 Dec 2015 189.1781 175.2549 13.9232 7.36 180.9129 8.2652 4.37
21 Feb 2016 261.1626 252.4146 8.7480 3.35 260.5177 0.6449 0.25
1 Apr 2016 304.7420 296.5933 8.1486 2.67 301.3644 3.3775 1.11
6 Jun 2016 402.9618 394.7279 8.2339 2.04 400.5510 2.4108 0.60
1 Aug 2016 492.6282 479.9417 12.6865 2.58 484.7087 7.9195 1.61
26 Sep 2016 572.1082 559.3349 12.7733 2.23 564.2868 7.8214 1.37
11 Nov 2016 646.0208 636.9418 9.0790 1.41 642.0225 3.9983 0.62

MSE=
1
N
·

N∑
i=1

(
xi − x̂i

)2
, (20)

RMSE=

√√√√ 1
N
·

N∑
i=1

(
xi − x̂i

)2
, (21)

where xi is the measured value and x̂i is the prediction value.
The results are shown in Table 3. According to the predic-

tion evaluation indexes, the SSPE assimilation method offers
a better forecast effect than the SSPE method. The MAE,
MSE and RMSE values of the SSPE assimilation method
were 64.85 %, 82.33 % and 57.97 % lower than those of the

www.nat-hazards-earth-syst-sci.net/19/1387/2019/ Nat. Hazards Earth Syst. Sci., 19, 1387–1398, 2019
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Table 3. Comparison of mean absolute error (MAE), mean squared error (MSE) and root mean square error (RMSE) performance and needed
time using different methods in two stations.

Method MAE (mm) MSE (mm) RMSE (mm) Execution time (s)

GPS03 GPS04 GPS03 GPS04 GPS03 GPS04 GPS03 GPS04

SSPE
2.2323 6.8323 9.5285 56.9071 3.0868 7.5437 0.0048 0.0059

assimilation

SSPE 5.8533 7.3201 53.9320 76.1646 7.3438 8.7272 0.0844 0.0747

SSPE method in GPS03 station, respectively, and 6.66 %,
25.28 % and 13.56 % lower in GPS04 station, respectively.
The result suggests that the SSPE assimilation method has
achieved great performance in landslide displacement pre-
diction. Besides, the total execution time of the two meth-
ods is calculated. Building the SSPE model for landslide
displacement prediction only takes 0.0048 and 0.0059 s for
the two stations, while the SSPE assimilation strategy takes
0.0844 and 0.0747 s. It can therefore be considered as a near-
real-time solution to make a displacement prediction simul-
taneously.

5 Conclusion

This paper presents a practical strategy for accurately pre-
dicting landslide displacement by coupling landslide defor-
mation with external factors. For this, the PF data assimi-
lation algorithm was integrated with the SSPE method. For
the real data experiment, first the landslide deformation from
GPS measurements was decomposed into a trend term and a
period term. The period term was predicted with the hydro-
logical factor in simultaneous estimation data assimilation,
while the trend term was computed by polynomial fitting.

Our results show that the SSPE assimilation strategy has
an excellent ability to predict landslide displacement and
can provide assistance in early risk assessment and landslide
forecasting.
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