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Abstract. Construction of intensity–duration (ID) thresh-
olds and early-warning and nowcasting systems for land-
slides (EWNSLs) are hampered by the paucity of tempo-
ral and spatial archival data. This work represents signifi-
cant steps towards the development of a prototype EWNSL
to forecast and nowcast landslides over the Faifa Mountains
in the Red Sea Hills. The developed methodologies rely
on readily available, temporal, archival Google Earth and
Sentinel-1A imagery, precipitation measurements, and lim-
ited field data to construct an ID threshold for Faifa. The
adopted procedures entail the generation of an ID thresh-
old to identify the intensity and duration of precipitation
events that cause landslides in the Faifa Mountains, and
the generation of pixel-based ID curves to identify loca-
tions where movement is likely to occur. Spectral and mor-
phologic variations in temporal Google Earth imagery fol-
lowing precipitation events were used to identify landslide-
producing storms and generate the Faifa ID threshold (I =
4.89D−0.65). Backscatter coefficient variations in radar im-
agery were used to generate pixel-based ID curves and iden-
tify locations where mass movement is likely to occur fol-
lowing landslide-producing storms. These methodologies ac-
curately distinguished landslide-producing storms from non-
landslide-producing ones and identified the locations of these
landslides with an accuracy of 60 %.

1 Introduction

Mountainous areas worldwide with steep slopes, high precip-
itation, and limited vegetative cover often experience land-
slides. Two main types of landslides are often reported from
the Faifa Mountains in Saudi Arabia. The first are debris
flows that occur when water-saturated soils (largely from
weathered bedrock and fragmented rock) move down moun-
tainsides, get channeled into streams, pick up objects along
their paths, and deposit their thick load down the valley
slopes (Iverson, 1997). The second type results from failure
along preexisting fracture planes (Lowell, 1990) that occurs
when the following conditions are met (Norrish and Wyl-
lie, 1996): (1) the strike of the planar discontinuity is sim-
ilar (within 20◦) to the strike of the slope face; (2) the dip
of the planar discontinuity is less than that of the slope face
and oriented in the same general direction; (3) the dip of the
planar discontinuity is greater than the angle of the friction
of the surface; and (4) the friction angle of the rock material
is partially controlled by the size and shape of the grains ex-
posed on the fracture surface and by the mass of the block
above the planar discontinuity (Alharbi et al., 2014). These
two types of landslides pose a substantial threat to human life
and property in mountainous areas, especially in populated
regions that are witnessing unplanned urbanization.

One such area is the Faifa Mountains (area: 119 km2) in
the Jazan Province of Saudi Arabia (Fig. 1a). The Faifa
area has a high population density (∼ 35000 inhabitants
in 137 km2; MMRA, 2017), receives relatively high pre-
cipitation (mean annual precipitation, MAP; 252 mm yr−1;
Fig. 1b) compared to the remaining parts of Saudi Arabia
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Figure 1. Location of the study area. (a) Faifa Mountains within the Jazan Province. (b) Mean annual precipitation (MAP; 1998–2016) ex-
tracted from TRMM (1998–2014, 3B43 level-3, monthly, spatial resolution: 0.25◦×0.25◦) and GPM (2014–2016, IMERG level-3, monthly,
spatial resolution: 0.1◦×0.1◦) showing the higher regional rainfall around the Faifa Mountains (MAP in Faifa: 252 mm yr−1) in the southeast
part of the Jazan Province. (c) Distribution map of the meteorological stations in the Arabian Peninsula (Mashat and Basset, 2011) in Saudi
Arabia.

(83 mm yr−1), has steep slopes (up to 65◦; Fig. 2b), and wit-
nesses frequent landslide occurrences (1–4 events yr−1 dur-
ing the study period, 2007 to 2017). Unfortunately, monitor-
ing programs for landslide occurrences (date and time) and
conditions (intensity and duration of precipitation) are very
limited in Faifa. If such programs existed, they would have
generated the archival landslide data needed for the construc-
tion of intensity–duration (ID) relationships and for the de-
velopment of an early-warning and nowcasting system for
landslides (EWNSL). The paucity of such data in Faifa is
largely caused by its rugged nature and the limited coverage
of its road network; both factors render many areas inacces-
sible and hinder the development of monitoring systems. De-
spite the absence of organized monitoring programs for land-
slides in the study area, a few were recorded by the Saudi
Geological Survey (SGS) in the past few years. Our field
observations, and those collected by the SGS in the study
area and in its surroundings (Youssef et al., 2014), revealed
that debris flows are by far the most prominent landslide
type in the study area. To compensate for the deficiencies in
field data in Faifa, we complemented the available field data
with observations extracted from readily available temporal
remote-sensing data. These include high-resolution Google
Earth images (spatial resolution: 15 m to 15 cm), Sentinel-
1A Ground Range Detected (GRD level-1 synthetic aper-
ture radar (SAR) data; spatial resolution: 10 m), satellite-
based precipitation data including Tropical Rainfall Mea-
suring Mission (TRMM, 3-hourly_3B42 v7, spatial reso-
lution: 0.25◦× 0.25◦, ∼ 30 km in Faifa) and Global Pre-
cipitation Measurement (GPM) IMERG Final Precipitation
L3 Half Hourly (V05, spatial resolution: 0.1◦× 0.1◦, ∼

12 km in Faifa), and a high-resolution digital elevation model
(TanDEM-X DEM; spatial resolution: 12 m). Although GPM
provided higher temporal resolution (half-hourly) data com-
pared to TRMM (3-hourly) data, both sensors provided rain-
fall intensity data in millimeters per hour allowing continu-
ous measurements of rainfall with consistent observational
parameters and acceptable (∼ 67 %) to high (87 %) correla-
tion at the pixel and basin scales, respectively (Tang et al.,
2016). Field observations were collected (from 2014 to 2016)
from the areas that witnessed landslides following precipita-
tion events. In this paper, we develop procedures that take
advantage of both readily available remotely acquired data
and limited field data to develop ID thresholds for the study
area, procedures that could potentially be applied to similar
areas with limited field data.

A recent review by Segoni et al. (2018a) shows that the
majority of the ID-threshold development studies were con-
ducted over well-monitored areas where landslide-related
archival data are available from reports, surveys, fieldwork
sets (e.g., Burtin et al., 2009; Erener and Düzgün, 2013; Sta-
ley et al., 2013; Lagomarsino et al., 2015; Vallet et al., 2016;
Piciullo et al., 2017), or even from automatic systems (Bat-
tistini et al., 2017). In these areas, several advanced thresh-
olding techniques (e.g., geotechnical process-based, empiri-
cal, and rainfall measurement-based) are common (Guzzetti
et al., 2007). Unfortunately, Faifa lacks the historical land-
slide archives and rain gauge measurements to implement
any of these thresholding techniques. Using observation from
limited field data and satellite-based data sets (e.g., intensity
and duration of precipitation, or location of landslides), we
developed rainfall-based ID thresholds. In this respect, our
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approach does not require extensive archival field data sets
to generate ID thresholds. Thus, the approach could poten-
tially be applied in many of the world’s mountainous loca-
tions lacking adequate archival field data.

The majority of the ID thresholds that were constructed for
various landslide types (e.g., shallow landslides and debris
flow, Caine, 1980; Innes, 1983; Crosta and Frattini, 2001;
Aleotti, 2004; Jakob et al., 2012; soil slips, Clarizia et el.,
1996; and postfire debris flow, Cannon and Gartner, 2005;
Cannon et al., 2011) provide the magnitude and intensity of
rainfall that triggers landslides but not the locations where
they are likely to occur. We generated a unified ID threshold
for the Faifa Mountains to identify the landslide-triggering
precipitation events and pixel-based thresholds to identify lo-
cations where landslides are likely to occur. The pixel-based
threshold is adjusted to the response of the individual pixels
to historical rainfall events.

Several advances in rainfall thresholding techniques were
developed to account for the role of antecedent rainfall condi-
tions preceding landslide development (e.g., Kim et al., 2014;
Hong et al., 2017). Others consider software applications that
rely on rain gauge records, an extensive historical data cata-
logue, or advanced statistical analyses (e.g., Lagomarsino et
al., 2015; Peruccacci et al., 2017; Rossi et al., 2017b). Such
techniques cannot be applied in the Faifa area due to the ab-
sence of such measurements. Instead we adopt the minimum
thresholding technique that was successfully applied in sev-
eral studies (e.g., Caine, 1980; Larsen and Simon, 1993; Can-
non et al., 2008; Brunetti et al., 2010; Berti et al., 2012). We
acknowledge that if and once such data sets become available
for Faifa, the ID thresholds need to be updated to enhance
their performance (Rosi et al., 2015).

2 Study area

The study area (119 km2) lies within the Red Sea Hills
and covers an area (17.20 to 17.29◦ N and from 43.05 to
43.16◦ E) proximal to the Saudi–Yemeni border (Fig. 1a and
c). The elevation is high (ranging from 259 to 1817 m above
mean sea level) compared to the surrounding lowlands, the
topography is steep (slopes as high as 67◦; Fig. 2a and b), and
vegetation is extensive over the mountains but sparse in the
surrounding lowlands, as shown in the normalized difference
vegetation index (NDVI) map (Fig. 2c). The Faifa region
is located within the north-to-northeast-trending Tayyah tec-
tonic belt that consists of a complex of metamorphosed vol-
canic and pyroclastic rocks of basaltic, andesitic, and clastic
metasedimentary rocks (Greenwood et al., 1983) that were
generated and accreted in an island arc setting some 800 to
900 Myr (Stoeser and Camp, 1985). The Faifa Mountains are
predominantly composed of highly foliated, deformed, and
weathered rocks of variable compositions including gran-
ite gneiss, amphibolite schist, phyllite, quartzite, biotite, and
sericitic schist that are intruded by a massive intergranu-

lar syenite (Schmidt et al., 1973; Greenwood, 1979; Green-
wood et al., 1983; Alharbi et al., 2014). The area is highly
dissected by north–south-, northwest–southeast-, and east–
west-trending fault and fracture systems (Fairer, 1985; Al-
harbi et al., 2014; Fig. 2d). The presence of highly weath-
ered, foliated, and deformed rocks, together with the high el-
evations, steep slopes, and sparse vegetation, makes this area
prone to landslides even under modest precipitation intensi-
ties.

Analysis of TRMM (1998–2014) and GPM (2014–2016)
measurements for the period 1998 to 2016 revealed sparse
precipitation over the Saudi Arabian landscape (MAP:
83 mm yr−1) but relatively higher precipitation over the Red
Sea Hills in western Saudi Arabia, which receive a higher
MAP of 108 mm yr−1. These analyses involved spectral re-
sampling of GPM data to match the TRMM resolution fol-
lowed by zonal and pixelwise averaging over the indicated
time span. Comparison of TRMM to the resampled and aver-
aged GPM measurements over the study area revealed highly
correlated (>85 %) values during the period of overlap
(March to September 2014). A progressive increase in over-
all rainfall over Faifa was noted over the past 6 years (MAP:
2010–2016: 315 mm yr−1; 1998–2009: 227 mm yr−1) with
the wettest year on record in 2016 (total annual rainfall:
450 mm). Two systems of wind regimes are responsible for
the rainfall over Faifa: (1) northerly and northwesterly win-
ter cyclonic regimes from the Mediterranean and (2) summer
monsoons from the Arabian Gulf and the Indian Ocean (Al-
sharhan et al., 2001).

3 Methods

The methodology we developed entailed two main steps.
The ID curve for the Faifa Mountains was first generated
to identify storms that caused landslides (temporal analy-
sis; Sect. 3.1), and then pixel-based ID curves were con-
structed to identify the locations where movement is likely
to occur (spatial analysis, Sect. 3.2–3.4). The latter step in-
volved (1) selection, calibration, and preprocessing of radar
images; (2) generation of backscatter coefficient difference
images as a measure of surface roughness change due to
precipitation-induced landslides; and (3) development, re-
finement, and validation of the model to identify pixels sus-
ceptible to movement under user-defined precipitation con-
ditions.

Data used for the study include (1) temporal Google Earth
imagery, (2) Sentinel-1A radar imagery; (3) TRMM and
GPM; (4) field observation of landslide locations (debris flow
and failure along fracture plane); and (5) the TanDEM-X
DEM. A detailed flow chart is presented in Fig. 3.
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Figure 2. Maps showing the study area. (a) Elevation map showing locations where field observations were collected for the period extending
from 26 February to 7 March 2016. (b) Slope map generated from TanDEM-X DEM. (c) NDVI map generated from Sentinel-2 data (date of
acquisition: 5 June 2017). (d) Geologic map for the Faifa Mountains (after Fairer, 1985, and Alharbi et al., 2014).

3.1 Generation of the ID threshold for the Faifa
Mountains

Unfortunately, the distribution of rain gauges is inadequate
in the study area (Fig. 1c). There is only one station within
Jazan Province, and three more stations in its surroundings
(Fig. 1c). We utilized the GPM half-hourly (spatial resolu-
tion: 0.1◦× 0.1◦) and TRMM 3-hourly (spatial resolution:
0.25◦× 0.25◦) data to extract the intensity and duration of
rainfall that caused landslides throughout the period from
2007 to 2016 (Table 1 and Fig. 4). In generating the ID
threshold for Faifa, we used the peak intensity values; in
other words, the shorter sections of the precipitation event
with higher intensity were selected. Landslides triggered by

the same storm at different locations were assigned the same
intensity and duration values. Although semiautomated pro-
cedures have been used successfully to extract intensity and
duration of landslide-producing precipitation events (e.g.,
Segoni et al., 2014; Rosi et al., 2016), we adopted a man-
ual approach given the coarse spatial and temporal resolu-
tion of satellite data and the limited inventory of historical
landslide data over the Faifa Mountains. Rainfall events of
less than 1 mm h−1 were omitted given that no landslides
were reported from the area at these low rainfall rates and
TRMM could mistakenly identify fog for a low rainfall event
(<1 mm h−1; Milewski et al., 2009). Altogether, 131 precip-
itation events were extracted from TRMM and GPM data
throughout this period, of which 19 events were identified
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Figure 3. Flow chart summarizing the developed methodology
that could serve as important steps towards the construction of an
EWNSL. The developed procedures involved the analysis of tempo-
ral Google Earth images, Sentinel-1A radar scenes, and TRMM and
GPM rainfall data. Analysis involved two main steps: generation of
an ID curve for the Faifa Mountains to identify storms that are likely
to produce landslides (landslide-producing storms), and generation
of pixel-based ID curves to identify the locations where movement
is likely to occur during landslide-producing storms. Step II in-
volved (1) selection, calibration, and preprocessing of radar images,
(2) generation of backscatter coefficient difference images as a mea-
sure of surface roughness change due to precipitation-induced land-
slides, and (3) development, refinement, and validation of the model
to identify pixels susceptible to movement under user-defined pre-
cipitation conditions. The downloaded scenes were processed using
the ESA’s Sentinel Toolbox software, ENVI, ArcMap, and Python.

as landslide-producing storms (Table 1). These storms were
identified using spectral and morphologic variations associ-
ated with landslide development, variations detected in the
field and/or extracted visually from pairs of Google Earth
images bracketing large precipitation events. Google Earth
images were favored over other readily available visible near-
infrared (VNIR) satellite data sets given their high spatial res-
olution (15 m to 15 cm) and long temporal coverage for the
study area (2007 to present). An area that witnessed land-
slides will be covered by spectrally dark vegetation on the
Google Earth image preceding the landslide and by spec-
trally bright rocks and sediments in the image acquired after
the landslide development. In many cases the latter image,
not the former image, shows a major scar in the source area
(onset of the landslide) that gives way to more linear scars
in vegetation along the landslide path. It is worth noting that
different parts of the Faifa Mountains have differing numbers
of Google Earth image acquisitions, amount of coverage, and
resolutions.

Starting in October 2014, the SGS initiated a program to
field-verify reports of landslide occurrences. Field observa-
tions were conducted by our research team following the
25 December 2015 landslide-producing storm and by the
SGS researchers throughout the period from October 2014
to October 2016. Our collective field investigations revealed
extensive landslides following the events on 25 Decem-
ber 2015, 13 and 29 April 2016, and 1 and 25 August 2016.
During a number of these storms, landslides were reported
from the mountainous areas proximal to, but outside of, the
study area (e.g., Youssef et al., 2014).

Using detected storm-induced spectral and morphologic
variations in pairs of archival temporal Google Earth im-
agery, two additional landslide-producing events (18 Novem-
ber and 1 December 2014) were extracted; these were ap-
parently not reported to, or verified by, the SGS researchers
during their field campaign due to their location in inac-
cessible areas. Using the same techniques (storm-induced
spectral and morphologic variations) 16 storms were de-
tected in the period (2007 through 2014) preceding the SGS
field campaign (2014–2016). Given the paucity of Google
Earth images (18 images in 10 years), a number of precipita-
tion events are likely to have occurred between consecutive
Google Earth images. If landslides were detected within the
period covered by the consecutive Google Earth image acqui-
sitions, it was assumed that the largest of these storms caused
the observed landslides. In the case of some of the identified
precipitation events, the rainfall intensity and duration var-
ied from one part of Faifa to another, which resulted in the
inclusion of more than one landslide-producing storm event
between the same set of Google Earth images. In doing so, a
few landslide-producing storms and those that did not cause
landslides were not identified. The latter type of storms were
identified during the field campaign period (Table 1).

The data presented in Table 1 were plotted to extract the
ID threshold for the Faifa Mountains. Landslide-producing
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Table 1. Intensity and duration of the precipitation events used for the construction of the Faifa ID curve. Landslide-producing storms were
verified through field observations and by examining spectral and morphologic variations in pairs of Google Earth archival images bracketing
significant storm events.

Intensity (mm h−1) Duration (h) Storm date (yr/m/d) Landslides Google Earth imagery dates (yr/m/d)

1 3.17 3.00 2007-06-02 Yes Google Earth (2007-12-30 and 2007-03-01)
2 4.83 3.00 2008-10-11 Yes Google Earth (2010-04-19 and 2007-12-30)
3 5.34 3.00 2008-10-24 Yes Google Earth (2010-04-19 and 2007-12-30)
4 2.58 3.00 2010-07-29 Yes Google Earth (2010-10-28 and 2010-05-10)
5 2.69 6.00 2010-07-11 Yes Google Earth (2010-10-28 and 2010-05-10)
6 3.62 3.00 2010-08-25 Yes Google Earth (2010-10-28 and 2010-05-10)
7 1.85 6.00 2011-07-31 Yes Google Earth (2012-03-05 and 2010-10-28)
8 1.86 9.00 2011-08-27 Yes Google Earth (2010-10-28 and 2012-03-05)
9 3.29 3.00 2011-08-28 Yes Google Earth (2012-03-05 and 2010-10-28)
10 2.91 3.00 2012-06-21 Yes Google Earth (2013-04-14 and 2012-03-05)
11 1.63 6.00 2013-07-22 Yes Google Earth (2013-10-11 and 2013-04-14)
12 1.04 12.00 2014-05-18 Yes Google Earth (2014-12-24 and 2014-01-06)
13 3.70 2.00 2014-11-18 Yes Google Earth (2014-12-24 and 2014-05-23)
14 5.77 4.00 2014-12-01 Yes Google Earth (2014-12-24 and 2014-10-21)
15 2.42 1.00 2015-03-22 No Field visit
16 4.67 0.50 2015-06-02 No Field visit
17 1.77 0.50 2015-06-20 No Field visit
18 1.37 0.50 2015-07-31 No Field visit
19 2.39 1.00 2015-08-25 No Field visit
20 3.07 1.50 2015-09-14 No Field visit
21 2.62 2.00 2015-11-05 No Field visit
22 7.91 2.00 2015-12-25 Yes Field visit
23 2.85 0.50 2016-03-25 No Field visit
24 5.02 6.50 2016-04-13 Yes Field visit
25 4.76 1.50 2016-04-29 Yes Field visit
26 2.82 2.00 2016-06-02 No Field visit
27 1.64 1.00 2016-06-15 No Field visit
28 8.85 12.00 2016-08-01 Yes Field visit
29 6.40 3.00 2016-08-25 Yes Field visit
30 2.93 2.50 2016-09-30 No Field visit

storms were represented in Fig. 4 by solid circles (red and
black), and the non-landslide-producing storms by open cir-
cles. The solid black circles are for field-verified landslide-
producing storms, and the red circles are for landslide-
producing events extracted from Google Earth images. The
figure shows the extracted ID curve (red line; equation:
I= 4.89D−0.65) that provides the best visual separation be-
tween the landslide-producing (solid circles above red line)
and non-producing (open circles below red line) precipitation
events. Given the limited number of storms that were iden-
tified throughout the investigated period we believe that the
adopted approach for defining the ID threshold is adequate at
this stage.

3.2 Selection, calibration, and preprocessing of radar
images

The radar backscatter differences were used to determine
the location of the landslide for the storm that caused the
landslides. Sentinel-1A radar scenes were downloaded for

ascending and descending acquisition modes from the Sen-
tinel Hub (https://scihub.copernicus.eu/dhus/#/home, last ac-
cess: 10 May 2017), a download platform for the European
Space Agency (ESA), for the period between October 2014
and October 2016. The scenes can also be downloaded from
the website of the Alaska Satellite Facility (ASF) (https:
//vertex.daac.asf.alaska.edu/, last access: 29 April 2017). The
scenes acquired immediately after (1 d or less) the rainfall
were not used in the generation of backscatter coefficient
difference images to avoid differences in backscatter due to
precipitation-related change in moisture content. The prepro-
cessing steps that were applied to the downloaded scenes in-
cluded radiometric calibration and calculation of beta naught
(β0, the radar brightness coefficient), speckle filtering, terrain
flattening and correction, and image co-registration. Ascend-
ing and descending scenes for the same area provide differ-
ent degrees of visibility and, depending on the orientation
and complexity of the topography (van Zyl et al., 1993), one
acquisition mode may provide better visibility than the other.
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Figure 4. ID scatter plot generated from landslide-producing storm events (solid circles) and non-producing precipitation events (open
circles) during the period from 2007 to 2016. The Faifa ID curve (equation: I=4.89D−0.65; duration threshold, x: 0.5 to 12 h) separates the
landslide-producing events from non-producing events.

Standard processing procedures for SAR scenes were ap-
plied together with additional filtrations to remove backscat-
ter anomalies that could be confused with our target. Ground-
range-detected (GRD) level 1 images were downloaded and
radiometrically calibrated using ESA’s Sentinel Toolbox fol-
lowing the basic processing steps established by Veci (2016).
The level-1 GRD products are focused SAR data that have
been detected, multi-looked, and projected to ground range
using an Earth ellipsoid model (Small and Schubert, 2008).
The GRD images were used to calculate the β0 (Small,
2011), a measure of radar backscatter energy, in decibels
(dB; Raney et al., 1994), for both ascending and descending
modes. The existing granular noise that degrades the quality
of SAR data, known as speckle, was minimized in the ex-
tracted radar backscatter coefficient images using the Lee fil-
ter (window size: 3×3; Lee, 1983; Lee et al., 2009) and high-
resolution DEM (TanDEM-X DEM; resolution: 12.5 m). The
Terrain Flattening and the Range Doppler Terrain Correction
(Small, 2011) was applied to the speckle-filtered scenes to
correct for radiometric biases introduced by the rugged to-
pography of the study area. Each of the processed scenes was
co-registered (sub-pixel co-registration) to the previously ac-
quired one in Sentinel Toolbox (Press et al., 1992). Follow-
ing the generation of the backscatter images, the scenes were
cropped to the extent of the Faifa area to facilitate the execu-
tion of the steps that follow. The details of the processes have
been provided in Fig. 3 (step II).

3.3 Generation of backscatter difference images

Following the identification of precipitation events over
Faifa, backscatter difference images were generated between

scenes bracketing the identified precipitation events. The ini-
tial analysis of these difference images revealed that corner
reflectors and areas of low visibility can produce a response
similar to that of landslides; hence, procedures were devel-
oped to identify and mask out these areas. The generation
of the backscatter difference images involved a number of
steps: (1) calculation of radar visibility and removal of low-
visibility areas; (2) identification and removal of corner re-
flectors; and (3) generation of backscatter difference images.

Ascending and descending scenes for the same area pro-
vide different degrees of visibility depending on the topogra-
phy and satellite orientation. (Notti et al., 2014). A radar visi-
bility index (R; Notti et al., 2014) image was used to identify
and mask out areas of low visibility in both the ascending and
descending backscatter images. The R index is a function of
local variables (slope, aspect, incidence angle, layover, and
shadow) and satellite geometry (line-of-sight azimuth). Us-
ing high-resolution DEMs, digital images were computed for
each of those variables, which were then used to generate
R index images for ascending and descending geometries.
These R index products were applicable for all backscatter
scenes of the same geometry, and its values range from 0 (low
visibility) to 1 (high visibility). Pixels with R values below a
threshold of 0.6 were found to be spatially correlated with ar-
eas affected by overlays and by shadowing and were masked
out. The distribution of pixels with backscatter coefficients
exceeding 0.5 dB were found to correlate with that of build-
ings, construction areas, vehicles, and parking spaces. Such
features can act as corner reflectors and produce high radar
returns by reflecting waves towards the source. Pixels with
backscatter coefficients exceeding 0.5 dB (corner reflectors)
were masked out. The filtered backscatter images were used
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to generate backscatter difference images between pairs of
consecutive backscatter scenes, and only those pairs bracket-
ing storm events were considered for further analysis.

3.4 Refinement and validation of the model

The refinement and validation of the model involved (1) spa-
tial refinement and standard deviation (SD) image genera-
tion, (2) field verification, and (3) batch processing of scenes.
The population density in and around the road networks is
high, and so are the risks for human and property losses if
landslides occur in their vicinity. The construction of roads
can trigger debris flows, especially in cases when roads in-
tersect steep slopes (Fig. 5a) or terraces constructed on these
steep slopes (Fig. 5b), ephemeral valleys, and fracture planes
dipping towards the road (Fig. 5c; Alharbi et al., 2014).

The distribution of historical debris flows in the study area
was investigated to identify areas susceptible to debris flow.
As described earlier, areas that witnessed recent debris flows
are characterized by spectrally bright rocks and sediments,
a major scar in the vegetation within the source area (onset
of landslide) that gives way to more linear scars in the vege-
tation along the landslide path. As years go by, spectral and
morphologic features indicative of debris flows can become
obscured by encroaching vegetation, making it more diffi-
cult to identify the older debris flows. Many of the histori-
cal debris flows were found on steep slopes, along first-order
streams, above and proximal to the main roads as shown in
Fig. 6. Using these three criteria, areas susceptible to debris
flows were identified by (1) extracting stream networks using
a stream delineation algorithm (Tarboton et al., 1991) in Ar-
cGIS 10.5 over the steep slopes (>30◦) and capturing first-
order streams using a small flow accumulation value (10 pix-
els), (2) assigning a buffer zone (20 m wide) around the ex-
tracted streams to delineate the areas that are likely to be
triggered by runoff during and following rainfall events, and
(3) assigning a buffer zone (100 m wide) around the roads.
The use of the last criterion allows the identification of areas
susceptible to failure along preexisting fractures as well since
our field observations showed that the majority of such fail-
ures were triggered by road construction. The selected width
of the buffer zones was determined by examining the proxim-
ity of the historical landslides to roads and extracted streams.

The selection of the buffered zones for further investiga-
tion served two purposes: (1) targeting areas of high risk
and (2) capturing the backscatter variations that are related
to landslides, variations that could have been confused with
those caused by factors other than landslides (e.g., change
in vegetation intensity or vegetative cover) if the entire area
were considered. Figure 6 shows several landslides within
areas identified as being susceptible to landslides using the
three abovementioned criteria.

The spatial refinement was followed by filtration to de-
tect spectral anomalies in the resultant image. A standard
deviation-classified image was generated for a backscat-

ter difference image that bracketed the December event
(images acquired on 24 December 2015 and 12 Febru-
ary 2016). The differences in backscatter were classified into
four groups: area of ≤ 1 SD (no change), >1 SD to ≤ 2 SD
(lowest change), >2 SD to ≤ 3 SD (medium change), and
>3 SD (highest change). Within the buffered areas on any
of the backscatter difference images, the largest variations
are expected to correspond to areas that witnessed landslide-
related changes in roughness. Field observations following
the 25 December 2015 precipitation event (15 mm) were con-
ducted (26 February to 7 March 2016) to test this assumption.
The investigation proved the worth of the examination of the
variations in spatially refined and spectrally filtered backscat-
ter difference images and the effectiveness of the applied fil-
tering techniques in omitting the false positives.

Altogether we visited 27 sites in Faifa during our field
investigation (Fig. 2a). It was found that the distribution of
areas with ≤ 1 SD variations in the extracted difference im-
ages did not correspond to any of the observed landslides and
are here attributed to temporal variations in vegetation, mi-
nor roughness changes, and possibly sub-pixel errors in co-
registration. Areas exceeding 1 SD in the difference images
(Fig. 7; clusters of red, yellow, and green pixels represent-
ing highest, medium, and lowest changes, respectively) in the
backscatter difference image corresponded to landslide loca-
tions and showed evidence for recent redistribution of boul-
ders and sediments in the field. If these conditions were met,
a landslide was considered to be verified. Altogether, 90 %,
60 % and, 86 % of the pixels exceeding 3σ , 2σ , and 1σ were
located within contiguous areas identified as being locations
of landslides. The remaining areas were mostly random dis-
tributions of individual pixels resulting from corner reflectors
or artifacts due to inadequate speckle filtering. Out of the 15
landslides that were identified with the proposed method, 14
were verified in the field. There was a false positive where
the pixels exceeding 1 SD corresponded to road construction-
related changes (Table 2: site 26). Field investigations of 12
sites verified that spatial refinement and filtration techniques
were successful in filtering out 9 of the 12 false positives re-
sulting from corner reflectors (e.g., building, constructions),
but mistakenly removed an active debris (Table 2: site 1) and
structurally stabilized fracture plane (Table 2: site 19 and 20).

3.5 Pixel-based adaptation of Faifa ID threshold as a
predictive tool

The ID curve for any pixel should separate landslide-
producing events (backscatter difference >1 SD) from non-
landslide-producing (backscatter difference ≤ 1 SD) precip-
itation events. On these graphs, landslide-producing events
plot above the curve, and the non-producing events plot be-
low it.

A pixel-based debris detection system was developed by
adopting the slope of the extracted Faifa ID curve. The as-
signment of the ID curves to the individual pixels will depend
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Figure 5. Landslides proximal to, possibly triggered by, road construction and intensified by rainfall. (a) Debris flow caused by failure on
steep slopes intersected by roads. (b) Debris flow caused by failure of terraces constructed on steep slopes. (c) Landslide caused by failure
on fracture planes dipping towards the road.

Table 2. Field observations collected (26 February to 7 March 2016) for the assessment of radar-based distribution of active landslides, the
areas exceeding 1 standard deviation (1 SD) on difference images. Locations shown in Fig. 2a.

Difference image Remarks Long. (◦ E) Lat. (◦ N)

1 Filtered out active debris flow; false positive 43.054 17.234
2 3 SD, 2 SD Verified active debris flow 43.065 17.237
3 3 SD, 2 SD Verified active debris flow 43.070 17.233
4 Filtered out road construction 43.080 17.236
5 Filtered out terraces, bare soil, no vegetation 43.081 17.237
6 3 SD, 2 SD Verified active debris flow, recently mitigated at intersection with road 43.083 17.241
7 2 SD Verified active debris flow 43.086 17.244
8 Filtered out terraces 43.091 17.243
9 2 SD Verified active debris flow; locals reported activity during rainfall 43.092 17.244
10 2 SD Verified active debris flow used to dispose construction material 43.106 17.255
11 3 SD, 2 SD Verified active debris flow, recently mitigated at intersection with road 43.105 17.262
12 Filtered out buildings 43.118 17.271
13 2 SD Verified active debris flow 43.118 17.273
14 Filtered out road construction 43.070 17.271
15 Filtered out road construction 43.075 17.266
16 2 SD Debris flow related to terraces 43.081 17.261
17 2 SD Verified debris flow recently mitigated proximal to road 43.081 17.262
18 3 SD, 2 SD Verified active debris flow 43.081 17.260
19 Filtered out shotcrete to stabilize the fracture planes; false positive 43.087 17.255
20 Filtered out shotcrete to stabilize the fracture planes; false positive 43.086 17.258
21 3 SD, 2 SD Verified active debris flow 43.082 17.258
22 2 SD Verified failure along fracture plane dipping towards the road 43.091 17.254
23 Filtered out buildings 43.104 17.262
24 Filtered out terraces 43.101 17.267
25 3 SD, 2 SD Verified active debris flow bordering a terrace 43.099 17.269
26 3 SD, 2 SD Construction related debris flows downhill from the road; false negative 43.095 17.273
27 Filtered out construction along the road 43.083 17.274

on the relative stability of the individual pixel. The less stable
pixels, such as those on steep slopes, are expected to experi-
ence movement in response to weak, moderate, and extreme
storm events, whereas the more stable pixels will move dur-
ing the extreme events only. Figure 8 shows the ID curve for a
more stable pixel. Curve A represents the ID curve for more
stable locations as it showed evidence for landslide-related
movement (>1 SD on the radar backscatter difference im-

age) in response to five bigger events (1 December 2014,
25 December 2015, 13 April 2016, 1 and 25 August 2016)
but no movement (<1 SD in the backscatter difference im-
age) following the 29 April 2016 and 18 November 2014
storms. Curve A has the slope of the Faifa ID threshold, but
a different intercept. Thus, knowing the historical response
of each individual pixel to these storms, each pixel was as-
signed an ID curve whose slope is similar to that of the Faifa
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Figure 6. Google Earth imagery (map data: Google, DigitalGlobe,
and CNES/Airbus) showing the spatial refinement procedures.
(a) Areas showing debris flows within areas characterized by steep
slopes (>30◦) and proximity to roads (<100 m) and to the first-
order streams (<20 m). (b) The areas that satisfy these three condi-
tions are outlined by the shaded polygon.

curve. In other words, the pixel-based ID curve uses the his-
torical landslide response of a pixel to estimate the intensity
and duration of the precipitation that would cause landslide
in the future. Any event that plots above the pixel ID curve
would produce landslides at that location, whereas the one
that plots below would not produce a landslide. The pixel-
based ID curve helps to predict the location that will wit-
ness landslides under any future storm event. With the cur-
rent limitation of data sets, only a few upward translations
of the Faifa ID curve are possible. As the inventory of land-
slide grows, we expect that the placements of pixel-based ID
thresholds will become progressively refined and will hence
represent more realistic views of the stability of individual
pixels. The expanded inventory will also enable the applica-
tion of advanced thresholding techniques.

3.6 Validation of ID threshold

Three precipitation events larger than the threshold
(1 mm h−1 for 1 h) were recorded during the period from
November 2016 to April 2017. These occurred on 14 Febru-
ary (intensity: 2.28 mm h−1; duration: 3.5 h), 17 February
(intensity: 1.07 mm h−1; duration: 9.5 h), and 28 April (in-
tensity: 1.75 mm h−1; duration: 4.5 h) of 2017. The event on
14 February plotted above the Faifa ID curve, whereas those

Figure 7. (a) Google Earth imagery (map data: Google, Digital-
Globe, and CNES/Airbus) showing the distribution of debris flows
(identified by white arrows). (b) Backscatter difference image for
two descending scenes bracketing (acquisition dates: 24 Decem-
ber 2015 and 10 February 2016) a precipitation event on 25 De-
cember 2015 showing correspondence of areas of low to negligible
variations (≤ 1 SD) with vegetation and areas exceeding 1 SD (clus-
ters of red, yellow, and green pixels) to debris flow locations that
showed evidence for recent redistribution of boulders and cobbles
in the field.

on 17 February and 28 April plotted below the curve. Land-
slides were reported following the 14 February event, but not
for the two other storm events, an observation that supports
the validity of the extracted ID curve for Faifa.

Using the precipitation intensity and duration for the
14 February storm, and the extracted pixel ID curves, we gen-
erated a map showing the areas (three or more pixels) that are
likely to witness movement under the specified precipitation
conditions. We visually inspected these areas on the Google
Earth images that were acquired before (2 October 2016) and
after (29 March 2017) the 14 February storm as shown in
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Figure 8. Demonstration of pixel-based ID curves. Curve A is a curve for a more stable pixel that witnessed landslides in response to five
storms (1 December 2014, 25 December 2015, 13 April 2016, 1 and 25 August 2016). The ID curve for the more stable location is parallel
to the Faifa ID curve that separates landslide-producing storm events from non-landslide-producing storm events from Fig. 4.

Fig. 9. Spectral and morphological variations indicative of
landslides were detected in the 29 March Google Earth im-
age. Specifically, 13 landslides were predicted, out of which
six were verified by inspecting the 29 March image, an accu-
racy of 60 %. Similarly, out of seven locations where no land-
slides were predicted, one location witnessed a landslide. We
suspect that the high number of false positives (seven loca-
tions) is largely an artifact of the adopted method of land-
slide verification. The morphological variations observed in
Google Earth images and indicative of landslides are effec-
tive in detecting the large, but not the small, landslides. The
higher number of false positives (seven locations) than the
false negatives (one location) suggests that the pixel-based
ID curve significantly reduces the number of false negatives.
With a limited number of post-study storm events, the en-
tire Faifa area currently can accommodate only a few adjust-
ments to the ID curve. With the inclusion of more storms and
accumulation of archival data, the pixel-based ID curve is
expected to represent the unique historical signature of land-
slide records. Thus, over time, the number of false positives
is expected to decrease as more and more areas would have
their thresholds based on its relative stability instead of the
minimum threshold established for the Faifa region. At this
stage, the reported accuracy is reasonable for developing a
prototype EWNSL given (1) the uncertainties associated with
extracting the Faifa and pixel-based ID curves and (2) the
fact that landslides in a particular area tend, in some cases,
to stabilize the location and reduce the chances of landslide
recurrence in the same area.

4 Discussion

Our ability to predict the landslide-producing storms and the
locations of these landslides will depend largely on the ac-
curacy of the extracted/adopted ID curves. The production
of the Faifa ID curve was based on precipitation data for 30
storms, approximately 63 % of which produced landslides.
Precipitation was extracted from the earlier coarse TRMM
(3 h; 0.25◦× 0.25◦) data and later from the finer-resolution
GPM (1 h; 0.1◦×0.1◦) data; field observations and temporal
Google Earth images were used to identify which of these
storms produced landslides. The temporal coarseness of the
precipitation data, especially 3-hourly TRMM data, provides
the uncertainty in the precise placement of the ID curve. In
upcoming years, additional data points (landslide-producing
and non-producing storms), especially those extracted from
GPM or rain gauge data with higher spatial and temporal res-
olution, will be used to refine the initial Faifa ID curve.

Refining the Faifa ID curve will enhance the accuracy of
the pixel-based ID curves as well, given that they are as-
sumed to be parallel to the Faifa ID curve. In the construction
of these curves, we were constrained by the following limi-
tations in data availability and processing technique: (1) the
limited number of storms (18) that occurred throughout the
time period (30 October 2014 to 31 October 2016) during
which radar images were available; (2) coarse spatial resolu-
tion of the DEM (12.5 m TanDEM-X) and radar data (multi-
looked using DEM, 12.5 m) that made it difficult to identify
landslides of limited size (<25 m or the size of two pixels);
(3) the discontinuous acquisition of Sentinel-1A data (as-
cending and descending modes) that interrupted the monitor-
ing of landslides in response to storm events; (4) sub-pixel er-
rors in co-registration of radar data and anomalous backscat-
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Figure 9. Demonstration of the prediction result using Google Earth imagery (map data: Google, DigitalGlobe, and CNES/Airbus) for the
storm that occurred on 14 February 2017. (a) Area that witnessed a landslide that was predicted (true positive). (b) Area that did not witness
landslide but was predicted (false positive). (c) Area predicted as stable but witnessed landslide (false negative).

ter spikes originating from buildings and construction activi-
ties that produced radar responses similar to landslide-related
radar response and were not filtered; (5) drastic changes in
the slope and/or vegetation in a particular pixel that im-
paired the functionality of several pixel-based ID curves;
(6) the possibility that frequent rainfall events of short du-
ration could have gone undetected given the coarse tempo-
ral resolution of the satellite-based precipitation data; and
(7) limited field investigations and reliance on Google Earth
imagery not providing enough information to develop a ro-
bust thresholding technique.

In coming years, the pixel-based ID curves we devel-
oped will be refined by (1) acquiring high-spatial- and high-
temporal-resolution precipitation data; (2) identifying ad-
ditional landslide-producing storms to augment the exist-
ing database and update the existing pixel-based ID curves;
(3) applying additional filtration techniques (e.g., coherence
threshold filters to reduce false positives); and (4) develop-
ing an urban mask to exclude radar responses from corner
reflectors that could be confused with those from landslides.
We will also explore refining our methodologies to account
for the impact of antecedent precipitation on landslide devel-
opment (e.g., Chen et al., 2015). To date, the application of
ID thresholds for landslide hazard assessment is widespread
in early-warning systems at local and regional scales (e.g.,
Peruccacci et al., 2017; Rossi et al., 2017a), yet over the
past few years there has been increasing recognition of the
role of hydrology in landslide initiation, a factor that is not
fully incorporated in the ID threshold analysis. The inten-
sity and duration of rainfall during which a landslide occurs

are not the only triggers for landslides; the rainfall events
(antecedent rainfall) that preceded the landslide-causing pre-
cipitation are triggers as well (Kim et al., 2014; Hong et al.,
2017). A recent study (Segoni et al., 2018b) highlighted the
role of soil moisture content preceding rainfall events in the
initiation of landslides and incorporated it in the development
of a statistical early-warning system. It has been shown that
the antecedent and peak rainfall play important roles in trig-
gering landslides in general, but debris flow development is
more related to peak rainfall than antecedent rainfall (Chen
et al., 2015). Given that the overwhelming majority of our
landslides are debris flows, we do not anticipate that the in-
clusion of the soil moisture content in our model will largely
affect our findings, yet futuristic refinements of the devel-
oped methodologies should consider the role of antecedent
moisture.

The adopted methodologies and suggested refinements
represent significant steps towards the development of a pro-
totype EWNSL. To better achieve this goal, the following ad-
ditional automated steps have to be accomplished. Near-real
time measurements of precipitation should be collected from
the rain gauge network over the study area to avoid the delays
associated with posting satellite-based precipitation (GPM:
3 to 6 h). Temporal precipitation distributions can be derived
from the acquired rain gauge measurements and used as in-
puts to our developed modules. Currently, our methodology
identifies vulnerable areas based on user-defined precipita-
tion intensity and duration. Once the nowcasting system is
established, as rainfall data are collected, it will be fed auto-
matically into the EWNSL to identify the areas likely to wit-
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ness landslides at any time. The precipitation at any location
could be assumed to continue for a predetermined time pe-
riod (e.g., 1 h) and the model outputs under such assumptions
could be used to predict the areas that are likely to witness
landslides in that predetermined time period. The predictive
model outputs could be posted in near-real time on a web-
based GIS, giving the authorities and citizens in threatened
areas enough time to vacate these locations.

5 Conclusions

We developed a predictive system that shows whether a
storm with a particular intensity and duration can cause land-
slides in the Faifa Mountains. For the identified landslide-
producing storms, the developed methodologies will also se-
lect areas that are likely to witness landslide development.
The extracted ID curve for Faifa is used for the landslide-
causing storms and the extracted pixel-based ID curves for
the areas of landslides.

The methodologies advanced here are robust and cost-
effective procedures that could be readily applied to many
data-deficient locations worldwide. The proposed method-
ology relies heavily on readily available satellite data and
thus could be applicable to many of the world’s mountain-
ous locations. The developed methodologies and rigorous
refinements represent significant steps towards the develop-
ment of an EWNSL if precipitation forecasts become avail-
able. The proposed procedures for the development of ID
curves should not be considered as alternatives to the well-
developed field-based ID relationships and to recently intro-
duced advances in such applications but could be used in ab-
sence of such field-based data sets.
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