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Abstract. Conventional outputs of physics-based landslide
forecasting models are presented as deterministic warnings
by calculating the safety factor (F;) of potentially danger-
ous slopes. However, these models are highly dependent on
variables such as cohesion force and internal friction angle
which are affected by a high degree of uncertainty espe-
cially at a regional scale, resulting in unacceptable uncertain-
ties of Fs. Under such circumstances, the outputs of phys-
ical models are more suitable if presented in the form of
landslide probability values. In order to develop such mod-
els, a method to link the uncertainty of soil parameter values
with landslide probability is devised. This paper proposes the
use of Monte Carlo methods to quantitatively express uncer-
tainty by assigning random values to physical variables in-
side a defined interval. The inequality Fy < 1 is tested for
each pixel in n simulations which are integrated in a unique
parameter. This parameter links the landslide probability to
the uncertainties of soil mechanical parameters and is used
to create a physics-based probabilistic forecasting model for
rainfall-induced shallow landslides. The prediction ability of
this model was tested in a case study, in which simulated
forecasting of landslide disasters associated with heavy rain-
falls on 9 July 2013 in the Wenchuan earthquake region
of Sichuan province, China, was performed. The proposed
model successfully forecasted landslides in 159 of the 176
disaster points registered by the geo-environmental monitor-
ing station of Sichuan province. Such testing results indicate
that the new model can be operated in a highly efficient way
and show more reliable results, attributable to its high pre-

diction accuracy. Accordingly, the new model can be poten-
tially packaged into a forecasting system for shallow land-
slides providing technological support for the mitigation of
these disasters at regional scale.

1 Introduction

Rainfall-induced shallow landslides are common in many
mountainous areas and are considered extremely dangerous
(Varnes, 1978). Despite the low volume of debris deposits
involved in these processes (generally < 1000 m?), rainfall-
induced shallow landslides present high moving speeds
(Cruden and Varnes, 1996), evolve very rapidly, and can
propagate even in presence of obstacles (Davide and Davide,
2010). Current regional landslide forecasting models mainly
focuses on shallow landslides. They can be classified in three
categories: statistics-based methods (Caine, 1980; Crosta,
1998; Crosta and Frattini, 2001; Aleotti, 2004; Wei et al.,
2004; Wieczorek and Glade, 2005; Cardinali et al., 2006; Ja-
cob et al., 2006), contributor-factor-based forecasting meth-
ods (Dai and Lee, 2003; Wei et al., 2007a; Chang et al.,
2008) and physics-based forecasting methods (Montgomery
and Dietrich, 1994; Wu and Sidle, 1995; Montgomery et al.,
1998; Iverson, 2000; Wilkinson et al., 2002; Crosta and Frat-
tini, 2003; Salciarini et al., 2006). The physics-based fore-
casting models have overcome the drawback of statistics-
based models with respect to excessive dependence on rain-
fall data. Furthermore, by devising mechanisms for coupling
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rainfall with soil surface mechanics using hydrological pro-
cess simulation (Zhang et al., 2014a), the physically based
models represent an improvement over the independent treat-
ment of these factors by contributor-factor-based forecasting
models (e.g., Wei et al., 2007a).

The physics-based forecasting model is able to describe
the variation rule of hydrological parameters induced by rain-
fall infiltration and further explain the failure mechanism of a
slope due to the variation of hydrological parameters. Those
characteristics explain the interest of scholars in the physics-
based forecasting model and its implementation at regional
scales (Schmidt et al., 2008; Montrasio et al., 2011; Raia et
al., 2014). The most common analysis unit used in physics-
based forecasting models is the pixel, used for example in the
well-known TRIGRS model (Transient Rainfall Infiltration
and Grid-Based Regional Slope-Stability Analysis; Baum, et
al., 2002, 2008). The safety factor of each pixel within a fore-
casting region Fg (Fg = R/S, where R is shear resistance and
S is the driving force) is calculated considering rainfall infil-
tration; pixels are then identified as unstable (Fs < 1) or sta-
ble (Fs > 1). From these results, landslide warnings are ex-
pressed deterministically by labeling each pixel of the fore-
casting area as either “landslide occurrence” or “nonoccur-
rence”.

However, it must be noted that the underlying physics-
based forecasting model requires a large number of surface
data to be assigned to each pixel before safety factors can be
calculated. The physics-based model is sensitive to the accu-
racy of such data, especially the soil mechanical parameters
(cohesion force and internal friction angle) that can signifi-
cantly influence the pixel stability. In general, and specially
for large areas, seemingly deterministic soil mechanical pa-
rameters at pixel level used in physical models have different
amounts of uncertainty (Schmidt et al., 2008; Rossi et al.,
2013), which thus generate uncertain forecasting results. In
this scenario, it is unwise to give deterministic forecasting
results to the public while using the physical model in local
forecasting service.

Providing probabilistic landslide forecasting results is the
more direct solution to this issue. Currently, several schol-
ars are advancing in the development of physics-based prob-
abilistic forecasting models (Schmidt et al., 2008; Raia et
al., 2014). However, the relationship between the landslide
probability and the uncertainties in soil mechanical param-
eters is not addressed in their models. This effectively ren-
ders such probabilistic models actually still in the determin-
istic mode. For example, a series of deterministic forecast-
ing results are generated by the model during the simulation
process (Raia et al., 2014); an experienced forecaster with
professional knowledge of landslides is necessary in order to
identify the most probable one. Consequently, this approach
requires a large number of calculations, which is unsuitable
for operational forecasting of shallow landslides.

This paper focuses on an effective method for linking land-
slide probability to the uncertain soil mechanical parameters.
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It uses Monte Carlo methods to propose a probabilistic fore-
casting model with a high calculating efficiency. The pro-
posed model can directly generate probabilistic forecasting
results instead of serial deterministic results, and hence it
will be more suitable to operational forecasting of shallow
landslides, especially at the regional scale.

The next section introduces the physics-based probabilis-
tic forecasting for a shallow-landslide model. The third
section addresses the general aspects of its application to
a regional-scale shallow-landslide forecasting system. The
fourth section describes a case study in which the effective-
ness of the proposed model is analyzed in a study case. Sec-
tions 5 and 6 discuss the results and state the conclusions of
this study, respectively.

2 Probabilistic forecasting for shallow landslides

2.1 The infinite-slope model for unsaturated soil slopes
using safety factor Fj

There are two mechanisms that trigger failure in slopes sub-
ject to rainfall infiltration. They are loss of matrix suction
and increasing of a positive pore water pressure (Li et al.,
2013). In southwestern China, precipitation is rich in sum-
mer due to monsoon conditions from both the Pacific and In-
dia Ocean (Wei et al., 2006). Before the rainy season, slopes
in this area are generally unsaturated during the relatively
dry seasons. Almost all landslide disasters in southwestern
China occur during the rainy season when the matrix suction
of topsoil suddenly decreases due to heavy monsoon rains.
Consequently, this research focuses on the stability analysis
of unsaturated soil mass.

During the evolution process from stability to failure
driven by rainfall infiltration, the rapid loss of suction due
to the increasing soil water content is the key triggering fac-
tor for shallow landslides. The safety factor Fj is used to
evaluate the stability of slopes under the action of rainfall
infiltration; in this scenario, the failure plane is governed by
the Mohr—Coulomb failure criteria of unsaturated soil mass
and is assumed to be parallel to the slope surface (Fig. 1).
The expression of Fg based on the shear strength formula of
the unsaturated soil (Fredlund and Rahardjo, 1993) and the
infinite-slope model can be expressed as follows:

¢+ ¥ tan(p®)
y: Hycos Bsin 8’

_ tang
*T tan 8

)

where c is stress and can be named the cohesion force; ¢ is
the internal friction angle; ¢V is related to the matrix suction
(which is close to the internal friction angle ¢ in the condition
of the low matrix suction); Hy is the instable soil depth; and
Y is the matrix suction of the soil, which is a function of
the soil water content described as follows (Van Genuchten,
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Rainfall

Figure 1. Infinite-slope model for unsaturated soil on a slope.

1980):

Se=9—9r=|: 1 :| , @)
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where S. is the saturation degree; 6 is the saturated water
content; 6, is the residual water content; 6 is the soil water
content of the current hour; «, n and m are the parameters of
soil water characteristic curve; andn =1—1/m.

2.2 Deterministic forecasting model using safety factor
Fs

The infinite-slope model aims to calculate the safety fac-
tor F; to identify the stability of a slope. It has its basis in
a theoretical hypothesis (Apip et al., 2010), which can de-
scribe the mechanical process of shallow-landslide forma-
tion. This approach can give reliable results for each pixel
as long as the soil mechanical parameters are accurate. From
a deterministic point of view, this physical framework can be
briefly drawn as follows: for each pixel in the forecast area,
if Fy < 1, it is considered unstable, while pixels with Fg > 1
are considered to be stable.

Acquiring the values for the soil mechanical parameters
necessary for the infinite-slope model require the use of field
sampling or soil-texture-based methods (Blondeau, 1973;
Apip et al., 2010; Zhang et al., 2014a, b). However, the preci-
sion of these methods is relatively low (Schmidt et al., 2008),
and they are thus subject to high levels of uncertainty. Con-
sequently, the seemingly deterministic infinite-slope model
based on soil mechanical parameters of each pixel is in fact
uncertain (Schmidt et al., 2008; Rossi et al., 2013). This will
be reflected in the safety factors Fy of each pixel, leading to
a situation in which, despite the advantages of the physically
based landslide forecasting model, it may be misleading if
used in a deterministic way for real-world applications.

This is not an issue for other landslide forecasting models.
For example, although the input variables of the contribution-
factor-based forecasting model are also uncertain (Wei et al.,
2007a), and thus it is essentially a statistical model (Zhang et
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al., 2014a), it successfully accounts for the relationship be-
tween uncertainties of input variables and results using fuzzy
mathematics so that they are expressed as probabilistic fore-
casting for landslides. The landslide probability is divided
into five grades from the level 1 to 5, which represent a low,
relatively low, medium, high and extremely high probability
of occurrence of landslides, respectively. This forecasting re-
sult conveys clearer landslide risk levels to the public (Wei et
al., 2007b).

For the above reasons it is relevant to identify an effective
relationship between the landslide probability and uncertain
input variables with uncertainty (cohesion force and inter-
nal friction angle) in a physics-based probabilistic forecast-
ing model.

2.3 Probabilistic forecasting model for shallow
landslides

In order to link landslide probability to uncertain variables,
the nature of this uncertainty should be quantitatively ex-
pressed in mathematical language. Then, a physical parame-
ter associated with both input variables and landslide proba-
bility will be used to formalize the linkage.

The uncertainty of physical parameters can be described
by a probability density function, e.g., the commonly used
functions of normal distribution and the uniform distribution
(Schmidt et al., 2008; Raia et al., 2014). The physical param-
eters submit the normal distribution, meaning that they can
be expressed as ¢ = N (e, crcz), ¢ = N (e and ag). In this
distribution function, u represents the mean value of the soil
parameters, and o represents the standard deviation. So if the
normal distribution function is adopted to describe the uncer-
tainty, the two key parameters (mean value p and standard
deviation o) should be firstly determined in order to estab-
lish the corresponding specific distribution function for each
pixel within the study area. To achieve this aim, numerous
samples and experimental works are necessary, and it is very
difficult to implement in a large region. The uniform distri-
bution is suitable the investigation of large areas where infor-
mation on the geo-hydrological properties is limited (Raia et
al., 2014), which can easily allow authors to get random pa-
rameters from its set approximate variation range instead of
large amount of field and experimental works in large area.
Accordingly, the uncertainties of cohesion force and inter-
nal friction angle are described here as uniform probabil-
ity distributions in the intervals of ¢ = U (cmin, Cmax) and
@ = U (¢min, ¥max), respectively. Then, Monte Carlo meth-
ods can be used to randomly extract cohesion force and in-
ternal friction angles from the two intervals »n times in any
forecasting step. This random approach is used to account
for the uncertain nature of soil mechanical parameters. A
detailed description of the random extracting process is as
follows: the extraction of the two parameters is dependent
on the variables ;. and r;,, which are described as uniform
probability distributions in the interval of ;. = U (0, 1) and
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rip = U (0, 1); the random values of cohesion force ¢; and in-
ternal friction angle ¢; can be identified via Egs. (3) and (4).
The parameters of r;. and r;, used for calculating ¢; and ¢;
in Egs. (3) and (4) may have different values because they
are independently extracted from (0,1).

¢i = ric(CmaxCmin) + Cmin 3

®i = Tip(Pmax — Pmin) + Pmin (C))

There, i is the number of some pixel, cpin and @i, are lower
borders of intervals of the two mechanical parameters ex-
pected values, and cmax and @max are the upper borders. Both
the lower and upper borders will vary from pixel to pixel,
because each pixel with different lithology has different me-
chanical parameters. For any pixel in any forecasting step, a
matrix M; can be generated after the n-times random extrac-
tion process:

1 91
2 P2

M; =[ci,9ill=| c3 o3 |. (5
Cn @n

Any element contained in M; has a specific physical meaning
representing as a whole the physical phenomenon of uncer-
tainty.

Provided the other parameters identified in Eq. (1), each
set of [¢;, ¢;] in M; can generate a safety factor Fy;, = [F5,,
Fs,, Fy,, ... , F, 1. The array of safety factors Fy, reflects n
possible stable states for a pixel under these physical condi-
tions. It is possible from there to identify a failure probability
by the number of F;, < 1 (failure) in the n different states in
the form of a ratio P(P € [0, 1]) of F; < 1, representing a
tendency of a pixel to failure from stability.

_ Sumpg,<;

P = (6)

n
Larger P values in Eq. (6) indicate a forecasting result fa-
vorable to a high occurrence probability of failure under un-
certain variables. This interpretation implies that a pixel will
tend to one end failure when P exceeds 50 %, and its failure
probability will only increase with larger values of P. Since
P is derived from series of random (uncertain) variables [c;,
@;] via Egs. (1) and (6), and is also directly associates with
the landslide probability, the ratio (P € [0, 1]) of F, <1 is
a strong candidate for linking the landslide probability to the
uncertain soil mechanical parameters.

For the purposes of practical implementation of this fore-
casting model, P is divided into a series of reference inter-
vals in Table 1; the occurrence probability of shallow land-
slides increases from the first to the fifth interval of P. Five
grades of landslide warnings are defined accordingly and
color-coded Table 1.
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3 Probabilistic shallow-landslide forecasting method at
regional scale

3.1 Gathering basic data necessary for landslide
forecasting

Topography is the main factor in shallow landslides. Nowa-
days, obtaining a digital elevation model (DEM) of preci-
sion adequate for regional-scale forecasting is straightfor-
ward. The DEM of the study zone is resampled into pixels
with dimensions according to the extension of the area. The
parameters required to calculate the ratio P for each pixel
from the array of safety factors F;; from a series of randomly
extracted [c;, ;] are identified in Eq. (1). In this case ma-
trix suction, which is associated with the soil water content,
should be identified by hydrological process simulation.

The key data necessary for the hydrological process simu-
lation include the spatial distribution of precipitation, land
use, soil type and normalized difference vegetation index
(NDVI). Precipitation data with the same solution of the
DEM can be obtained by resampling rainfall prediction from
Doppler radar supplied by meteorological bureaus. Land use,
soil type and soil depth can be obtained from corresponding
databases, all of which should be transformed into grid data
with the same solution of DEM. Other data necessary for sta-
bility calculations are slope angle for each pixel, parameters
from the soil water characteristic curve («, m, n) and soil me-
chanical parameters. Slope angles can be derived from DEM
using spatial analyst tools; parameters («, m, and n) of the
soil water characteristic curve are derived from the different
soil types within the pixel.

Regarding the identification of soil mechanical parameters
(cohesion force and internal friction angle), a relatively reli-
able way, such as field sampling or soil-texture-based meth-
ods, should be used to assign an initial basic value to each
pixel. Although these values include high uncertainty levels,
they are used only as reference values while setting inter-
vals of ¢ = U (¢min, ¢max) and ¢ = U (¢min, ¥max) (Raia et al.,
2014). In this study, the lithology of the study zone is derived
from a geological map, and the mechanical parameters (co-
hesion force and internal friction angle) of the corresponding
lithology are identified using a rock mechanics handbook (Ye
etal., 1991). Finally the data are assigned to each pixel using
the grid cells of the DEM as a reference.

From Eqgs. (3) and (4), it is necessary to identify the lower
and upper border of intervals of the soil mechanical param-
eters. However, the exact values for lower (cmin, and @min)
and upper (cmax and @max) limits are very difficult to deter-
mine. From currently published papers, there is no known
theoretical or experimental method to solve this issue. Raia et
al. (2014) used variations of 1, 10 and 100 % around the val-
ues of cohesion force and internal friction angle (from field
tests) to get several intervals, showing that the forecasting
effectiveness is significantly improved by using large varia-
tions. Consequently, this method applies a variation of 100 %
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Table 1. Reference intervals for shallow-landslide forecasting based in probabilistic safety factor.

Ratio intervals (%) | P <20

| 20<P <50 | 50<P <60 | 60<P <80 | 80<P <100

2

Warning degree 1
Blue

Warning color Colorless

3 4 5
Yellow

Orange Red

around the mean value of these parameters for each pixel to
set the corresponding lower and upper borders as follows:

(N
®)

Crandom € [0.5 X Corigin, 2 X Coriginl,

@random € [0.5 X @origin, 2 X Porigin],

where crandom and @random are the randomly extracted cohe-
sion forces and internal friction angles, and corigin and @origin
are the mean value of each pixel (in this case from the rock
mechanics handbook; Ye et al., 1991).

3.2 Pixel level hydrological process simulation

The simulation of hydrological processes including rainfall
interception, infiltration and evapotranspiration is extremely
complicate. However, rainfall infiltration is the key factor in
the distribution of soil water content in the underlying sur-
face, which simplifies the analysis. In the southwestern re-
gion of China slopes are almost unsaturated before the rainy
season due to characteristic distribution of rainfall influenced
by the monsoon (Zhang et al., 2014b). The infiltration pro-
cess in the vertical direction in unsaturated soil mass can be
described by the 1-D Richards equation (1931):

0 9 00 dK(9)
ar a_z[D(e)a_} T a0 ©)
where 6 is soil water content; D(0) = K(0)/(d6/dy) is the
hydraulic diffusivity; ¥ is the suction of unsaturated soil;
z represents the soil depth, which is positive along the soil
depth and has the topsoil as the origin point; and K (@) is the
hydraulic conductivity. The matrix suction is the dominant
external force to drive the water movement in unsaturated
soil mass, which can be calculated from Eq. (2).

Infiltration upper border: if the topsoil is unsaturated, it has
a strong infiltration capacity (Lei et al., 1988). Then, while
the rainfall intensity is less than the infiltration capacity of the
topsoil, all precipitation will infiltrate into the topsoil without
any runoff. In this scenario, the infiltration border is governed
by Eq. (10):

a0

—D(0)8—1+K(9)=R(I),t>0, z=0, (10)
where R(¢) is the rainfall intensity at time ¢. Here, the part
of precipitation that exceeds the capacity of infiltration of the
topsoil will transform into runoff (no water storage above
topsoil). In this case the topsoil of a pixel is considered sat-
urated. Thus, Eq. (10), which governs the upper border of
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infiltration, is transformed into the equation of 8 = 65 (Lei et
al., 1988). There 6; is the saturated moisture corresponding
to the soil type.

Infiltration bottom border: it has been experimentally
demonstrated that the soil water content beyond a soil depth
of 40 cm is barely influenced by rainfall infiltration (Cui et
al., 2003). Consequently a region with a groundwater level
near the surface of the soil has hydrological characteristics
in which rainfall infiltration can hardly induce any ground-
water level variation. In this case, it is reasonable to ignore
the water exchange process between the lower boundary and
groundwater (Zhang et al., 2015).

An implicit finite difference method is used for discretiza-
tion of the 1-D differential equation of water movement. The
calculation time ¢ is segmented into several intervals with
the same time gap ¢, and the soil depth L of each pixel is seg-
mented into soil layers (each layer is named of i numbers)
with the same depth z.

Identifying the initial soil water content is an important
issue during the hydrological simulation process. However,
this value cannot be directly determined at any given time for
a large region due to complex rainfall infiltration and evapo-
transpiration interactions. In the case of southwestern China,
the winter is generally a relatively dry season; thus the soil
water content value of the topsoil is very low, close to the
residual water content of the soil type (Zhang et al., 2014b).
This situation is exploited by setting the simulation time to
start on 1 January of the forecasting year (driest month in
winter), which allows the use of the residual water content
corresponding to the soil type and the initial value of the
topsoil water content. Measured meteorological data from
1 January are then fed to the simulation, which allows for
a relatively accurate initial value of soil water content for
the landslide forecasting. Each simulation step also takes into
account the rainfall interception and evapotranspiration pro-
cesses by means of the algorithm of the distributed hydrolog-
ical model GBHM (Yang et al., 2002).

After the hydrological simulation process identifies the
initial soil water content of each pixel, the simulation focuses
on the extraction of key hydrological parameters (soil water
content and matrix suction) necessary for the stability calcu-
lation of each pixel using the expected rainfall from Doppler
radar forecasting. During this last stage in the simulation in
which landslide forecasting is performed, the evapotranspira-
tion processes is not considered since this period is typically
short, with rainfalls, negligible sunshine and lower tempera-
tures.
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3.3 Probabilistic landslide forecasting at pixel level

During the forecasting stage, the hydrological parameters
(soil water content and matrix suction) of each pixel in each
forecasting step ¢ are extracted via hydrological process sim-
ulation. Then the ratio P is computed for each pixel in several
steps as follows: (1) Hj representing the instable soil depth
in Eq. (1) is not equal to the soil depth L in Sect. 3.2 and
cannot be identified in advance. We have to divide each pixel
with a certain soil depth L into several soil layers in order to
calculate the F; using Eq. (1) layer by layer. When the calcu-
lated soil layer is the jth, the parameters Hg will be equal to
the sum of all the soil layers above the jth layer (including
the depth of the jth soil layer). As mentioned in Sect. 3.2,
each pixel was divided into soil layer with the same depth.
The matrix suction and soil water content are the important
hydrological parameters to the stability analysis of the pixel
which will be calculated and saved in each divided soil layer
after the hydrological process simulation. So we adopt the
same discretization rule during the stability analysis in or-
der to easily extract these hydrological parameters. (2) The
Monte Carlo method is used to extract the cohesion force and
the internal friction angle n times from the corresponding in-
tervals (¢ = U(Cmins Cmax) and ¢ = U (@min, ¥max)) of each
pixel. (3) The safety factor Fy of each divided layer within
one pixel is calculated after each extraction, using the soil
mechanical parameters and the hydrological parameters only
related to time as inputs of Eq. (1); if the Fj of the jth layer is
less than 1, then the calculation process within the pixel will
stop. (4) Once the Monte Carlo process ends, the total times
sumpg, <1 (a count of the number of occurrences satisfying the
instability condition) is obtained, and the ratio P of Fy < 1
is calculated using Eq. (6). (5) Finally the interval of Table 1
where ratio P is located according to its value is assigned to
the pixel as the early-warning information to be broadcasted.

After completing this process for all pixels within the fore-
casting region, the whole calculation at time ¢ is finished;
meanwhile a map of landslide warning degrees in the fore-
casting region will be generated at the end of each forecasting
step. Such maps can then be used by the forecasting bureau
of the region to issue landslide warnings to hazard mitigation
units and the public.

4 Verification of the probabilistic landslide forecasting
model

4.1 Study zone

The Wenchuan earthquake region with an area of 3.14 x
10* km? within Sichuan province, China, is chosen as the
study zone in this study (Fig. 2). In this region, at 14:28 (Bei-
jing time) on 12 May 2008, an M 8.0 earthquake occurred.
Massive potentially unstable slopes were left after this earth-
quake, which are known to readily evolve into shallow land-
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Figure 2. Study zone and intensity distribution of Wenchuan earth-
quake.

slides by rainfall infiltration (Zhang et al., 2016). The close
relationship between rainfall and landslides in this region has
been demonstrated by the short lag time of landslides and its
strong correlation to rainfall time (Tang, 2010). The same
study established that landslide events within the earthquake
region are mainly in the form of shallow landslides (Tang,
2010). Tang (2010) also pointed out that shallow landslides
will be active within the Wenchuan earthquake region at least
for the next 10 years. Such conditions make this region ideal
for implementation of shallow-landslide forecasting models.

4.2 Rainfall process and related landslide events used
for testing

The chain of events in the Wenchuan earthquake area that
ended in disastrous landslides in 9 July 2013 was chosen
to evaluate the proposed landslide probabilistic forecasting
method. These events started with heavy rainstorms in the
area during the days from 1 to 8 July 2013. As the rain-
fall measured by the weather stations within the area shows
(Fig. 3), the maximum accumulated precipitation during
these days reached 317.7 mm, which is a key contributing
factor for the landslide events of 9 July 2013.

On 9 July 2013, there was no evidence of decreasing rain-
fall intensity; on the contrary, all evidence suggested heav-
ier rainfalls. Records from the rainfall forecasted by Doppler
radar provided by the weather bureau of Sichuan province on
that day predicted a maximum 24 h total precipitation within
the earthquake region of up to 498 mm (Fig. 4). Accord-
ingly, the Weather Bureau of Sichuan province published
red-color warning signals (the highest alert degree) for some
locations within the study region. On that day, 176 landslide
events were reported within the study region (Fig. 4), lead-
ing to casualties and serious economic losses for local res-
idents (Zhang et al., 2014b). This typical landslide disaster
triggered by intense rainfall is ideal for evaluating the main
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Figure 3. Total rainfall from 1 to 7 July 2013.
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Figure 4. Distribution of rainfall-induced landslides within
Wenchuan earthquake region on 9 July 2013.

aspects of the implementation of the proposed probabilistic
landslide forecast model at regional scales.

4.3 Gathering of basic data of study zone

The topography of the study region (Fig. 5) was described by
a DEM with 125 x 125 m resolution. This way, the study re-
gion was segmented into 6 965 505 pixels. A data matrix with
2576 rows and 2704 columns was created from the DEM and
saved in text format. The basic data for hydrological process
simulation and stability were resampled to correspond to the
same resolution of the DEM and saved as text matrices with
the same dimensions.

4.3.1 Data for hydrological process simulation
The process of rainfall interception due to vegetation in-
fluence within the study region is taken into account using

NDVI values. Generally, the vegetation and thus the values
of NDVI vary with the variation of land uses and seasons. In
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Figure 5. DEM of Wenchuan earthquake area.

this case, NDVI values from the same region of the adjacent
year are considered reasonably close, since the distribution
of land uses within a region is relatively stable. The monthly
NDVI distribution over the study region in the preceding year
(2012) was used to adjust for canopy rainfall interception
during the hydrological process simulation (Fig. 6).

Other data required — such as land use (Fig. 7a), soil type
(Fig. 7b), and soil depth for the Wenchuan earthquake region
— was obtained from the FAO database (http://www.fao.org/
geonetwork/srv/en/main.home). These data were processed
using GIS functions so that they correspond to the pixels of
the DEM.

The physical parameters of the soil required for the sim-
ulation of rainfall infiltration in the vertical direction were
determined by the land use and standard soil types within
the study region. The soil thickness ranged from 1 to 4 m;
soil depths of 1 m account for 44.1 % of the study area, while
deeper soils cover the remaining 55.9 %. Each pixel was di-
vided into 10 layers (along the soil depth in the vertical di-
rection) during the hydrological process simulation and sta-
bility analysis. There are 10 soil types in the area (shown in
Fig. 7b). Their relevant physical properties are listed in Ta-
ble 2.

4.3.2 Data for calculation of slope stability

Eq. (1) indicates that matrix suction, cohesion force and in-
ternal friction angle are the key mechanical parameters in-
fluencing the slope stability. Simulation of the hydrological
process is used to obtain the matrix suction of soil mass as a
function of the soil water content as shown in Eq. (2). Cohe-
sion forces and internal friction angles for each pixel updated
from the old database (Liu et al., 2016) are determined ac-
cording to the lithology map and the rock mechanical hand-
book (Fig. 8). The detailed process to obtain these data is as
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Figure 7. Information of land uses and soil types within the study zone.

follows: each pixel will be firstly assigned the lithology attri-
bution according to the lithology map, and then the rock me-
chanical handbook, which contains the mechanical parame-
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ters of all lithology, will be used to find the corresponding
parameters of each pixel. These mechanical values are then
used as a basic reference for constructing intervals of these
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Figure 8. Mechanical parameters of soil used for calculation of slope stability.

Table 2. Soil water parameters for hydrological simulation.

Parameters of curve

Saturated hydraulic

Soil type  Saturated Residual Alpha n conductivity
code moisture  moisture (mmh™ l)
3085 0.48278  0.07768 0.01896  1.40474 22.78608
3963 0.47303  0.07347 0.01796  1.42367 22.46508
3967 0.52726  0.08259 0.01867 1.41453 35.97075
4269 0.45649  0.06905 0.02306 1.55872 32.68625
4287 0.44596  0.07343 0.01971  1.47235 19.30871
4288 043797  0.07175 0.02064  1.53067 24.80996
4329 0.45049  0.07957 0.01604  1.44517 9.307170
4350 0.47990 0.07435 0.02156  1.42176 22.51646
4351 0.48278  0.07723 0.02040 1.41974 21.61279
4391 0.42784  0.06439 0.01623  1.63524 23.91267
6998 0.46154  0.06817 0.01770  1.46884 23.60925

parameters (¢ = U (cmin, Cmax) and ¢ = U (¢@min, ¥max)) for
each pixel.

4.4 Forecasting results

The landslide probability in the Wenchuan earthquake re-
gion on 9 July 2013 was calculated, along with color-coded
warnings for each pixel according to Table 1. This forecast
covered 24 time nodes (hourly forecasts) covering the whole
day. Two representative time nodes (at 06:00 and 15:00) are
chosen from the 24 h forecasting results for further analysis
(Fig. 9). The detailed forecasting results are listed in Table 3.
These details denote low variation in the forecast for these
time nodes.

Colored points in Fig. 9 represent landslide disasters that
occurred on 9 July 2013. Green points represent landslides
located in pixels forecasted with a high degree of probabil-
ity of landslides (orange—red); thus they are considered suc-
cessfully forecasted or true positives (159 events). The other
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Table 3. Quantity of pixels with warning information.

Blue Yellow Orange Red
Pixel 06:00 532 150 332 699
Count 15:00 521 158 321 704

17 events represented by yellow and red points denote land-
slide events in low-warning areas, which are considered as
failed-forecasted landslides or false negatives. These num-
bers indicate a missing-prediction rate of the new proposed
forecasting model of about 9.7 %.

Further analysis of these failures indicated that in some
cases the maximum slope angle of the corresponding pixel
reported by the DEM is less than 4° (yellow points). Further-
more, four of these pixels have slope angles equal to O from
the DEM. These small angles are for practical effect equal to
flat terrain. In this scenario the probabilistic forecast model

Nat. Hazards Earth Syst. Sci., 18, 969-982, 2018
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Figure 9. Landslide warning maps for Wenchuan earthquake region at two representative time nodes.
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Figure 10. Initial conditions for landslide forecasting.

is unable to predict any unstable state, even during a more
serious rainstorm. However, the real occurrence of landslide
events at these locations indicates further analysis is neces-
sary. In this case, the most probable cause of this situation
is the generalization process associated with the resolution
of the DEM. It is well known that increasing the size of the
pixel tends to lower the estimated slope value, which in turn
will raise the failure prediction rate of models with high de-
pendence on accurate slope values. A straightforward solu-
tion to this problem is to further reduce the size of the pixel,
which will in turn represent the real slope angle more accu-
rately. This solution, however, will drastically increase the
computing time. As reference, the current matrix dimensions
of 2576 x 2704 (for 125 m pixel size) represent the limit for
a regular workstation when the data are not partitioned.
There are still eight prediction failures (marked by red
dots) left unexplained. These are considered to be related
to other aspects of the probabilistic forecasting model and
unaccounted-for uncertainties. Detailed forecasting informa-
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Table 4. Detailed forecasting analysis.

Landslides 176
Successfully predicted 159
landslides
Failure to predict 9

landslides due
to DEM imprecision

Failure to predict 8
landslides due
to model imprecision

Failure 9.7 %
rate

tion about the landslide events in this study is listed in Ta-
ble 4.

The false-prediction (false-positive) rate for the probabilis-
tic forecast model is high. Fig. 9 shows high-warning de-
grees concentrated around Guangyuan city and Qingchuan
County (marked by the “red star” in Fig. 9b), where land-
slide events did not occur. Looking at Fig. 3, we see that
the accumulative precipitation within Guangyuan during the
days of 1 and 7 July was 317.7mm according to the lo-
cal weather station. This implies initial soil water contents
in the region close to saturation levels just before the fore-
casting time. Additionally, the cumulative precipitation pre-
dicted from the Doppler radar reached more than 470 mm
in Guangyuan. Under the action of such a combination of
strong antecedent rainfall and forecasted rainfall, it is reason-
able to expect a high concentration of landslides (forecasted
by the probabilistic model with different warning colors). Al-
though the measured rainfall data for 9 July were not avail-
able for this study, indirect information (absence of report of
landslides and other phenomena associated with heavy rain-
fall, even with notable initial soil water content levels) indi-

www.nat-hazards-earth-syst-sci.net/18/969/2018/



S. Zhang et al.: A physics-based probabilistic forecasting model 979

Warning degree

mm Study zone

“01530 60 90 120
| = km

Warning degree

mm Study zone

Figure 11. Forecasting results without considering the influence of the antecedent soil water content.

cates the real precipitation on 9 July was much smaller than
forecasted from Doppler radar. Given the known tendency of
Doppler radar forecasts to overestimate rainfall, it is reason-
able to consider the precision of Doppler radar rainfall as a
key factor influencing the high false-prediction rates of the
proposed probabilistic forecasting model.

5 Discussions

The general rule for the evolution of a slope from stability
to failure is that the failure probability should increase as the
rainfall process continues since increasing soil water content
will decrease the suction matrix. This rule implies a forecast-
ing result at 15:00 with more unstable pixels than the result
at 06:00. However, both of them are relatively close.

The distribution map of initial soil water content at 24:00
on 8 July, shown in Fig. 10, indicates significant effects of
accumulated rainfall for landslide forecasting; the topsoil of
some areas is even in saturated conditions (this means that
only the topsoil was saturated rather than the whole soil
layer). The total saturated pixels within study region total
532.

Under these initial conditions, the mechanism of the
runoff—infiltration process indicates that a significant amount
of precipitation will transform directly into runoff as the soil
water content value of topsoil increases. In this case study,
these high levels of initial soil water content attributed to
strong antecedent rainfalls lead to a lower variation rate of
soil water content at pixel level. In this scenario, the varia-
tion of soil water content tends be gentle even during long
and intensive rain, while excess water contributes mainly to
the runoff process. This chain of events may explain the lack
of clear evolution in the forecast in this particular study.

To further confirm this analysis, a new hydrological sim-
ulation was run in which the antecedent precipitation is ig-
nored. The initial soil water content of each pixel for land-
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Table 5. Quantity of pixels with warning information, without con-
sidering the influence of antecedent soil water content.

Warning colors  Blue  Yellow Orange Red
Pixel  06:00 231 106 237 325
Count 15:00 336 128 290 586

slide forecasting was directly assigned with the residual soil
water value according to the corresponding soil type (assum-
ing a completely dry soil). All other parameters, including
predicted rainfall from Doppler radar, remained unchanged
from the previous simulation. The forecast results at 06:00
and 15:00 under these new conditions are shown in Fig. 11
and Table 5. It is easy to observe differences between fore-
casting times, with the quantity of unstable pixels at 15:00
being larger than at 06:00 as expected. In this case, the low
level of initial soil water content allows for a strong infiltra-
tion process in the topsoil, which in turn leads to high vari-
ation rates for soil water content in each pixel, reflected in
the differences of forecasting aligned with the expected evo-
lution of the slope failure process.

The above analysis not only explains why there is not a
big difference between 06:00 and 15:00 forecasts during a
high-intensity rainstorm. It also stresses the relevance of the
initial soil water content (or the effective antecedent rainfall)
for any physically based landslide forecast model. A reliable
method to calculate the initial soil water content can signifi-
cantly influence the results of landslide forecasting models.

Another issue is that most published physical models for
landslide forecast, such as the SLIP (Shallow Landslides In-
stability Prediction) and TRIGRS models (Montrasio et al.,
2011; Tsai and Chiang, 2012), overestimate the probabil-
ity of landslide occurrence at regional scales. This proposed
physics-based probabilistic forecasting model is also affected
by this problem. From the point of view of input parame-
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ters, three key factors can lead to this high false-prediction
rate. (1) The soil mechanical parameters can only be ob-
tained indirectly at regional scales, which greatly increases
uncertainty. Consequently, it is impossible to guarantee the
correspondence of the fixed mechanical values at pixel level
with the actual values in nature, even using large intervals
of soil mechanical parameters such as in this paper. Under-
estimating these values increases the probability of identify-
ing the corresponding pixel as unstable, which contributes to
high false-prediction rates. (2) The nature of DEM models
implies that a pixel identified as unstable by a pixel-based
forecasting model may not really represent an unstable slope
in nature. A slope may contain several pixels of which only
a few are unstable, or more likely at regional scales, a pixel
may include several slopes. In this scenario isolated unstable
pixels can contribute to high false-prediction rates. (3) The
precision of short-term rainfall forecasting is the last factor
that can contribute to high false-prediction rates. This is rel-
evant in this study, in which rainfall forecasts from Doppler
radar overestimated the expected rainfall in some areas.

6 Conclusions

The extreme complexity of the landslide formation process
means that even physics-based forecasting models are un-
able to model the slope instability with 100 % of confidence.
However, the uncertainty of some input variables (e.g., soil
mechanical parameters) is responsible for a significant part of
this situation. This research adopted a probabilistic approach
to express this uncertainty using Monte Carlo simulation. A
single parameter (the ratio P) was devised to couple the un-
certain nature of input variables with shallow-landslide fore-
casting. Furthermore, a regional physics-based probabilistic
shallow-landslide forecasting model was developed around
this parameter. The proposed model does not eliminate un-
certainty; it manages it by explicitly introducing it into the
model expressing the forecast directly in probabilistic form.
Our tests showed that this approach increases the forecast
precision (true positives) in real conditions, which is cardi-
nal to protecting the public from catastrophic consequences
of shallow landslides and other associated disasters (such as
debris flows).

It must be noted that the complexity of landslide forecast-
ing is not limited to the uncertainty of physical soil prop-
erties; this research points to the initial soil water content as
another key variable extremely difficult to identify accurately
at regional scales. The model proposed in this paper imple-
ments a simulation of the hydrological processes occurring in
the soil to estimate this value. Such simulation is time inten-
sive, which is unfavorable for real-world applications. Future
research should focus on efficient methods for identification
of soil water content at regional scales, which is a difficult
but worthy challenge.
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The goal of developing this physics-based probabilistic
forecasting model is to serve for regional landslide disas-
ter mitigation. Detailed-resolution data, which in the case of
DEMs are readily available, are not always straightforward
solutions for better forecasting results at this scale. In this
case higher DEM resolution will improve the efficiency of
the model failure prediction rates at the individual pixel level
due to better slope representation. However, it will also in-
crease the time and resources required by the model to pro-
duce usable results. A balance point between pixel-level pre-
cision and operational efficiency is required for the proposed
model in order to make it more suitable for regional opera-
tion.
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