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Abstract. The estimation of extreme floods is associated
with high uncertainty, in part due to the limited length of
streamflow records. Traditionally, statistical flood frequency
analysis and an event-based model (PQRUT) using a single
design storm have been applied in Norway. We here pro-
pose a stochastic PQRUT model, as an extension of the stan-
dard application of the event-based PQRUT model, by con-
sidering different combinations of initial conditions, rainfall
and snowmelt, from which a distribution of flood peaks can
be constructed. The stochastic PQRUT was applied for 20
small- and medium-sized catchments in Norway and the re-
sults give good fits to observed peak-over-threshold (POT)
series. A sensitivity analysis of the method indicates (a) that
the soil saturation level is less important than the rainfall in-
put and the parameters of the PQRUT model for flood peaks
with return periods higher than 100 years and (b) that exclud-
ing the snow routine can change the seasonality of the flood
peaks. Estimates for the 100- and 1000-year return level
based on the stochastic PQRUT model are compared with re-
sults for (a) statistical frequency analysis and (b) a standard
implementation of the event-based PQRUT method. The dif-
ferences in flood estimates between the stochastic PQRUT
and the statistical flood frequency analysis are within 50 %
in most catchments. However, the differences between the
stochastic PQRUT and the standard implementation of the
PQRUT model are much higher, especially in catchments
with a snowmelt flood regime.

1 Introduction

The estimation of low-probability floods is required for the
design of high-risk structures such as dams, bridges and lev-
ees. For example, floods with a 100-year return period are
sometimes required for the design of levees and the design
and safety evaluation of high-risk dams requires the estima-
tion of flood hydrographs for the 1000-year return period
and, in some cases, floods with magnitudes of up to the prob-
able maximum flood (PMF). An overview of design flood
standards for reservoir engineering in different countries is
provided in Ren et al. (2017). Flood mapping also usually re-
quires input hydrographs for flood events with return periods
of up to 1000 years. Methods for estimating these floods can
be generally classified into three groups: (1) statistical flood
frequency analysis, (2) the single design event simulation ap-
proach and (3) derived flood frequency simulation methods.

At gauged sites, statistical flood frequency analysis in-
volves fitting a distribution function to the annual maxima
(AMAX) or peak-over-threshold (POT) flood events and cal-
culating the quantile of interest. When return periods that
are longer than the observed record length are needed, the
process requires extrapolation of the fitted statistical distri-
bution. This introduces a high degree of uncertainty due to
the number of limited observations relative to the estimated
quantile (e.g. Katz et al., 2002). Significant progress has been
made in methods for reducing this uncertainty by incorporat-
ing historic or paleo-flood data (Parkes and Demeritt, 2016),
where available. Another way to “extend” the hydrological
record in order to reduce the uncertainty is to combine data
series from several different gauges by identifying pooling
groups or hydrologically similar regions, where this is pos-
sible. It has been found, however, that the identification of

Published by Copernicus Publications on behalf of the European Geosciences Union.



2 V. Filipova et al.: A stochastic event-based approach for flood estimation

such hydrological regions can be difficult in practice (Nyeko-
Ogiramoi et al., 2012). The application of statistical flood
frequency analysis in ungauged basins is also problematic.
As the physical processes in the catchments are usually not
directly considered in the analysis, estimating the flood quan-
tiles in ungauged basins using regression or geostatistical
methods can produce average RMSNE (root mean square
normalized error) values of between 27 % and 70 % (Sali-
nas et al., 2013), or even higher for the 100-year return pe-
riod. In addition, the complete hydrograph is often needed in
practice. Although multivariate analysis of flood events (e.g.
flood peaks, volumes and durations) can be used to generate
hydrographs for specific return periods, the methods are not
easily applied (Griler et al., 2013).

The second method for extreme flood estimation is the de-
sign event approach in which single realizations of initial
conditions and precipitation are used as input in an event-
based hydrological model. Another feature of the approach
is that, when event-based models are used, a critical dura-
tion defined as the duration of the storm that results in the
highest peak flow needs to be included. Two advantages of
this method over statistical flood frequency analysis are that
rainfall records are often widely available (e.g in the form
of gridded datasets) and that the event hydrograph is gener-
ated in addition to the magnitude of the flood peak. This ap-
proach has been traditionally used due to its simplicity (e.g.
Kjeldsen, 2007; Wilson et al., 2011). However, its applica-
tion often involves the assumption that the simulated flood
event has the same return period as the rainfall used as input
in the hydrological model. This assumption is not realistic
and, depending on the initial conditions, the return period of
the rainfall and the corresponding runoff can differ by orders
of magnitude (e.g. Salazar et al., 2017). A reason for this
is that flood events are often caused by a combination of fac-
tors, such as a high degree of soil saturation in the catchment,
heavy rainfall and seasonal snowmelt. A joint probability dis-
tribution, therefore, needs to be considered if one is to fully
describe the relationship between the return period of rainfall
and of runoff.

The third possible approach is the derived flood frequency
method in which the distribution function of peak flows is de-
rived from the distribution of other random variables such as
rainfall depth and duration and different soil moisture states.
Although a statistical distribution of flow values or their plot-
ting positions is used to calculate the required quantiles, as in
conventional flood frequency analysis, a hydrological model
can be used to simulate an unlimited number of discharge
values under differing conditions, thus extending and en-
hancing the observed discharge record. Under very stringent
assumptions, the derived distribution can actually be solved
analytically by using a simple rainfall-runoff model (e.g. a
unit hydrograph), assuming independence between rainfall
intensity and duration and considering only a few initial soil
moisture states. However, because of these simplifying as-
sumptions, the method can produce poor results (Loukas,
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2002). For this reason, methods based on simulation tech-
niques are most often used, and these range from continu-
ous simulations to event-based simulations with Monte Carlo
methods.

In the continuous-simulation approach, a stochastic
weather generator is used to simulate long synthetic series of
rainfall and temperature, which serve as input in a continuous
rainfall-runoff model. The resulting long series of simulated
discharge is then used to estimate the required return peri-
ods, usually using plotting positions (e.g. Calver and Lamb,
1995; Camici et al., 2011; Haberlandt and Radtke, 2014).
A disadvantage of these methods is that they are computa-
tionally demanding, as long continuous periods need to be
simulated to estimate the extreme quantiles. Several newer
methods, therefore, use a continuous weather generator cou-
pled with an event-based hydrological model. For exam-
ple, the hybrid-CE (causative event) method uses a contin-
uous rainfall-runoff simulation to determine the inputs to an
event-based model (Li et al., 2014). Another disadvantage,
however, of continuous-simulation models is that stochastic
weather generators require the estimation of a large number
of parameters (e.g. Onof et al., 2000; Beven and Hall, 2014).
In addition, models such as the modified Bartlett—Lewis rect-
angular pulse model have limited capacity to simulate ex-
treme rainfall depths, which can lead to an underestimation
of runoff (Kim et al., 2017). In order to avoid the limita-
tions of continuous weather generators, the semi-continuous
method SCHADEX (Paquet et al., 2013) uses a probabilistic
model for centred rainfall events (multi-exponential weather-
pattern-based distribution; Garavaglia et al., 2010), identi-
fied as over threshold values that are larger than the adja-
cent rainfall values. Using this approach, millions of syn-
thetic rainfall events can be generated, assigned a probabil-
ity estimated from the MEWP (multi-exponential weather
pattern) model and inserted directly into the historic pre-
cipitation series to replace observed rainfall events. In this
manner, the SCHADEX method is similar to the hybrid-CE
methods because a long-term hydrological simulation is used
to characterize observed hydrological conditions and syn-
thetic events are only inserted into the precipitation record
for periods selected from the observed record. Despite the
many advantages of the hybrid-CE and SCHADEX meth-
ods over continuous-simulation methods, they nevertheless
require sufficient data for the calibration of the hydrological
model, for the modelling of the extreme precipitation distri-
bution and for ensuring that an exhaustive range of initial
hydrological conditions are sampled during the simulations.

Another method for derived flood frequency analysis is the
joint probability approach (e.g. Muzik, 1993; Loukas, 2002;
Svensson et al., 2013; Rahman et al., 2002). In this approach,
the Monte Carlo simulation is used to generate a large set of
initial conditions and meteorological variables, which serve
as input to an event-based hydrological model. This approach
requires that the important variables are first identified and
any correlations between the variables are quantified. Most
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often, the random variables that are considered are related
to properties of the rainfall (intensity, duration, frequency)
and to the soil moisture deficit. Some of these methods, such
as the Stochastic Event Flood Model (SEFM, Schaefer and
Barker, 2002), similarly to SCHADEX, require the use of a
simulation based on a historical period to generate data se-
ries of state variables from which the random variables are
sampled. Although the contribution of snowmelt can be im-
portant in some areas, it is rarely incorporated as it requires
the generation of a temperature sequence for the event that
is consistent with the rainfall sequence used and a snow wa-
ter equivalent (SWE) as an initial condition. The assumption
of a fixed rate of snowmelt which is based on typical tem-
peratures, as is often used in Norway for the single-event-
based design method, can introduce a bias in the estimates.
The joint probability of both rainfall and snowmelt needs to
be considered to obtain a probability-neutral value (Nathan
and Bowles, 1997). One of the few methods that incorpo-
rates snowmelt is the SEFM, which has been applied in sev-
eral USBR (US Bureau of Reclamation) studies and uses the
semi-distributed HEC-1 hydrological model (Schaefer and
Barker, 2002). Considering that, most often, simple event-
based hydrological models are used (e.g. unit hydrograph),
the joint probability approach is particularly advantageous in
ungauged catchments or data-poor catchments, where the use
of parsimonious models is preferred.

Even though methods for derived flood frequency analy-
sis are becoming more commonly used in practice as they
can provide better estimates of the high flood quantiles (e.g.
Australian Rainfall and Runoff 2016, Ball, 2015; and the
SCHADEX method), this kind of method has not yet been
established in Norway. The purpose of this study is hence to
develop a derived flood frequency method using a stochas-
tic event-based approach to estimate design floods, including
those with a significant contribution from snowmelt. In this
way, the results for any return period can be derived, tak-
ing into account the probability of a range of possible ini-
tial conditions. A sensitivity analysis is then performed to
understand the uncertainty in the stochastic PQRUT model
and establish the relative roles of several factors, including
the rainfall model, snowmelt, the initial soil moisture pa-
rameters of the model and the length of the simulation. The
results are then compared with results from an event-based
modelling method based on a single design precipitation se-
quence and assumed initial conditions and with statistical
flood frequency analysis of the observed annual maximum
series for a set of catchments in Norway for the 100- and
1000-year return periods.

2 Stochastic event-based flood model
The stochastic event-based model proposed here involves the

generation of several hydrometeorological variables: precip-
itation depth and sequence, the temperature sequence dur-
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ing the precipitation event, the initial discharge, and the an-
tecedent soil moisture conditions and snow water equiva-
lent. A simple three-parameter flood model PQRUT (An-
dersen et al., 1983) is used to simulate the streamflow hy-
drograph for a set of randomly selected conditions based
on these hydrometeorological variables. After this procedure
is completed 100000 times for each season, the results are
combined and a flood frequency curve is constructed from
all of the simulations using their plotting positions. As the
method requires initial values for soil moisture and snow wa-
ter equivalent, i.e variables which generally cannot be sam-
pled directly from climatological data and which depend on
the sequence of precipitation and temperature over longer pe-
riods, the distance distribution dynamics (DDD) hydrologi-
cal model (Skaugen and Onof, 2014) was calibrated and run
for a historical period to produce a distribution of possible
values for testing the approach. The method (also shown in
Fig. 1) can be outlined in summary form as follows:

1. Extract flood events for a given catchment and identify
the critical storm duration.

For each season the following steps apply.

2. Aggregate the precipitation data to match the critical du-
ration for the catchment.

3. Extract POT precipitation events and fit a generalized
Pareto (GP) distribution.

4. Fit probability distributions for the initial discharge, soil
moisture deficit and SWE values for the season.

5. Generate precipitation depth from the fitted GP distri-
bution.

6. Disaggregate the precipitation depth to a 1h time step
by matching the dates of the identified POT flood events
(from step 3) to the data series of precipitation with an
hourly timestep.

7. Sample a temperature sequence by matching the dates
of the identified POT flood events (from step 1) to the
data series of temperature with an hourly timestep.

8. Sample initial conditions for snow water equivalent, soil
moisture deficit and initial discharge from their distribu-
tions (step 5), accounting for co-variation using a mul-
tivariate normal distribution.

9. Simulate streamflow values using the calibrated
PQRUT model for the sample event.

10. Repeat steps 5-9 100 000 times.

11. Estimate the annual exceedance probability from the to-
tal of 400 000 (i.e. 100 000 for each season) samples us-
ing plotting positions.
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Figure 1. Diagram of the stochastic PQRUT model.

The study area and data requirements for the proposed
method are described in Sect. 2.1, while Sect. 2.2 describes
the method for determining the critical duration, and Sect. 2.3
and 2.4 describe the generation of antecedent conditions and
meteorological data series. The hydrological model is pre-
sented in Sect. 2.5, the method for constructing the flood
frequency curve is outlined in Sect. 2.6 and the sensitivity
analysis is presented in Sect. 2.7.

2.1 Study area and data requirements

2.1.1 Catchment selection and available streamflow
data

The study area in Norway, consisting of a dataset of 20 catch-
ments located throughout the whole country, is shown in
Fig. 2. All catchments have at least 10 years of hourly
discharge data, and in all cases the length of the daily
flow record is considerably longer than 10 years. All se-
lected catchments are members of the Norwegian Bench-
mark dataset (Fleig et al., 2013), which ensures that the
data series are unaffected by significant streamflow regu-
lation and have discharge data of sufficiently high quality
suitable for the analyses of flood statistics. The catchment
size was restricted to small- and medium-sized catchments
(maximum area is 854 kmz), as the structure of the three-
parameter PQRUT model does not take into account the
longer-term storage processes which can contribute to delay-
ing the runoff response during storm events. Previous appli-
cations of PQRUT in Norway indicate that this shortcoming
is most problematic for larger catchments. Discharge datasets
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with both daily and hourly time steps were obtained from
the national archive of streamflow data held by NVE (https:
//'www.nve.no/, last access: 21 December 2018). The catch-
ments were delineated and their geomorphological properties
were extracted using the NEVINA tool NVE (2015), except
for O, which was calculated using the available streamflow
data, and P, which was calculated using available gridded
data (further details are given in Sect. 2.1.2 below). In order
to illustrate the application of the method, we have selected
three catchments which can be considered representative for
different flood regimes in Norway: Krinsvatn in western Nor-
way, @vrevatn in northern Norway and Hgrte in southern
Norway (Fig. 2).

Table 1 summarizes the climatological and geomorpholog-
ical properties of these three catchments, including area (A
in km?), mean annual runoff (Q in mm yr~!), mean annual
precipitation (P in mm yr~!), mean elevation (Hm50), per-
centage of forest-covered area (For), percentage of marsh-
covered area (M), percentage of area with sparse vegetation
above the treeline (B), effective lake percentage (Lk), catch-
ment steepness (Hl) and the mean annual temperature in the
catchment (Temp). The effective lake percent (Lk) is used to
describe the ability of water bodies to attenuate peak flows
such that lake areas which are closer to the catchment out-
let have a higher weight than those near the catchment di-
vide. It is calculated as % x 100, where a; is the area
of lake i, A; is the catchment area upstream of lake i and
A is the total catchment area. The dominant land cover for
Krinsvatn and @vrevatn is sparse vegetation over the treeline,
while the land cover for Hgrte is mainly forest. The effec-
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Table 1. Properties for the selected catchments, including catchment area (Area), mean annual streamflow (Q), mean annual precipitation
(P), mean elevation (Hm50), percent forest (For), percent marsh (M), percent sparse vegetation over the treeline (B), catchment steepness

(HI), effective lake percent (Lk) and mean annual temperature (Temp).

Station Area, 0, P, Hm50, For, M, B, Lk, Hl, Temp, Season
km? mm yr_l mm yr_1 m % % % % mkm™! °C  of AMAX
Hgrte 157 961 1261 501 73 3 18 03 18.7 2.89 SON
Krinsvatn 207 1890 2354 348 20 9 57 1.1 54 4 DIF
@vrevatn 526 1448 1558 564 352 25 52 06 148 —0.14 JJA

also have a contribution from snowmelt. The season of the

AMAX flood is the winter period, i.e. December—February,

] although high flows can occur throughout the year. Hgrte has

a mixed flood regime with most of the AMAX flood events

OV-;evatn in the period of September—November, but in some years an-

Krindvatn
L d

~

e

Horte
-

Figure 2. Location of the selected catchments. The catchments
Hgrte, @vrevatn and Krinsvatn, for which we show the method in
more detail, are plotted in red.

tive lake percentage Lk is insignificant for Hgrte and @Qvre-
vatn, but for Krinsvatn, the Lk is higher and the area covered
by marsh, M, is 9 %. The catchment steepness (HI) (defined
as (Hm75 — Hm25) /L, where L is the catchment length and
Hm?25 and Hm75 are the 25th and 75th percentiles of the
catchment elevation) is highest for Hgrte (18.7mkm~") and
lowest for Krinsvatn (5.4mkm™"). The catchment Krins-
vatn, being located near the western coast of Norway, has
a much higher mean annual precipitation (P), i.e. an average
of 2354 mmyr~!, in comparison with Hgrte (1261 mmyr—!)
and @vrevatn (1558 mm yr‘l). The dominant flood regime
for Krinsvatn is primarily rainfall-driven high flows, as the
catchment is located in a coastal area and is characterized
by high precipitation values and an average annual temper-
ature of around 4 °C. The highest observed floods, however,
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nual flood events occur in the period of March—-May and are
associated with rainfall events during the snowmelt season.
@vrevatn has a predominantly snowmelt flood regime with
most AMAX flood events occurring in the period of June—
August, due to the lower temperatures in the region such that
precipitation falls as snow during much of the year.

2.1.2 Available meteorological data

Data for temperature and precipitation with daily time res-
olution were obtained from seNorge.no (last access: 21 De-
cember 2018). This dataset is derived by interpolating sta-
tion data on a 1km? grid and is corrected for wind losses
and elevation (Mohr, 2008). In addition, meteorological data
with a sub-daily time step are needed for calibrating the
PQRUT model, as many of the catchments have fast response
times. For this, precipitation and temperature data with a 3h
resolution, representing a disaggregation of the 24 h grid-
ded seNorge.no data using the High-Resolution Limited-
Area Model (HIRLAM) hindcast series (Vormoor and Skau-
gen, 2013), were used. The HIRLAM atmospheric model for
northern Europe has a 0.1° resolution (around 10 km?), and
we used a temporal distribution of 3 h. The HIRLAM dataset
was first downscaled to match the spatial resolution of the
seNorge data, and the precipitation of the HIRLAM data was
rescaled to match the 24 h seNorge data (Vormoor and Skau-
gen, 2013). Then, these rescaled values were used to disag-
gregate the seNorge data to a 3 h time resolution. The method
was validated against 3 h observations, and the correlation of
the method was found to be higher than that obtained by sim-
ply dividing the seNorge data into eight equal 3-hourly val-
ues (Vormoor and Skaugen, 2013). These datasets were fur-
ther disaggregated to a 1 h time step by dividing the 3-hourly
values into three equal parts to match the time resolution of
the streamflow data.
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2.1.3 Initial conditions

The stochastic PQRUT method requires time series of soil
moisture deficit, SWE and initial discharge. These data se-
ries are used to construct probability distribution functions
for generating initial conditions for the event-based simu-
lations. Sources of these data can be for example remotely
sensed data (see, for example, the review provided in Brocca
et al., 2017) or gridded hydrological models. In this study,
the DDD hydrological model was used to simulate these data
series. The DDD model is a conceptual model that includes
snow, soil moisture and runoff response routines and is cali-
brated for individual catchments using a parsimonious set of
model parameters. The snowmelt routine of the DDD model
uses a temperature-index method and accounts for snow stor-
age and melting for each of 10 equal area elevation zones.
The soil moisture routine is based on one dynamic storage
reservoir, in which we find both the saturated and the unsat-
urated zones, having capacities which vary in time. The flow
percolates to the saturated zone if the water content in the
unsaturated zone exceeds 0.3 of its capacity. The response
routine includes routing of the water in the saturated zone
using a convolution of unit hydrographs based on the dis-
tribution of distances to the nearest river channel within the
catchment and from the distribution of distances within the
river channel.

2.2 Critical duration

When simulating flood response with an event-based model,
it is important to specify the so-called critical duration
(Meynink and Cordery, 1976) to ensure that the flood peak
is correctly modelled. The critical duration is an important
quantity which effectively links the duration and the inten-
sity of precipitation events of a given probability. To deter-
mine the critical duration, flood events from the daily time
series over a quantile threshold (in this case, 0.9) were ex-
tracted. The POT flood events were considered independent
if they were separated by at least 7 days of values below the
threshold. The day with the maximum peak value of stream-
flow was then identified for each event. The peak values were
tested for correlations with the precipitation on the day of
the peak flow and on days —1, —2 and —3 before the peak.
The critical duration was determined as the number of days
in which the correlation between the precipitation and the
streamflow was higher than 0.25. This threshold value was
selected because it gave realistic durations for the catchments
in the study area. As an alternative approach, the critical du-
ration was also set to equal the number of days for which
the correlation was significant at p = 0.01. This method re-
sulted, however, in very long durations in some cases. A pos-
sible reason for this is that, if there are only a few observa-
tions, even relatively low Pearson correlation coefficients can
produce statistically significant p values. In some catchments
(mostly those having a snowmelt flood regime), no signifi-
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cant correlation was found between discharge and precipita-
tion, and in this case the critical duration was determined by
considering only flood events in the September—November
(SON) season, in which most events are caused by rainfall
(in this case, during the autumn). If the critical duration was
more than 1 day, the precipitation was aggregated to the criti-
cal duration by applying a moving window to the data series.
For Hgrte and @vrevatn, the critical duration was found to be
24 h, and for Krinsvatn it was found to be 48 h (Fig. 3).

2.3 Precipitation and temperature sequence generation

In addition to the critical duration of the event, the sequence
of the input data must be generated for the stochastic sim-
ulation. Snowmelt can be important in the catchments con-
sidered in this study, so both the sequence of precipitation
and temperature must be considered. In order to account for
seasonality, the meteorological data series were first split
into standard seasons: DJF, MAM, JJA and SON. In this
way, we ensure that more homogeneous samples are used
to fit the statistical distributions. Precipitation events over a
threshold (POT events) were identified in the precipitation
data series and a generalized Pareto distribution was fitted
to the series of selected events. In order to choose a thresh-
old value for event selection, two criteria were used: (1) the
threshold must be higher than the 0.93 quantile and (2) the
number of selected events must be between two and three
per season. Although other methods for threshold selection
exist, such as the use of mean life residual plots, the de-
scribed method is much simpler to apply and gives accept-
able results (e.g. Coles, 2001). The selected threshold var-
ied between the 0.93 and 0.99 quantiles, depending on the
season and catchment. In addition, the exponential distribu-
tion is often fitted to POT events, as it can give more robust
results than the GP distribution. Figure 4 shows the return
levels calculated from the GP and exponential distributions
and the empirical return levels and demonstrates that it is
appropriate to use these models. In this case, we have pre-
ferred to use the GP distribution due to the inclusion of the
shape parameter for describing the behaviour of the highest
quantiles. An exponential distribution, however, could also
be used, as could a compound weather-pattern-based distri-
bution such as the MEWP distribution (e.g. Garavaglia et al.,
2010; Blanchet et al., 2015). In addition, a temperature se-
quence with a 1h time resolution was identified from the
disaggregated seNorge data, introduced in Sect. 2.1.2, and
extracted for each POT event. The precipitation depths were
generated (for 100000 events) from the fitted GP distribu-
tion for each season. Storm hyetographs were used to dis-
aggregate the precipitation values as follows: a storm hyeto-
graph was first sampled from the extracted hyetographs for
the selected POT precipitation events (by matching the dates
of the selected POT precipitation events to the disaggregated
seNorge data series), taking into account seasonality, and the
ratios between the 1 h and the total precipitation for the event
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Figure 3. Diagram representing the process used to establish the critical duration for Krinsvatn. The stars represent the degree of significant
correlation between Qg and P on the day of the peak and —1, —2 and —3 days before the peak at p = 0.01. The critical duration is set in
this case to 2 days because the correlation between Qg and P and Pj is greater than 0.25.

were calculated according to

P
Phsim = ———— Pagim 1
hsim sum(Pi) dsim ( )

where Ppgim is the simulated 1 h precipitation intensity, Pggim
is the simulated daily intensity and P; is the 1 h disaggregated
seNorge intensity. The calculated ratios were then used to
rescale the simulated values.

2.4 Antecedent snow water equivalent, streamflow and
soil moisture deficit conditions

In order to determine the underlying distributions for various
antecedent conditions, the relevant quantities were extracted
from simulations based on the DDD hydrological model of
Skaugen and Onof (2014). The model was calibrated for the
selected catchments at a daily timestep using a Markov chain
Monte Carlo (MCMC) routine (Soetaert and Petzoldt, 2010).
Outputs from DDD model runs were used to extract values
for the initial streamflow, snow water equivalent (SWE) and
soil moisture deficit, at the onset of the previously selected
seasonal flood POT events. It is important to note that simu-
lated values for the soil moisture deficit are used. However,
as described in Skaugen and Onof (2014), the model pro-
vides realistic values in comparison with measured ground-
water levels. The POT event series used for this is the same
as that used for identifying the critical duration (described in
Sect. 2.2).

After extracting the initial conditions, the correlation be-
tween the variables was tested for each season for each catch-
ment. As the correlation between the variables is in most
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cases significant, the variables were jointly simulated us-
ing a truncated multivariate normal distribution. In order to
achieve normality for the marginal distributions, the SWE
and the discharge were log-transformed. In the spring and
summer, the SWE is often very low or 0 in some catchments.
If the proportion of non-zero values, p, was greater than 0.3
(around 15 observations), the values were simulated using a
mixed distribution as

F(X)=pGi(x1) + (1 - p)Ga(x2), 2

where G represents the multivariate normal distribution
with discharge, soil moisture deficit and SWE as variables
(denoted as x1) and G represents the bivariate normal dis-
tribution for the discharge and soil moisture (given as x7).
The probability p for switching between the trivariate and bi-
variate distributions is based on the historical data for SWE
higher than 0. In addition, because the initial conditions are
not expected to include extreme values, the values of the ini-
tial conditions were truncated to be between the minimum
and maximum of the observed ranges. The correlation be-
tween the observed and simulated variables is shown in Fig. 5
for the Krinsvatn catchment, and although the distribution of
simulated values exhibits a very good resemblance to that
of the observed values, there is not a perfect correspondence
between the two. A reason for this may be that the variables
(even after log transformation) do not exactly follow a nor-
mal distribution. We considered using copulas for the cor-
relation structure of the initial conditions (Hao and Singh,
2016). However, as the data are limited in number (around 50
observations per season), these were much more difficult to
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Figure 4. Return level plots for the fitted generalized Pareto (GP) and exponential (EXP) distributions for peak-over-threshold precipitation
events with duration equal to the critical duration (GP, red; EXP, green) for the three selected catchments.

fit. Similarly, nonparametric methods such as kernel density
estimation were deemed to not be feasible due to the limited
number of observations. Therefore, the multivariate normal
distribution was chosen as the best alternative for modelling
the joint dependency between the variables comprising the
initial conditions for the stochastic modelling.

2.5 PQRUT model

The PQRUT (P, precipitation; Q, discharge; and RUT, rout-
ing) model was used to simulate the streamflow for the se-
lected storm events. The PQRUT model is a simple, event-
based, three-parameter model (Fig. 6) which is used for
various applications, including estimating design floods and
safety check floods for dams in Norway (Wilson et al., 2011).
In practical applications, a design precipitation sequence of
a given return period is routed through the PQRUT model,
usually under the assumption of full catchment saturation.
For this reason, only the hydrograph response is simulated,
and there is no simulation of subsurface and other storage
components, such as are found in more complex conceptual
hydrological models. Of the three model parameters, K cor-
responds to the fast hydrograph response of the catchment,
and the parameter K, is the slower or delayed hydrograph
response. The parameter Trt is the threshold above which K
becomes active.

The PQRUT model was calibrated for the 45 highest flood
events for each catchment by using the DDS (dynamically
dimensioned search) optimization routine (Tolson and Shoe-
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maker, 2007) and the Kling—Gupta efficiency (KGE) crite-
rion (Gupta et al., 2009) as the objective function. An ad-
ditional variable, the soil deficit, {,, was introduced to ac-
count for initial losses to the soil zone. The reason for this
is that, even though fully saturated conditions are assumed
when the model is used to estimate PMF or other extreme
floods with low probabilities, the model needs to account for
initial losses when actual (more frequent) events are simu-
lated during the calibration process. This procedure is de-
scribed in more detail in Filipova et al. (2016). In addition,
regional values can be used in ungauged or poorly gauged
catchments (Andersen et al., 1983; Filipova et al., 2016).
For the work presented here, the value of [, was set to
the initial soil moisture deficit, estimated using DDD. This
variable functions as an initial loss to the system, such that
the input to the reservoir model is O until the value of [, is
exceeded by the cumulative input rainfall. In order to model
flood events involving snowmelt, a simple temperature-index
snow melting rate was used:
§=Cs(T —Tp), 3)
where S is the snow melting rate in mm h1, Cs is a coef-
ficient accounting for the relation between temperature and
snowmelt properties, and 77, is the temperature threshold for
snowmelt (here fixed at 0 °C). Regional values for the Cg pa-
rameters as a function of catchment properties, based on the
ranges given in Midttgmme and Pettersson (2011), were ap-
plied. In addition, the temperature threshold between rain and
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Figure 5. Correlation scatterplots for initial conditions (snow water equivalent, SWE, in mm; soil moisture deficit, [, in mm; initial discharge,
Qobs. in m? s~1) for the Krinsvatn catchment for POT events (flood events over the 0.9 quantile, 57 observations). Scatterplots for observed
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Figure 6. Structure of the PQRUT model.

snow was set to Tx = 0.5 °C, which is typically used in Nor-
way (Skaugen, 1998).

2.6 Flood frequency curves

Seasonal and annual flood frequency curves were constructed
by extracting the peak discharge for each event and estimat-
ing the plotting positions of the points using the Gringorten
plotting position formula:

_ (m—0.44)

T (N+0.12)k° )

(S
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where P, is the exceedance probability of the peak, m is the
rank (sorted in decreasing order) of the peak value, N is the
number of years and k is the number of events per year. The
number of events per year, k, was set to be equal to the av-
erage number of extracted POT storm (precipitation) events
per year. These simulated events were compared with the
POT flood events extracted from the observations (Fig. 7).
After calculating the probability of the simulated events us-
ing Eq. (4), the initial conditions and seasonality for a return
period of interest can be extracted. For example, the events
with return periods between 90 and 110 years were extracted
(representing around 80 events), and the hydrological condi-
tions for those events were identified (Table 2). The results
show that there is a large variation in the total precipitation
depths and initial conditions that can produce flood events of
a given magnitude and this is the reason why it is difficult
to assign initial conditions in event-based models. However,
it is still useful to extract the distribution of these values in
order to ensure that the ranges are reasonable and the catch-
ment processes are properly simulated. For example, the av-
erage snowmelt is negative (i.e. there is snow accumulation)
for Krinsvatn, which means that in most cases snowmelt does
not contribute to extreme floods. This is reasonable as the
catchment is located in western Norway, where the climate
is warmer (the mean temperature is around 4 °C) and the
mean elevation is low. The average snowmelt contribution
for @vrevatn is much higher as this catchment has a predom-
inantly snowmelt flood regime. The soil moisture deficit for
the three catchments is larger than 0, even though floods with
relatively long return periods (i.e. between 90 and 100 years)
are being sampled here. The seasonality of the simulated val-
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ues is consistent with the seasonality of the observed annual
maxima (Table 1).

2.7 Sensitivity analysis

A sensitivity analysis was performed for the three test catch-
ments, Hgrte, @vrevatn and Krinsvatn, in order to determine
the relative importance of the initial conditions, precipitation,
the parameters of PQRUT, the effect of the random seed and
length of the simulation on the flood frequency curve. To test
the sensitivity of the model, we have used several different
model runs and calculated the percentage difference of each
of these model runs relative to the standard model set-up,
as shown in Fig. 8. More detailed information on the set-
up is given in Table 3. As these catchments are located in
different regions and exhibit different climatic and geomor-
phic characteristics, we hypothesize that the flood frequency
curve will be sensitive to different parameters and hydrolog-
ical states, as well as local climate and catchment character-
istics. The results are summarized in Table 4.

The results for the sensitivity to the rainfall model are pre-
sented in Fig. 8a. The results show that the temporal pat-
terns of the rainfall input have a large impact (up to 50 %) on
the flood frequency curve for Hgrte and Krinsvatn, as these
catchments have a predominantly rainfall-dominated flood
regime. The impact is very little for @vrevatn. A high sensi-
tivity to the shape of the hyetograph was also found in Alfieri
et al. (2008). Their study shows that using rectangular hyeto-
graph results in a significant underestimation of the flood
peak while the Chicago hyetograph (e.g. Chow et al., 1988),
where the peak is in the middle of the event, resulted in over-
estimation. In addition, @vrevatn and Hgrte showed sensitiv-
ity (around 20 %) to the choice of the statistical distribution
for modelling precipitation. This means that the uncertainty
in fitting the rainfall model can propagate to the final results
of the stochastic PQRUT, and therefore it is important to en-
sure that the choice of distribution and parameters is carefully
considered. A high sensitivity to the parameters of the rain-
fall model was also described by Svensson et al. (2013), who
tested the sensitivity of a stochastic event-based model ap-
plied to four small-to-medium-sized catchments in the UK.
Both Hgrte and Krinsvatn showed relatively lower sensitiv-
ity to the threshold value for the GP distribution, compared
to Dvrevatn.

In addition, all catchments are very sensitive to the param-
eters of the PQRUT model (Fig. 8b) and there is large un-
certainty in these values. Because of the higher sensitivity
to the calibration of the rainfall-runoff model, a conclusion
can be made that, in practice, if streamflow data are available
it is important that they are used for calibrating the PQRUT
model rather than relying on regionalized parameter values.

Considering the effect of the initial conditions (Fig. 8c),
using fully saturated conditions results in the slight over-
estimation of flood values for all catchments, as expected,
and the impact is higher at lower return periods. In addi-
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tion, Pvrevatn shows a higher sensitivity (around 26 % for
Q1000) to the initial soil moisture conditions than the other
two catchments. A reason for this is that, for @vrevatn, higher
soil moisture conditions are associated with higher rainfall
quantiles. For example, the ratio of the maximum soil mois-
ture to the mean rainfall is 65 % while for Hgrte and Krins-
vatn it is much less, i.e 33 % and 26 %, respectively. The ini-
tial discharge value does not seem to have a large impact on
any of the catchments. If no snow component (no snowmelt
and no snow accumulation) is used, there is not much differ-
ence in the results for @vrevatn and Hgrte, but the seasonal-
ity of the flood events is changed. For example, the season
when the Q1000 is simulated for @vrevatn is SON instead
of JJA when most of the AMAX values are observed. Due
to this change of seasonality, the precipitation values that
produce Q1000 are accordingly higher (the median is around
15 % higher). The soil moisture deficit, as expected, is also
somewhat higher and shows much more spread, with values
up to 45 mm. In addition, Krinsvatn shows a high sensitiv-
ity to the snowmelt component (21 % higher) and also a step
change in the frequency curve, even though the soil mois-
ture deficit is higher. This can also be explained by the fact
that the snowmelt contribution is negative (i.e. there is snow
accumulation), as can also be seen in Table 2. Other stud-
ies have also shown that the soil saturation level is not as
important as the parameters of the hydrological model. For
example, Brigode et al. (2014) tested the sensitivity of the
SCHADEX model using a block bootstrap method. In each
of these experiments, different sub-periods selected from the
observation record were used in turn to calibrate the rainfall
model, the hydrological model and to determine the sensitiv-
ity to the soil saturation level. The results showed that, for
extreme floods (1000-year return period), the model is sen-
sitive to the calibration of the rainfall and the hydrological
models, but not so much to the initial conditions.

The stochastic PQRUT model shows some sensitivity to
the random seeds (Fig. 8d), especially for higher return pe-
riods. This is expected as the higher quantiles are calculated
using a smaller sample of simulated events. Similarly, the ef-
fect of the simulation length has a larger impact on the higher
quantiles (e.g. Q1000). However, the length of the simulation
will depend on the required return level, as shorter simulation
length can be acceptable for lower return periods, e.g. Q100-

3 Comparison with standard methods
3.1 Implementation of the methods and results

The results of the stochastic PQRUT method for the 100- and
1000-year return level were compared with the results for
statistical flood frequency analysis and with the standard im-
plementation of the event-based PQRUT method (in which
full saturation and snow melting rates are assumed a pri-
ori) for the 20 test catchments described in Sect. 2.1. For
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Table 2. Precipitation (48 h duration is used for Krinsvatn) and initial

11

conditions for Q1go; range corresponds to 5 and 95 percentile. For the

seasonality, the actual fraction of the simulated events is given in brackets.

Station P P 0] Q  Snowmelt Snowmelt Soil moisture ~ Soil moisture ~ Season
name median, range, median, range, median, range, deficit median,  deficit range,
mm mm m3 s_l m3 s_1 mm mm mm mm
Krinsvatn 140 107 to 217 14 4t047.1 0 —-312t018.2 25.5 5.3t050.4 SON(0.5) DJF(0.4)
Hgrte 67 45t0100.5 10 2.6 t0 27.1 0 —37t0 22.7 7.8 1.1to 17.7  SON (0.64)
@Dvrevatn 55.9 38 to 127 56.2  20.2to 110.1 30 0t049.8 13 2.6t044.2 JJA(0.76)
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Figure 7. Comparison between the observed and simulated flood frequency curves of peak discharge for Hgrte, Krinsvatn and @vrevatn.

the statistical flood frequency analysis, the annual maximum
series were extracted from the observed daily mean stream-
flow series. The generalized extreme value (GEV) distribu-
tion was fitted to the extracted values using the L-moments
method and the return levels were estimated. In order to ob-
tain instantaneous peak values, the return values were mul-
tiplied by empirical ratios, obtained from regression equa-
tions, as given in Midttgmme and Pettersson (2011). The
ratios can vary substantially from catchment to catchment,
and in this study the values are from 1.02 to 1.82, depend-
ing on the area and the flood generation process (snowmelt
or precipitation). Although much more sophisticated meth-
ods could be used to obtain statistically based return levels,
the procedure used here is equivalent to that currently used
in standard practice in design flood analysis in Norway. In
addition, the length of the daily streamflow series justifies
the use of at-site flood frequency analysis (Kobierska et al.,
2017); the minimum length is 31 years, while the median
is 65 years of data. However, it is expected that the uncer-
tainty will be high when the fitted GEV distribution is ex-
trapolated to a 1000-year return period. The 1000-year return
period is used here, however, as it is required for dam safety
analyses in Norway (e.g. Midttgmme, et al., 2011; Table 1).
More robust, but potentially less reliable, estimates could be
obtained using a two-parameter Gumbel distribution, rather
than a three-parameter GEV distribution (Kobierska et al.,
2017). The standard implementation of PQRUT involves us-
ing a precipitation sequence that combines different inten-
sities, obtained from growth curves based on the 5-year re-
turn period value fitted using a Gumbel distribution while
the ratios between the different durations are derived from
empirical distribution (Fgrland, 1992). The precipitation in-
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tensities were combined to form a single symmetrical storm
profile with the highest intensity in the middle of the storm
event whereas the storm profile is randomly sampled for the
stochastic PQRUT model (Fig. 9). In the application reported
here, the duration of the storm event was assumed to be the
same as the critical duration used for the stochastic PQRUT
model. The initial discharge values were similarly fixed to the
seasonal mean values, as is common in standard practice. The
snowmelt contribution for the 1000-year return period was,
in this case, assumed to be 30 mm day~! for all catchments,
which corresponds to 70 % of the maximum snowmelt, es-
timated as 45 mmday~! by using a temperature-index fac-
tor of 4.5mm°C~!day and 10°C~!. The snowmelt contri-
bution for the 100-year return period was assumed to be
21 mmday~! for all catchments. In addition, fully saturated
conditions were assumed for both the estimation of the 100-
and 1000-year return periods. A similar implementation of
PQRUT for the purposes of comparing different methods has
also been described in Lawrence et al. (2014). The param-
eters of the PQRUT were estimated by using the regional
equations derived in Andersen et al. (1983), as these are still
used in standard practice.

The performance of the three models was validated by us-
ing two different tests. Test 1 assessed whether the estimated
values for the 100-year return period are within the confi-
dence intervals of a GP distribution fitted to the streamflow
data with a 1 h time step. The stochastic PQRUT shows good
agreement with the observations (Fig. 10), and for 18 of the
20 catchments, all the points of the derived flood frequency
curve were inside the confidence intervals. As expected, for
most of the catchments (16 out of 20) the return levels calcu-
lated using statistical flood frequency analysis based on the
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Figure 8. Sensitivity analysis of the stochastic PQRUT for the following variables: (a) the rainfall model; (b) the effect of the simulation
length and the parameters of the hydrological model; (c) the initial discharge values, snowmelt conditions and catchment saturation; and
(d) the random seed used for the simulations. Detailed information on the set-up is given in Table 3.

Table 3. Set-up for the sensitivity analysis of PQRUT.

Variable Standard model set-up

Model set-up for sensitivity analysis

Precipitation depth threshold

quantile
Precipitation depth distribution ~ Generated from GP distribution
Precipitation intensity

Parameters of PQRUT

Length of simulation 400000
Initial discharge
Snowmelt

Soil moisture deficit

Effect of random seed Random seed is set at the start

Threshold is selected between the 0.93 and 0.99

Disaggregation using random historic storm events
Calibrated to selected storm events

Generated from multivariate normal distribution
Snowmelt component (described in Sect. 2.5)
Generated from multivariate normal distribution

GP fitted to the 0.99 quantile

Exponential distribution

Divide into 24 equal parts

Use Latin hypercube to sample 50 values within
the 5% and 95 % confidence intervals for the
regression equations for K1, K, and Trt
Sequence of lengths were used staring at 40 000
to 400 000 by increments of 40 000

Use median discharge for each season

No snowmelt component

Fully saturated conditions /[, =0 (no initial
loss)

50 different runs using different random seeds

GEV distributions using daily values were within the confi-
dence intervals. For the standard PQRUT model, the values
of the 100-year return level were within the confidence inter-
val for only six of the catchments when the regional equa-
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tions for the PQRUT model were used and for only eight
of the catchments when calibrated parameters were used.
In test 2, the results of the flood frequency analysis and
the stochastic PQRUT methods were compared, based on
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Table 4. Percent difference between the model runs of the sensitivity analysis to the calibrated model.
Catchments Hgrte  Krinsvatn ~ Qvrevatn ‘ Hgrte Krinsvatn ~ @vrevatn ‘ Hgrte  Krinsvatn ~ @vrevatn
Set-up/return period Q10 Q10 Q10 Q100 Q100 Q100 01000 01000 01000
GP distribution was fitted to the 0.99 10.0 13.5 2.4 16.5 14 17.0 222 —11.3 48.1
quantile
Exponential distribution instead of GP 3.0 3.0 0.9 9.1 3.1 —8.5 18.1 -2.0 —22.6
distribution
Disaggregate precipitation depth using —23.7 —-32.2 —28.4 —27.6 —43.3 —12.8 —29.1 —50.5 —7.4
uniform distribution (constant inten-
sity) instead of using temporal patterns
50 values, sampled using Latin hyper- —36.7 —46.8 7.1 —353 —54.4 5.9 —36.7 —58.2 29
cube within the 5% and 95 % confi-
dence intervals for the regression equa-
tions for K1, K» and Trt (min value)
50 values, sampled using Latin hyper- —16.9 4.3 33.0 —14.8 —8.3 133 —13.4 —33.4 8.7
cube within the 5% and 95 % confi-
dence intervals for the regression equa-
tions for K1, K> and Trt (max value)
Different simulation length from 40 000 4.9 % to 1.6%to —0.8%to 2.2% to 04%to —4.6%to | —4%to —0.1% to —2% to
to 400 000 simulations by 40 000 simu- 7.3 % 22% 5.8% 3.5% 23% 6 % 5.4 % 6.4 % 8.7%
lation increments (range)
Median discharge instead of randomly -7.3 —2.4 -31.3 —-6.0 —-1.6 —13.1 -5.0 —-1.2 —14
generated
No snowmelt modelled —-23 14.8 —18.7 —0.5 17.3 —4.2 29 21.2 1.2
Fully saturated conditions 20.9 24.9 41.2 14.6 14.0 33.0 10.1 8.0 26.2
50 simulations with different random —0.6%to —12%to 19%to | —1.3%to —-02%to —-06%to | —5%to —39%to —7.5%to
seeds (range) 0.8 % 0.6 % 3.5% 0.9 % 3.5% 33% 2.6 % 5.5% 10.3 %

(a) 0Vzo_stochastic PQRUT (b) 0.20 Standard PQRUT
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Figure 9. An example of storm patterns (only five are shown here) used for the simulated events in the stochastic PQRUT model (a) and the
storm pattern typically used with the standard PQRUT model (b). P represents the ratio of the hourly precipitation to the total precipitation

depth for the event.

a quantile score (QS) suggested by Emmanuel Paquet (per-

sonal communication, 2018). This is given in Eq. (5):

plementation of the event-based PQRUT model was not eval-

uated based on QS as initial conditions could not be assigned

for low return periods. As this model is usually used to cal-
culate high quantiles (Q19p or higher), fully saturated condi-

N
QS=1- Z(abs(Qmod,- - Qobsi)(Qobs,- - Qobsi,l))~ (5)
i=1
In Eq. (5) the observed probabilities (Qops;) are calculated
using Gringorten positions for the peak AMAX series that
were derived from the daily values. The modelled probabili-
ties that correspond to the observed events are calculated by
using the statistical flood frequency analysis and the stochas-
tic PQRUT model, as described previously. The standard im-

www.nat-hazards-earth-syst-sci.net/19/1/2019/

tions are assumed for its implementation. The results for the
quantile score show similar performance, and the median is
approximately 0.65 for both methods. However, the results
vary between catchments as shown in Fig. 11. Although it
is difficult to evaluate the performance of the models when
the data series are relatively short, based on the results of
test 1 we can conclude that the performance of the standard
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Figure 10. Number of models giving estimates for Q1gg within the confidence intervals of the GP distribution fitted to 1 h streamflow data.

PQRUT model is poorer than the performance of the sta-
tistical flood frequency analysis and the stochastic PQRUT
model for the selected catchments, while the results of test 2
indicate that both the GEV distribution and the stochastic
PQRUT provide similar fits to observed quantiles.

3.2 Discussion

A comparison of the stochastic PQRUT with the standard
methods for flood estimation shows that there is a large dif-
ference between the results of the three methods for both
Q100 and Q1000 (Figs. 12 and 13). The box plots (Fig. 12)
show that the stochastic PQRUT method gives slightly lower
results on average than the standard PQRUT model for Q9o
and Q1000. This is probably due to assuming fully saturated
conditions when applying the standard PQRUT for Qjgo,
which might not be realistic for some catchments. For exam-
ple, the results for the initial conditions for the three catch-
ments, presented in Sect. 2.6, show that the soil moisture
deficit is larger than O for Q1go. Furthermore, the absolute
differences between the two methods are larger in catchments
with lower temperature (Fig. 12). This indicates that the per-
formance of the standard PQRUT model is worse in catch-
ments with a snowmelt flood regime, which may be either
due to the difficulty in determining the snowmelt contribu-
tion or to the poorer performance of the regional parame-
ters in catchments with a snowmelt flow regime. Although
it shows a similar pattern, the standard PQRUT model, im-
plemented using calibrated parameters, results in much less
spread than the implementation using the regionalized pa-
rameters, when compared to both the GEV distribution and
the stochastic PQRUT model. This means that the hydrologi-
cal model can introduce a large amount of uncertainty, as also
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indicated by the sensitivity analysis described in Sect. 2.7 and
previous results presented by Brigode et al. (2014).

The differences between the stochastic PQRUT model and
the GEV fits are much smaller than the differences between
the standard PQRUT model and the GEV fits, even when cal-
ibrated parameters are used for the PQRUT modelling. The
differences are larger (i.e. the stochastic PQRUT results are
lower, as shown in Fig. 13) in western Norway, where P and
Q are higher, and for steeper catchments, i.e. with a higher
value of HI. A reason for this might be that the empirical ra-
tios that are used to convert daily to peak flows in these catch-
ments are inaccurate and possibly too high. Similarly to the
box plots, Fig. 13 also shows that the results of the stochastic
PQRUT closely match the GEV distribution fits with differ-
ences within 50 % for most locations. There is no clear spa-
tial pattern in the differences between estimates based on the
GEV distribution and on the standard PQRUT model, except
for the catchments in mid-Norway, i.e. Trgndelag (including
catchment Krinsvatn), where the GEV distribution produces
higher results. However, a much larger sample of catchments
is needed to assess whether there is a spatial pattern in the
performance of the methods.

4 Conclusions

In this article, we have presented a stochastic method for
flood frequency analysis based on a Monte Carlo simula-
tion to generate rainfall hyetographs and temperature series
to drive a snowmelt estimation, along with the correspond-
ing initial conditions. A simple rainfall-runoff model is used
to simulate discharge, and plotting positions are used to cal-
culate the final probabilities. In this way, we can generate
thousands of flood events and base extreme flood estimates
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Figure 13. Results of the comparison between stochastic PQRUT, PQRUT and GEV for the values of the 1000-year return level. The absolute
differences (calculated by dividing the estimate by the average of all models) are correlated with catchment properties. Positive correlations

are given by red and negative correlations by blue.

on the empirical distribution, instead of extrapolating a statis-
tical distribution fitted to the observed events. The approach
thereby gives significant insights into the various combina-
tions of factors that can produce floods with long return pe-
riods in a given catchment, including combinations of fac-
tors that are not necessarily well represented in observed
flow series. It is thus a very useful complement to statistical
flood frequency analysis and can be particularly beneficial in
catchments with shorter streamflow series compared to the
precipitation record as well as in ungauged catchments.

In order to apply the method, we assume that the precipi-
tation and temperature series are not significantly correlated
with the initial conditions, which allows us to simulate them
as independent variables. Although we have not performed a
statistical analysis, the independence between the precipita-
tion events and the initial conditions has been verified (e.g.
Paquet et al., 2013). Due to the considerable seasonal varia-
tion in the initial conditions and in the rainfall distribution,
seasonal distributions were used. In addition to obtaining
more homogeneous samples, this allows for a check of the
seasonality of the flood events, which can be of interest in
catchments with a mixed flood regime. In this study, we have
used a GP distribution to model the extreme precipitation.
However, if only shorter precipitation data series are avail-
able, the exponential distribution or even regional frequency
analysis methods may provide more robust results. A lim-
itation of the method is that PQRUT can only be used for
small- and medium-sized catchments, since its three parame-
ters cannot take into account spatial variation in the snowmelt
and soil saturation conditions within the catchment. How-
ever, for the catchments presented in this study (all with a
catchment area under 850 km2), the model produces rela-
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tively good fits to the observed peaks, even though it uses
a very limited number of parameters.

In this study, initial conditions based on simulations us-
ing a hydrological model (DDD) were used. This requires
that this model is calibrated for each catchment. Considering
the results of the sensitivity analysis, the quality of the ini-
tial conditions is not as important as that of the precipitation
data for the estimation of extreme floods (with return peri-
ods higher than 100 years). This means that, if no other data
are available, the output of the gridded hydrological model
could be considered as a source of this input data. Alterna-
tively, remotely sensed data can be used for soil moisture and
the snow water equivalent while regional values for the ini-
tial discharge can be derived. This, for example, can be an
option in ungauged basins.

The stochastic PQRUT model was applied to 20 catch-
ments, located in different regions of Norway, and was com-
pared with the results of statistical flood frequency analysis
and the event-based PQRUT method, which is today used
in standard practice. Due to the high uncertainty in estimat-
ing extreme floods, the application of the different methods
produces differing results, as is often the case in practical
applications. However, in this work we have shown that the
stochastic PQRUT model gives estimates which generally
are more similar to those obtained using a statistical flood
frequency analysis based on the observed annual maximum
series than are estimates obtained using a standard imple-
mentation of PQRUT. As it is not possible to test the relia-
bility of estimates for the 500- or 1000-year flood (due to the
length of the observed streamflow series relative to the return
period of interest), the use of alternative methods for flood es-
timation, including stochastic simulations such as those pre-

www.nat-hazards-earth-syst-sci.net/19/1/2019/



V. Filipova et al.: A stochastic event-based approach for flood estimation 17

sented here, is an essential component of flood estimation in
practice.

Code and data availability. The R package StochasticPQRUT
(https://github.com/valeriyafilipova/StochasticPQRUT, last access:
21 December 2018) can be installed from github and contains sam-
ple data.
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