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Abstract. Crop models routinely use meteorological varia-
tions to estimate crop yield. Soil moisture, however, is the
primary source of water for plant growth. The aim of this
study is to investigate the intraseasonal predictability of soil
moisture to estimate silage maize yield in Germany. We also
evaluate how approaches considering soil moisture perform
compare to those using only meteorological variables. Silage
maize is one of the most widely cultivated crops in Ger-
many because it is used as a main biomass supplier for en-
ergy production in the course of the German Energiewende
(energy transition). Reduced form fixed effect panel models
are employed to investigate the relationships in this study.
These models are estimated for each month of the growing
season to gain insights into the time-varying effects of soil
moisture and meteorological variables. Temperature, precip-
itation, and potential evapotranspiration are used as meteo-
rological variables. Soil moisture is transformed into anoma-
lies which provide a measure for the interannual variation
within each month. The main result of this study is that soil
moisture anomalies have predictive skills which vary in mag-
nitude and direction depending on the month. For instance,
dry soil moisture anomalies in August and September re-
duce silage maize yield more than 10 %, other factors being
equal. In contrast, dry anomalies in May increase crop yield
up to 7 % because absolute soil water content is higher in
May compared to August due to its seasonality. With respect
to the meteorological terms, models using both temperature
and precipitation have higher predictability than models us-
ing only one meteorological variable. Also, models employ-
ing only temperature exhibit elevated effects.

1 Introduction

In the course of the German Energiewende (energy transi-
tion), the demand for biomass has increased considerably
with silage maize being an important plant for high dry mat-
ter yields. The share of the total production in agriculture was
18 % in 2014 (Die Landwirtschaft Band 1, 2014), with an in-
creasing share of agricultural area used for silage maize from
15.4 % in 2010 to 17.7 % in 2015 (Statistisches Bundesamt,
2011, 2016). With that in mind, the observed susceptibility of
silage maize towards extreme dry conditions during summer
time supports the detection of relevant factors for yield vari-
ation (for instance in 2015; Becker et al., 2015; Bundesmin-
isterium für Ernäherung und Landwirtschaft, 2015). Know-
ing the determinants of maize variation can help to mitigate
welfare losses. For instance, detrimental effects of soil mois-
ture shortage and abundance can be mitigated by the means
of irrigation and drainage and thus are key for targeted and
efficient development of adaptation measures (Chmielewski,
2011).

In general, two different kinds of modeling approaches are
employed to assess the impact of weather or climate on the
agricultural sector. These are structural (integrated assess-
ment) models and reduced form models (Auffhammer and
Schlenker, 2014). Whilst structural approaches specify the
economic behavior based on theoretical models and assump-
tions and thus have “the ability to make predictions about
counterfactual outcomes and welfare” (Chetty, 2009), the ad-
vantage of reduced form approaches is “transparent and cred-
ible identification” (Chetty, 2009) by exploiting the exoge-
nous variation of key parameters (Timmins and Schlenker,
2009). Regression models are used to estimate the variation
in the dependent variable within various sectors by the means
of damage or dose-response functions (Hsiang, 2016; Car-
leton and Hsiang, 2016). In the agricultural sector, the major
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explanatory variables are temperature based (Carleton and
Hsiang, 2016; Lobell et al., 2008, 2011b; Schlenker et al.,
2005; Schlenker and Lobell, 2010). The use of temperature
as the main explanatory variable is questioned in this study
by using reduced form models to identify the impact of dif-
ferent determinants on crop yield.

In the agricultural context, most advances have been made
regarding dose-response functions through the development
of temperature estimates on high spatial and temporal resolu-
tions (Hsiang, 2016). Based on these data, many studies em-
ploy a precise term which integrates cumulative exposure to
specific temperature ranges over the growing period as ma-
jor explanatory variable. Those are defined as growing de-
gree days (Schlenker et al., 2006; Deschenes and Greenstone,
2007) and accumulated measures of extreme heat above a
certain threshold, for instance extreme, heat, killing, or dam-
age degree days (Annan and Schlenker, 2015; Burke and Em-
erick, 2016; Butler and Huybers, 2013, 2015; Lobell et al.,
2011a, 2013; Ortiz-Bobea and Just, 2013; Roberts et al.,
2013; Urban et al., 2012, 2015a; Schlenker and Roberts,
2006, 2009; Schlenker et al., 2013; Teixeira et al., 2013).
Schlenker and Roberts (2009) showed that the time in which
a plant is exposed to a temperature above a threshold dur-
ing each day of the growing season can explain almost half
of its yield variations. For corn, this threshold is estimated
to be 29 ◦C. Thus, it is highly recommended to account for
nonlinearity in temperature. This is particularly important in
the context of climate change, as the likelihood of significant
and non-marginal changes in relevant factors increases. Cur-
rently, nonlinear measures with thresholds such as extreme
degree days (EDD) are considered to be the best predictor
of crop yield variation (Auffhammer and Schlenker, 2014;
Carleton and Hsiang, 2016).

Recent research suggests that the main reason of the im-
portance of EDD is the high correlation with measures of
cumulative evaporative demand (Urban et al., 2015a), for in-
stance vapor pressure deficit (VPD; Roberts et al., 2013; Lo-
bell et al., 2013). There is evidence that the effect of EDD and
measures for evapotranspirative demand is overstated when
neglecting proper control for water supply (Ortiz-Bobea,
2013; Basso and Ritchie, 2014). For instance, soil mois-
ture is considered a major limiting factor to maize growth
(Andresen et al., 2001). Extreme high temperature ampli-
fies the impact of soil moisture deficit because of surface–
atmosphere coupling (Mueller and Seneviratne, 2012), but
the opposite is not necessarily the case as droughts occur in-
dependently of heat (Basso and Ritchie, 2014). Urban et al.
(2015b) highlight the impact of interactive effects between
VPD and water supply to further improve model predictabil-
ity. In Germany, a recent statistical impact assessment of
weather fluctuations affecting maize and winter wheat recog-
nizes water shortage as a major limiting factor (Gornott and
Wechsung, 2015, 2016; Conradt et al., 2016). These studies
employ proxies to control for the primary source of water,
such as precipitation and measures for evapotranspirative de-

mand. The water holding capacity of the soil and the persis-
tence of soil moisture is often not considered.

One basic assumption in EDD is that temperature effects
are additive substitutable, which means that their impact is
constant for all development stages of the plant. This as-
sumption is rejected in both agronomic studies (de Bruyn and
de Jager, 1978; Sinclair and Seligman, 1996; Tubiello et al.,
2007; Wahid et al., 2007) and large-scale empirical analy-
ses (Lobell et al., 2011a; Ortiz-Bobea, 2011; Ortiz-Bobea
and Just, 2013; Berry et al., 2014). For example, the sus-
ceptibility to high temperatures is increased during flowering
(i.e., tasseling, silkening, and pollination) and the reproduc-
tive period. Similar to heat measurements, the sensitivity to
water stress is dependent on the development stage of the
plant (FAO Water, 2016). For instance, it is shown for cli-
mate projections in India that a more uneven distribution of
precipitation within a season overturns positive effects of an
increase in total precipitation (Fishman, 2016). It is argued to
control for intraseasonal-varying weather induced effects on
crop yield variation. This issue is amplified for precipitation
controls compared to temperature. The distribution of mea-
sures such as EDD partially overlaps with the sensitive phase
of plant growth (see Fig. A14 of Schlenker and Roberts,
2009), but precipitation, as a control for water supply, is com-
monly aggregated for the entire growing season (Annan and
Schlenker, 2015; Burke and Emerick, 2016; Roberts et al.,
2013; Schlenker and Roberts, 2006, 2009, among others).
These studies do not explicitly account for seasonality of
water-supply-related effects. Overall, controls for meteoro-
logical effects averaged over the entire season may bias the
estimated dose-response function and diminish the predic-
tive power of the models because they do not account for the
seasonal interaction between water supply and water demand
(Urban et al., 2015b).

Based on this analysis, it is the main aim of this study to
investigate the intraseasonal predictability of soil moisture
to estimate silage maize yield in Germany. It is also evalu-
ated how approaches considering soil moisture perform com-
pared to those using meteorological variables. The examined
hypotheses are that (a) models with soil moisture are better
able to predict yield than meteorology-only approaches and
(b) temporal patterns in the seasonal effects of the explana-
tory variables matter, i.e., there is no additive substitutability.
In order to analyze these hypotheses, the intraseasonal ef-
fects of soil moisture and meteorological variables for nonir-
rigated arable land in Germany are examined in this study. In
detail, the following research questions are addressed: (1) is
there predictability of soil moisture additionally to meteo-
rology? (2) If so, how does it compare to the one by me-
teorological determinants? (3) Is there temporal pattern in
the seasonal effects of all explanatory variables (meteorology
and soil moisture)? Along with this analysis we also evaluate
(4) how models based on different meteorological determi-
nants perform compared to each other.
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To answer these research questions, a reduced form panel
approach is employed to examine the nonlinear intraseasonal
partial effects of soil moisture anomalies and the meteoro-
logical variables temperature, potential evapotranspiration,
and precipitation. For this purpose, we use a new data set
which is additionally comprised of soil moisture anomaly
data. The aim is to evaluate whether soil moisture anomalies
have predictive skills and how the effects differ from those
using only meteorological variables. Soil moisture and any
derived index are highly autocorrelated in time and thus pro-
vide an integrated signal of the meteorological conditions in
the preceding and subsequent months (e.g., Orth and Senevi-
ratne, 2012; Samaniego et al., 2013). This persistence does
not allow for cumulative measures as those used for tem-
perature, but it avoids the inflation of the error terms. Com-
monly, the predictive power of models only employing me-
teorological variables can be improved by accounting for the
regional-specific temporal distribution of the phenological
stages (Dixon et al., 1994). The integrated signal of the mete-
orological conditions provided by any measure derived from
soil moisture, however, allows the employment of monthly
averages to account for these intraseasonal effects. In our
study, it is implicitly controlled for the interaction of both
variables controlling for water supply and water demand be-
cause these show high correlation on a monthly basis. Differ-
ent model configurations for each month of the growing sea-
son are compared by model selection criteria to allow con-
clusions about the effect of soil moisture anomalies on the
explanatory power of the model and to test the assumption of
additive substitutability. Further, the difference in explana-
tory power of models either using potential evapotranspira-
tion or average temperature is evaluated. The partial effects
of all covariates of the best model for each month are exam-
ined. For the purpose of a comprehensive examination, we
also investigate the effects of wet anomalies.

2 Data

2.1 Yield data

Annual yield data for silage maize are provided by the Fed-
eral Statistical Office of Germany for the administrative dis-
tricts (rural districts, district-free towns, and urban districts)
since the year 1999 (Statistische Ämter des Bundes und der
Länder, 2017). The yield data are detrended using linear re-
gression for the period 1999 to 2015 to control for techni-
cal progress. A log transformation is applied afterwards to
better satisfy the normality assumption. This transformation
also mitigates issues related to heteroscedasticity and the es-
timates are less sensitive to outliers. All administrative dis-
tricts with less than nine observations are removed from the
analysis because the influence of individual observations is
too strong in these cases. The threshold of nine has been cho-
sen after exploring Cook’s distance and evaluating the sys-

tematic omission of yield data by the administrative districts
(Cook, 1977, 1979).

2.2 Soil moisture anomalies and meteorology

The explanatory variables used in the study are the observed
meteorological variables precipitation (P ), average temper-
ature (T ), and potential evapotranspiration (E), as well
as model-derived soil moisture. The mesoscale Hydrologic
Model (mHM) has been used to estimate the soil moisture
(Samaniego et al., 2010; Kumar et al., 2013). The model uses
grid cells as the primary unit and accounts for various hy-
drological processes such as infiltration, percolation, evapo-
transpiration, snow accumulation, groundwater recharge and
storage, and fast and slow runoff. The parametrization pro-
cess of the model is based on physical characteristic, for in-
stance soil texture. Three different forms of land cover are
also integrated in the model, which are based on the CORINE
Land Cover maps of 2006 (European Environmental Agency,
2009). However, no endogenous processes of land use man-
agement, for instance drainage or irrigation, are considered
within the model. The depth of the soil in each grid depends
on the soil type used in mHM. Details can be found in Zink
et al. (2017).

Soil moisture is further transformed into a soil moisture
index (SMI), which is a nonparametric cumulative distribu-
tion function (cdf) derived from the absolute soil moisture
estimated by mHM. A nonparametric kernel smoother algo-
rithm has been used for the calculation of the cdf for each
calendar month in accordance to the proposed method by
Samaniego et al. (2013). It ranges from 0 to 1 and repre-
sents an anomaly with respect to the monthly long-term me-
dian in soil water (SMI= 0.5). Low values represent extreme
dry soils and high values extreme wet ones. The SMI is cal-
culated for all of Germany at a spatial resolution of 4 km.
Monthly values of soil moisture are transformed to SMI for
the period from 1951 to 2015. These values have also been
used for drought reconstruction (Samaniego et al., 2013). A
similar procedure has been applied for the seasonal forecasts
of agricultural droughts (Thober et al., 2015).

The monthly SMI values are categorized into seven classes
which follow the notion of the US and German drought
monitors (Zink et al., 2016). This stepwise approach allows
to measure nonlinear effects of soil moisture. The dry cat-
egories SMI ≤ 0.1, 0.1<SMI≤ 0.2, and 0.2<SMI≤ 0.3
are denoted as severe drought, moderate drought, and ab-
normally dry, respectively. The wet quantile intervals be-
tween 0.7<SMI≤ 0.8, 0.8<SMI≤ 0.9, and 0.9<SMI are
labeled as abnormally wet, abundantly wet, and severely wet,
respectively. The interval of 0.3<SMI≤ 0.7 serves as refer-
ence and characterizes normal situations. This classification
uses location-dependent cdfs and thus allows comparison of
classes across locations. In the following, the terms soil mois-
ture anomalies and SMI are used synonymously because of
this categorization.
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Daily data of precipitation and temperature are obtained
from a station network operated by the German Weather Ser-
vice (Deutscher Wetterdienst, 2017). Details on interpolation
can be found in Zink et al. (2017). These daily values are also
used to force mHM. For the analysis in this study, all daily
values are aggregated to monthly ones conserving the mass
and energy of the daily observations.

Further, we introduce potential evapotranspiration (E) as
a measure for evaporative demand. E is calculated by the
equation of Hargreaves and Samani (1985) based upon ex-
traterrestrial radiation and temperature and is estimated in
millimeters per day:

E = κR
√
Tδ(T + 17.8), (1)

where κ is a free parameter (◦C−1.5) that compensates for
advection of water vapor (mm d−1), R is extraterrestrial ra-
diation converted into equivalent water evaporation, and Tδ
is the temperature difference between daily maximum and
daily minimum temperature (◦C). The term T + 17.8 is an
approximation of saturated vapor pressure, whereas the term
Tδ is an approximation of cloudiness; 17.8 is an empirical
constant found by calibration.

More complex alternatives exist, for instance the standard
method of United Nations Food and Agriculture Organiza-
tion after Penman and Monteith (Monteith, 1981). These data
use, for example, net radiation that is more difficult to es-
timate on the national scale in comparison to temperature,
particularly due to the lack of consistent observations. Sim-
ilar to VPD, which has been introduced as an effective crop
yield predictor (Roberts et al., 2013; Lobell, 2013), poten-
tial evapotranspiration has a more direct physical link to crop
water requirements than temperature. One goal of this study
is to evaluate whether potential evapotranspiration provides
improved yield estimates in comparison to temperature.

All meteorological variables are standardized to ease the
comparison among different months. After this transforma-
tion, the variables have a mean of 0 and a standard deviation
(SD) of 1. The original mean and SD of the meteorological
variables are depicted in Table 1 for completeness.

2.3 Spatial processing

The explanatory variables (meteorology and soil moisture)
are mapped onto the level of administrative districts to align
with the spatial scale of the yield data. Maps of the different
processing steps are shown in Fig. 1. Figure 1a depicts the
4× 4 km2 grid. These absolute soil moisture fractions are
masked for “nonirrigated arable land” class of the CORINE
Land Cover (2006) at a 0.1× 0.1 km2 resolution to account
for the variability due to heterogeneous land use within the
administrative districts (Fig. 1b). The 0.1 km values are then
averaged for each of the administrative district to obtain dis-
trict level values (Fig. 1c). Blank administrative districts oc-
cur because of the absence of nonirrigated arable land grid
cells. These processing steps are also applied to the meteo-

rological variables (P , T , E). The soil moisture fractions of
each administrative district are then transformed into a per-
centile index (SMI) using the kernel density estimator ex-
plained above (Samaniego et al., 2013; Thober et al., 2015;
Zink et al., 2016). An index reduces the probability of mea-
surement errors and the estimated coefficients in the regres-
sion models are supposed to be less prone to attenuation
bias (Fisher et al., 2012; Auffhammer and Schlenker, 2014;
Hsiang, 2016).

3 Regression analysis

The main aim of this study is the identification of the monthly
effects of soil moisture anomalies on crop yield. The model
relates silage maize yield deviation (Y ) to a stepwise func-
tion of soil moisture anomalies (SMI) and polynomials of
the meteorological variables (P , T , E). Also, an error term
is included which is composed of the fixed effects (c), a time-
invariant categorical administrative district identifier, and the
observation-specific zero-mean random-error term, which is
allowed to vary over time (ε). Each monthly model can be
written as

Yik =

6∑
n=1

αnI (SMIikm ∈ Cn)

+

3∑
j=1

βj (Pikm)
j
+

3∑
j=1

γj (Tikm)
j
+

3∑
j=1

δj (Eikm)
j

+ cim+ εikm. (2)

The index i represents the administrative districts, k the
years, and m each month of the growing season, while the
superscript j refers to degrees of the polynomials. I (·) is
the indicator function of the soil moisture categories Cn,
which is 1 if the SMI belong to class n and 0 other-
wise. The six classes are defined as severe drought (SMI≤
0.1), moderate drought (0.1<SMI≤ 0.2), abnormally dry
(0.2<SMI≤ 0.3), abnormally wet (0.7<SMI≤ 0.8), abun-
dantly wet (0.8<SMI≤ 0.9), and severely wet (0.9<SMI),
respectively. The estimated coefficients of the model are α,
β, γ , and δ and are constrained to be the same for all admin-
istrative districts. Time-invariant differences between admin-
istrative districts are taken into account by the fixed effects.
These consist of the districts specific mean values of the in-
dividual variables on the right and left sides of the equation.

The explanatory variables are correlated to each other (Ta-
ble 2). Thus, higher nonorthogonal polynomials induce sin-
gularity in the moment matrix which cannot be inverted as
required by the ordinary least-squares estimation of the co-
efficient. The polynomials are limited to a degree of three
to avoid this and other detrimental consequences of multi-
collinearity such as the inflation of the standard errors. Addi-
tionally, E and T are treated as mutually exclusive because
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Table 1. Mean and standard deviation of the meteorological variables, averaged over Germany. Data are obtained by the Germany Weather
Service.

May June July August September October
Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

P (monthly sum in mm) 75.74 39.84 69.71 33.15 89.48 39.72 84.04 43.68 63.88 32.62 57.72 27.28
T (monthly average in ◦C) 13.46 1.42 16.52 1.45 18.48 1.74 17.90 1.57 14.07 1.63 9.64 1.83
E (monthly average in mm) 115.23 12.15 133.42 12.21 139.10 16.52 115.24 13.55 70.33 8.73 36.82 4.69

Figure 1. Illustration of the spatial processing of the SMI data of May 2003. On the left side, one can see the SMI with the 4× 4km2 grids.
In the middle, the data are masked with the 0.1× 0.1km2 “nonirrigated arable land” class of the CORINE Land Cover. Those data are than
averaged over all the grid cells which are inside an administrative district. This is done for each district and the map on the right is derived.
The processing steps shown in panels (a) and (b) are shown here exemplary for the soil moisture index for consistency, but these processing
steps are applied to soil moisture fractions.

of the high correlation of E and T (Table 2). The coefficients
γ or δ are set to 0, accordingly.

In addition to soil moisture, a meteorological and a fixed
effect term are included. The fixed effects potentially reduce
omitted variable bias because they take into account the time-
variant confounding factors specific to each spatial unit, such
as average weather conditions and the water storage capacity
of the respective soil. It is also assumed that farmers have op-
timized the entire production process at their location given
their experience at that location. Soil and plant management,
such as the choice of varieties, is adapted based on this long-
term experience. Therefore, the coefficients of the exogenous
variables are determined on the basis of year-to-year varia-
tions. By restricting the coefficients to be same in all admin-
istrative districts, it is implicitly assumed that the response
of plants to interannual stressors is the same across all lo-
cations. Differences in the sensitivity to exogenous weather
and soil moisture fluctuations implied by the use of different
silage maize varieties could thus be neglected by the model.
If it is also assumed that these interannual fluctuations in
weather and soil moisture are not fully taken into account by
the farmer in the cultivation decisions, this corresponds to a
randomized allocation of the farmer to a treatment group and
can therefore be regarded as a natural experiment (Auffham-
mer and Schlenker, 2014; Schlenker and Roberts, 2009). The
outlined interpretation of the coefficients is particularly suit-

able for SMI, because this index, which describes deviations
from the median, is per definition an anomaly.

Endogenous variables are not included because these are
considered as bad control in frameworks as those defined by
Angrist and Pischke (2008). For instance, prices are affected
by weather realizations and climate and are thus defined as
endogenous (Hsiang et al., 2013; Hsiang, 2016; Gornott and
Wechsung, 2015, 2016). Other studies additionally use an-
nual fixed effects and interaction terms of both time- and
entity-specific fixed effects to control for time-specific con-
founding factors (e.g., Moore and Lobell, 2014). These terms
are not used in this study because annual variation should be
explicitly accounted for by the weather variation of the ex-
ogenous variables. Annual fixed effects would diminish the
entity-specific interannual variation of the exogenous vari-
ables and thereby potentially amplify measurement errors
(Fisher et al., 2012).

Various estimation approaches are used to evaluate the
quality of the models. Models can be distinguished by the ex-
planatory variables they use and the degree of polynomials in
the meteorological terms. The maximum number of param-
eters estimated in a model is 12. The Bayesian information
criterion (BIC) is used for model selection in the next sec-
tion. The BIC is composed of the maximum of the likelihood
function for a particular set of variables as well as a penalty
term (Schwarz, 1978). The latter adjusts the model selection
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Table 2. Comparison of Pearson correlation coefficients of the exogenous variables.

May June July August September October Average Avg. June to Aug.

E/T 0.84 0.86 0.92 0.84 0.65 0.4 0.75 0.87
E/P −0.38 −0.38 −0.52 −0.52 −0.56 −0.15 0.42 0.47
P/T −0.31 −0.22 −0.54 −0.47 −0.47 −0.06 0.35 0.41
SMI /E −0.27 −0.28 −0.44 −0.49 −0.46 −0.02 0.33 0.40
SMI /P 0.19 0.31 0.43 0.43 0.5 0.09 0.33 0.39
SMI /T −0.04 −0.16 −0.35 −0.35 −0.27 0.13 0.22 0.29

Absolute values of the Pearson correlation coefficients are employed to calculate the averages presented in the last two columns.

criterion for the number of parameters to account for overfit-
ting. This allows to choose across models with different num-
ber of variables. The BIC imposes a higher penalty on over-
fitting compared to other model selection criteria based on
maximum likelihood such as the Akaike information crite-
rion (Akaike, 1973). The penalty particularly affects the soil
moisture anomaly term because it always adds six parame-
ters. Overall, the model with the lowest BIC is preferred. To
derive the BIC, a generalized linear model is fitted using the
glm function (R Core Team, 2015).

Additionally, the models are evaluated according to their
adjusted coefficient of determination (adj. R2, Sect. 4.2). Or-
dinary least squares using the lm function (R Core Team,
2015) are employed with a dummy variable for each admin-
istrative districts to explicitly account for the fixed effects.
As default, a demeaning framework (Croissant and Millo,
2008) has been applied to investigate the model performance
in terms of R2. The demeaning framework involves convert-
ing the data by subtracting the administrative district average
from each variable. The estimated coefficients are the same
for the least-squares dummy variable regression, a demean-
ing framework, and maximum likelihood (BIC). This is in ac-
cordance with the theory that normal distributed error terms
estimators based on maximum likelihood and least squares
are the same.

The standard errors of the coefficients are corrected for
spatial autocorrelation. For this purpose, the robust covari-
ance matrix estimator proposed by Driscoll and Kraay (1998)
is employed to construct standard errors based on asymptotic
formulas. No weights capturing decaying effects in space are
used because the administrative districts have different areas
and the spatial extent of SMI occurrences is heterogeneous.
This can be regarded as comparable to block-bootstrapping
at a country level, which has been used in many compara-
ble studies relying on resampling methods (e.g., Butler and
Huybers, 2015; Moore and Lobell, 2014, 2015; Urban et al.,
2015a, b). Further, serial correlation and heteroscedasticity
are also controlled for White (1980); Arellano (1987). Over-
all, this approach is rather conservative but in alignment with
the proposal of Angrist and Pischke (2008) to take the largest
robust standard error as measure of precision.

4 Results and discussion

4.1 Qualitative evaluation of different model
configurations within the growing season

In this section, the BIC is applied to evaluate the best com-
bination with respect to soil moisture, meteorological vari-
ables, and the polynomial degrees of the latter. The BIC is
calculated separately for each month to assess the intrasea-
sonal variability.

The distribution of the BIC for the various model configu-
rations is presented in Fig. 2, which shows one panel for each
month of the growing season. Within the panels, models with
different variable combinations in the meteorological term
are separated by vertical lines. A model configuration is de-
fined by a set of meteorological variables, the polynomial
degree of each variable, and the stepwise function of the soil
moisture anomalies. The complexity of the configurations in-
crease stepwise from the left to right within each panel. The
model employing SMI as single explanatory variable is rep-
resented by a point on the left in each panel. The black mark-
ers indicate the models with soil moisture and gray markers
without. The models 02–07 employ one meteorological vari-
able each. These have three markers for the different degrees
of the polynomials. The models 08–11 employ two meteoro-
logical variables and thus have nine markers.

The explanatory power is different across the months as in-
dicated by the lowest marker within each panel. Overall, July
has the highest explanatory power. Nonlinear meteorological
terms improve the fit of the model on the data in all model
configurations (not shown). The preferred polynomial in the
meteorological term is of a degree of three. The only excep-
tion is June, where the best model employs a second-degree
polynomial for P . These observations are consistent with
agronomic studies. Curvilinear relationships between maize
yield and meteorological variables are already investigated
in previous research. The rationale behind this is that opti-
mal conditions exist for certain growth stages and deviations
from them are detrimental. For example, Thompson (1969)
found for corn in the US Corn Belt that precipitation in July
above and temperature in August below the monthly average
are desirable. Nonlinear configurations have been neglected
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Figure 2. Each panel shows the BIC distribution of 1 month. Within the panels various models are compared, whilst the lowest marker
is preferred. Each column represents a particular selection of variables. The markers represent different degrees of the polynomials in the
meteorological term. The gray markers denote those models that neglect the SMI, whilst the black include it.

so far in comparable approaches employing constant elastic-
ity models in Germany (Gornott and Wechsung, 2015, 2016;
Conradt et al., 2016).

The composition of the meteorological term is evaluated
by comparing the gray markers in Fig. 2. It is possible to
asses the impact on the model fit of the single variables P , T ,
andE by the comparison of the configurations 02, 04, and 06,
respectively. In May, most of the yield variation is explained
by E. In June and July, P contributes to model fit the most.
In July, for instance, the explanatory power of a nonlinear P
term is almost as good as the best combined configuration.
September and October are determined by T . However, in
most months, using more than one meteorological variable
results in the highest explanatory power. The only exception
is October, where model 05 (SMI and T ) exhibits the lowest
BIC.

The difference in BIC between configuration 08 (P and T )
and 10 (P and E) is small from June to August. This result
can be expected because T and E are highly correlated in
our sample (Table 2). The models with mixed meteorologi-
cal terms in July and August slightly prefer E, while in June
it is T . In the other months, the difference between T and E
is comparatively larger. E is preferred in May and T is the
better measure in September and October. Both measures,
T and E, account for similar determinants of silage maize
growth. The latter, however, is more complex because it con-
tains information on subdaily radiation additionally to daily
temperature (Hargreaves and Samani, 1985). It can be as-
sumed that this additional information is averaged out using
monthly values and monthly temperature becomes a close
estimate of monthly E. This is in alignment with results of
different time resolutions, which indicate that measures of
evapotranspirative demand are highly correlated with tem-

perature extremes (Roberts et al., 2013; Lobell et al., 2013).
Therefore, it is sufficient to account for temperature when si-
multaneously controlling for water supply (P , SMI) because
it is easier to measure temperature data and there is a smaller
chance of attenuation bias.

The extent of the model improvement by adding soil mois-
ture anomalies varies across the months. This can be evalu-
ated by comparing the gray and black markers in Fig. 2. In-
cluding soil moisture anomalies only improves model fit to a
small extent in May and July. In all the other months, large
improvement can be made when additionally controlling for
soil moisture. In the second half of the season, i.e., August
and September, the models using only SMI have a similar or
even lower BIC compared to all meteorology-only models.

These results indicate that soil moisture builds memory
over the season that adds relevant information, which are not
integrated in the monthly meteorological variables. There are
several reasons for this postulation. First, the seasonality of
soil moisture must be considered. The fraction of the satu-
rated soil changes over time and thus the base value for the
index. For Germany, this seasonality is depicted in Fig. 4 in
Samaniego et al. (2013). In March, soil water content is the
highest while soils are usually driest in August and Septem-
ber. This also implies that an agricultural drought has a lower
absolute soil moisture in August and September compared
to the preceding months. Second, the anomalies in the later
months integrate information about the water balance in the
preceding months because of the persistent character of soil
moisture (evident from the autocorrelation of the soil mois-
ture indexes). For instance, extreme dry conditions during
flowering and grain filling are reflected in a dry soil moisture
anomaly in the second half of the agricultural season of silage
maize. The observation that the SMI represents additional in-
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formation to the meteorology is also supported by the fact
that the pairwise correlations including SMI are lower com-
pared to any other combination of the exogenous variables
(Table 2). Further, dry anomalies in the late part of the sea-
son may indicate a long lasting water shortage condition, as
soil moisture drought lasts several months or potentially even
years (Sheffield and Wood, 2011; Samaniego et al., 2013;
Zink et al., 2016).

Similar results may be achieved by cumulated measures of
the meteorology or the climatic water balance. However, the
comparison of soil moisture measurements and different cu-
mulates of precipitation (1 to 6 months) shows that it would
be necessary to consider different precipitation accumula-
tions for different sites in order to include the same infor-
mation as for soil moisture (not shown). For example, south-
ern Germany exhibits higher water-retaining capacities and
also higher correlation with 3-month precipitation as com-
pared to eastern Germany. Further, a substantial share of the
variability of soil moisture is not explained by precipitation
(the mean coefficient of determination is at most 50 %). One
advantage of using soil moisture in such a study is that the
coefficients can be restricted to be the same at all locations,
whilst assuming that the water-retaining capacity is not the
same everywhere.

In summary, soil moisture anomalies improve the model fit
in all model configurations. This is the case even though soil
moisture is strongly affected by the penalty for additional pa-
rameters within the BIC. Further, the evidence of nonlinear
effects in the meteorological terms is confirmed. The results
also indicate that there is substantial seasonal variability in
the impact of exogenous variables. This is investigated fur-
ther quantitatively in the next sections for the meteorological
variables and soil moisture.

4.2 Quantitative assessment: coefficient of
determination for models using different
explanatory variables

In this and the next section, we present the quantitative re-
sults for the “full” model with polynomials of degree three
of the variables T and P in the meteorological term and ad-
ditionally the soil moisture anomalies (SMI). Using the same
model configuration for each month allows the comparison
of partial effects and ensures that the source of variation is
the same within the meteorological term (Auffhammer and
Schlenker, 2014). In this section, the coefficient of determi-
nation is employed to evaluate the share of the sample varia-
tion only explained by the exogenous variables. Additionally,
it is used to assess the in-sample goodness of fit of the mod-
els 03 (SMI and P ), 05 (SMI and T ), 08 (P and T ), and 09
(SMI, P , and T ), each using polynomials of degree three.

The coefficients of determination for two model settings
are evaluated to show the ability of exogenous explanatory
variables, e.g., the meteorological term and the soil moisture
anomalies, to improve the in-sample goodness of fit of the

full model: first, the model that only accounts for the varia-
tion in the exogenous explanatory variables, which is derived
by the demeaning framework (row a in Table 3); second, the
least-squares dummy variable model that accounts for both
the variation in the exogenous explanatory variables and the
administrative district-specific average yield (row b1 in Ta-
ble 3). The ratio of the coefficient of determination derived
by these two model setups is investigated (row b2 in Table 3)
to quantify the share of variance explained only by the ex-
ogenous explanatory variables, e.g., the meteorological term
and soil moisture anomalies. Expectedly, the exogenous vari-
ation in weather and soil moisture improves the model fit in
all months, but the level of improvement varies. The month
which gains the least in explanatory power when additionally
accounting for the share of variation explained by the average
crop yield of each administrative district is July (+112.9 %).
This suggests that a large part of the yield variation is ex-
plained only by exogenous explanatory variables. The month
with the greatest variation, which is explained only by the
average yield of the districts, is May. During this month,
409.1 % of the explanatory power is added if the average
yield of each county is explicitly taken into account in com-
parison to the models that only use soil moisture and weather
variation as explanatory variables (line b2 in Table 3).

The adjusted R2 presented in this study explicitly includ-
ing fixed effects for each month of the period June (0.59),
July (0.66), and August (0.59) is comparable to related ap-
proaches. Urban et al. (2015b), who employed a comparable
period to estimate their results, reported R2 of 0.65 and 0.67
for a model that successfully accounts for the interaction be-
tween heat and moisture for a 61–90-day period following
sowing for Iowa, Illinois, and Indiana. Their study addition-
ally employed time fixed effects which usually lead to higher
R2. The seminal approach employing EDD (Schlenker and
Roberts, 2009) reported R2 between 0.77 and 0.78. In their
sample, a comparatively large share of the variation was ex-
plained by the fixed effects and trend, which exhibited an R2

of 0.66. A study using updated data of Schlenker and Roberts
(2009) and controlling for evaporative demand in July and
August achieved adjustedR2 between 0.66 and 0.72 (Roberts
et al., 2013).

In the previous section, all the models have been evaluated
with respect to the BIC criterion, which penalizes overfit-
ting. The focus here is on reducing the sample bias of the
model. The in-sample adjusted R2 of the models is addi-
tionally compared when either one of the variables SMI, P ,
or T is not considered (rows c1–e1 in Table 1). The rela-
tive change in model fit when one variable is removed from
the full model can be found in rows c2–e2 of Table 3. In
all months but May and July, the strongest loss in in-sample
goodness of fit is seen for removing soil moisture (for in-
stance −50.0 % in June and −35.3 % in August). In July,
which is the month with the highest overall in-sample good-
ness of fit, the largest effect is accounted for by precipitation
(−29.0 %). The average relative model loss is largest for soil
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Table 3. Comparison of the adjusted coefficients of determination R2. The results from the demeaning framework serve as reference to the
ones obtained by least-squares dummy variable regression (LSDV). The latter explicitly accounts for the fixed effects. Additionally, model
configurations without either T , P , or SMI are shown.

May June July August September October Average June–August

(a) Adjusted R2 demeaning 0.11 0.16 0.31 0.17 0.13 0.12 0.16 0.21

(b1) Adjusted R2 LSDV 0.56 0.59 0.66 0.59 0.57 0.56 0.59 0.61
(b2) ((b1)− (a)) / (a) in % 409.1 268.8 112.9 247.1 338.5 366.7 290.5 209.6

(c1) Adjusted R2 no T 0.07 0.13 0.28 0.16 0.08 0.08 0.13 0.19
(c2) ((c1)− (a)) / (a) in % −36.4 −18.8 −9.7 −5.9 −38.5 −33.3 −23.7 −11.4

(d1) Adjusted R2 no P 0.08 0.11 0.22 0.14 0.12 0.12 0.13 0.16
(d2) ((d1)− (a)) / (a) in % −27.3 −31.3 −29.0 −17.6 −7.7 0.0 −18.8 −26.0

(e1) Adjusted R2 no SMI 0.07 0.08 0.30 0.11 0.06 0.07 0.11 0.16
(e2) ((e1)− (a)) / (a) in % −36.4 −50.0 −3.2 −35.3 −53.8 −41.7 −36.7 −29.5

∗∗ p< 0.05. ∗∗∗ p< 0.01; 5376 observations used in each model.

moisture for the entire season (−36.7 %) as well as the pe-
riod June to August (−29.5 %). As observed in the section
before, the effect of each particular variable is dependent on
the month. For instance, the largest relative loss in adjusted
R2 for SMI is estimated in June (−50.0 %) and September
(−53.8 %). The largest effect of precipitation is observed in
June (−31.3 %) and July (−29.0 %). Temperature is relevant
the most in September (−38.5 %) and May (−36.4 %).

To summarize, the in-sample explanatory power of the full
models are comparable to those reported in the previous liter-
ature. The largest average gain in goodness of fit is achieved
by including SMI. In July, the month with the largest in-
sample goodness of fit, most of the variation in yield is ex-
plained by precipitation. This section has only presented a
quantitative analysis of the explanatory power in terms of
adjusted R2. A detailed assessment of the partial functional
form of individual explanatory variables is presented in the
next section to better understand their ceteris paribus impact
on the crop yield.

4.3 Quantitative assessment: partial effects of the
meteorological variables

A better understanding of the relationship between individual
explanatory variables allows to design effective adaptation
measures. The partial functions of the meteorological covari-
ates are presented in the next two sections and those of soil
moisture in Sect. 4.3.3. Those functional forms, which are
significant at least in the first or second order, are presented
for individual months in Fig. 3. The range of the meteoro-
logical variables is depicted from −2 to +2 SD. It can be
assumed that larger deviations from the mean are related to
higher uncertainties in the estimated crop yield. A table with
the estimated coefficients and standard errors of all models
can be found in Table 4.

4.3.1 Partial effects of precipitation

The partial precipitation effects for the months May to Au-
gust are shown in panel a of Fig. 3. Given constant soil mois-
ture and temperature effects, negative precipitation anoma-
lies are associated with reduced yield in these months. The
largest effect is observed for June (−5 % at −1 SD) and July
(−6.5 % at −1 SD). These are the overall most significant
months, but with different patterns compared to the remain-
ing two. In June and July, more than average precipitation is
associated with comparatively higher yield (at 1 SD: +2.2 %
in June and +2.1 % in July), whilst the opposite is the case
for May and August.

The results indicate the importance of sufficient water sup-
ply provided to plants by precipitation, especially in June
and July. In Germany, the begin of flowering is usually in
July and extends into August (based on data provided by the
Deutscher Wetterdienst, 2017). Maize plants are susceptible
to water stress during this growing phase (Barnabás et al.,
2008; Fageria et al., 2006; Grant et al., 1989; Bolaños and
Edmeades, 1996). Despite the necessity to control for in-
traseasonal variability of precipitation effects, explicitly con-
trolling for this sensitive phase is not very common in recent
reduced form studies (Carleton and Hsiang, 2016). Notable
exceptions are Lobell et al. (2011a), who used precipitation
centered around flowering (anthesis) in statistical models
based on historical data of trials in Africa, and Ortiz-Bobea
and Just (2013), who controlled for the vegetative, flower-
ing, and grain-filling stages. Instead, many approaches em-
ploy total precipitation over the growing season (Annan and
Schlenker, 2015; Burke and Emerick, 2016; Roberts et al.,
2013; Schlenker and Roberts, 2006, 2009), monthly mean
growing season precipitation (Urban et al., 2012), or the av-
erage of a subset of the season (Urban et al., 2015a). Stud-
ies for Germany commonly separate the season into the peri-
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Table 4. Results of regression models employing precipitation and temperature to account for meteorology (both with polynomials of
degree 3; superscripts denote the degree of individual polynomials) and a stepwise function of SMI.

Dependent variable: log(silage maize)

Model of the month
May June July August September October

Precipitation1 0.004 0.036∗∗∗ 0.039∗∗∗ −0.014 −0.011 −0.003
(0.011) (0.014) (0.013) (0.011) (0.013) (0.010)

Precipitation2
−0.023∗ −0.014∗ −0.023∗∗∗ −0.019∗∗∗ −0.005 0.002

(0.014) (0.007) (0.004) (0.006) (0.005) (0.008)
Precipitation3 0.004 0.001 0.005∗∗∗ 0.004∗∗∗ 0.002 −0.0001

(0.002) (0.001) (0.002) (0.002) (0.001) (0.002)
Temperature1 0.024 −0.006 −0.036∗ −0.003 0.038 −0.002

(0.021) (0.015) (0.021) (0.014) (0.024) (0.018)
Temperature2

−0.005 −0.006 −0.007∗∗∗ −0.008∗∗ −0.009∗ −0.016∗∗

(0.007) (0.006) (0.002) (0.003) (0.005) (0.008)
Temperature3 0.0004 −0.002 0.004∗ −0.002 −0.013∗ 0.005

(0.003) (0.003) (0.003) (0.002) (0.006) (0.003)
SMI: severe drought 0.068∗∗∗ 0.024 −0.044∗∗ −0.110∗∗∗ −0.126∗∗∗ −0.149∗∗∗

(0.012) (0.020) (0.019) (0.035) (0.028) (0.037)
SMI: moderate drought 0.044∗∗∗ 0.016 −0.007 −0.055∗∗∗ −0.041∗ −0.024

(0.011) (0.017) (0.011) (0.017) (0.023) (0.030)
SMI: abnormally dry 0.011 0.023∗∗∗ −0.005 −0.024∗∗ −0.017 −0.005

(0.011) (0.007) (0.007) (0.011) (0.015) (0.017)
SMI: abnormally wet −0.007 −0.034∗∗∗ −0.011 0.026∗∗∗ 0.007 −0.006

(0.014) (0.011) (0.007) (0.008) (0.011) (0.019)
SMI: abundantly wet −0.014 −0.052∗∗ −0.004 0.027∗∗∗ 0.012 −0.001

(0.020) (0.025) (0.009) (0.008) (0.017) (0.015)
SMI: severely wet −0.009 −0.202∗∗∗ −0.041∗∗∗ 0.037∗∗∗ 0.030 0.025

(0.019) (0.047) (0.016) (0.013) (0.027) (0.017)

Observations 5376 5376 5376 5376 5376 5376
R2 0.113 0.173 0.326 0.179 0.136 0.129
Adjusted R2 0.105 0.162 0.305 0.168 0.127 0.121
F statistic 53.151∗∗∗ 87.531∗∗∗ 203.025∗∗∗ 91.409∗∗∗ 65.891∗∗∗ 62.296∗∗∗

∗ p< 0.1. ∗∗ p< 0.05. ∗∗∗ p< 0.01.

ods May to July and August to October (Gornott and Wech-
sung, 2015, 2016; Conradt et al., 2016), thus dividing exactly
the time interval most susceptible to water stress and averag-
ing over periods with diverse effects (e.g., May and June in
Fig. 3a). This may hide water-related effects. Other studies
neglect precipitation entirely and only rely on temperature
measures (Butler and Huybers, 2013, 2015; Schlenker et al.,
2013). According to their results, the explanatory power is
not improved when adding precipitation. This is contradic-
tory to our observations that precipitation is particularly rel-
evant (see also Sect. 4.1 and 4.2).

The models employed here do not explicitly account for
interactions between the meteorological and the soil mois-
ture terms. Nevertheless, soil moisture is a function of the
meteorological variables and all effects are correlated to each
other (see Table 2). The overall pattern in the effects of the
meteorological variables only changes to a small extent when
estimating the standard model configuration without the term

for soil moisture anomalies (Fig. 3b). One of the most pro-
nounced differences is that the positive effect of precipita-
tion in June diminishes when not accounting for soil mois-
ture. The coefficients in June are also less significant. The
effects in September become significant in the second and
third polynomial degree when not considering SMI (blue
dashed line in Fig. 3b). In contrast, May is less significant
and thus not included in this panel. SMI improves the model
fit but only slightly affects the functional form of precipi-
tation, which highlights that soil moisture adds relevant but
different information as those entailed in precipitation. The
next section presents an analogue analysis for temperature.

4.3.2 Partial effects of temperature

The significant partial temperature effects are depicted in
Fig. 3c. A significant effect in all polynomials is only es-
timated for July, whilst in May and June no significant co-
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Figure 3. The partial dose-response functions of the meteorological variables are depicted for the range between −2 and +2 standard
deviations (SD). The upper row represents those models considering SMI, whilst the lower row neglects SMI. A solid line is used for those
variables which are significant in both the first- and second-degree polynomials. A dashed line is employed when only one of the first two
polynomials is significant. The vertical axis represents the change in silage maize converted into percent. These are approximate values,

either by the formula 100(exp(
3∑
j=1

βj (Pikm)
j )− 1) for precipitation (left column) or 100(exp(

3∑
j=1

γj (Tikm)
j )− 1) for temperature (right

column). Both formulas refer to Eq. (2). Under the assumption that the variables are normally distributed, the range depicted accounts for
about 95 % of the observations. The dark gray areas denote the interval between the 0.023 % (−2 SD) and the 10 % quantiles as well as the 90
and 97.7 % (+2 SD) quantiles. Similar, in medium gray the range between either the 10 and the 20 % quantiles or the 80 and 90 % quantiles
is marked. The light gray quantifies the impact between the between either the 20 and the 30 % quantiles or the 70 and 80 % quantiles.

efficients can be found at all. In all months but Septem-
ber, higher than average temperatures are associated with re-
duced crop yield. The extent of the effects, however, varies
over time. In July, less than average temperature is associated
with above-normal crop yield. The estimated function peaks
at −1.24 SD, which is 16.18 ◦C (mean in July is 18.34 ◦C).
Additional 2.66 % crop yield can be expected at this tem-
perature, if all other variables are held constant. In August,
elevated temperatures are associated with negative effects.
September exhibits a large but not significant linear effect,
whilst the second and third polynomials are significant. Be-
cause maize is maturing during this time, higher tempera-
tures up to a threshold are favorable as shown in Fig. 3c.
Crop yield is reduced beyond this threshold, which might be
related to heat waves. Cold temperatures have a negative ef-
fect in October, which is the strongest one observed. Har-
vesting commonly begins at the end of September within the
period from 1999 to 2015 (Deutscher Wetterdienst, 2017).

Thus, low temperatures may be related to early harvesting
and result in lower yield.

When comparing the effects of precipitation and tempera-
ture in the months most relevant for meteorology, i.e., June
and July, those of precipitation clearly outweigh tempera-
ture. The largest effects can be found for negative anoma-
lies of precipitation in July (compare Fig. 3a and c). The
limited effect of temperature is in alignment with agricul-
tural literature, which states that maize is tolerant to heat as
long as enough water is provided (FAO Water, 2016). This
is also the case in our study area given the fact that Ger-
many lies in a rather temperate and marine climate zone.
Additionally, sufficient provision of water is associated with
prolonged grain filling and hence diminished heat sensitivity
(Butler and Huybers, 2015). Recent literature often neglected
precipitation and emphasized mostly extreme temperature in-
stead (Carleton and Hsiang, 2016; Lobell et al., 2008, 2011b;
Schlenker et al., 2005; Schlenker and Lobell, 2010), which
may have lead to biased assessments.
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Figure 4. Sensitivity of the functional form of temperature partial
effects for various controls for water supply.

The general functional forms of temperature are hardly af-
fected by neglecting SMI (Fig. 3d). For example, crop yield
changes from −3.82 % with SMI to −4.11 % without SMI
for 1 SD of elevated temperature in July. These effects are
smaller than those seen for precipitation, which highlights
again that soil moisture provides information that is indepen-
dent of that provided by T .

As mentioned before, a substantial amount of studies em-
ployed temperature as the major explanatory variable ne-
glecting knowledge about plant physiology and plant growth
(Wahid et al., 2007; FAO Water, 2016). The functional
form of the partial temperature effects derived from differ-
ent model configurations for July and August is presented
in Fig. 4 to evaluate the magnitude of bias between the full
model (presented in Fig. 3) and a temperature-only model.

In both months, the in-sample explanatory power is re-
duced compared to the full model when only using tem-
perature as explanatory variables. In July, the model fit is
−34.2 % lower when employing the temperature-only model
compared to the full model, while it is −45.9 % in August
(Fig. 4). In July, the in-sample goodness of fit is affected
stronger by removing precipitation (−29.0 %) than by do-
ing so for SMI (−3.2 %), (Table 3). This is not surprising
because the partial effect of precipitation in July is largest,
whilst soil moisture anomalies only show negligible effect.
In contrast, considering SMI in August (−35.3 %) exceeds

the losses in adjusted R2 compared to a model without pre-
cipitation (−17.6 %) (Table 3). In July, the functional form
stays qualitatively the same across all model configurations
(Fig. 4a). The magnitude of the effects is, however, larger
when precipitation is not considered. In August, the temper-
ature effect is elevated by not considering SMI. Taking out
precipitation reverses the effects found for the full models.
This observation clearly demonstrates that adequate control
of water supply is necessary to derive non-biased estimates
of partial temperature effects. These results also indicate that
the biases seen for different model configuration depend on
the month considered. Overall, a model using only temper-
ature as explanatory variable has larger partial effects and
potentially even different ones with regard to the direction
compared to those of the full model. In the next section, the
partial effects of the soil moisture index are investigated.

4.3.3 Partial effects of the SMI

Similar to the meteorological terms, the susceptibility to SMI
changes over the months (Fig. 5). In particular, a change in
the general patterns can be observed. In May and June, dry
conditions are associated with positive yield (up to +7 % in
May and +2.3 % in June), whilst wet conditions are harmful
(up to −18.3 % under severely wet conditions in June). In
July, both extremes have negative impacts of around −4 %.
In all of the following months, dry conditions are associated
with reduced crop yield (up to −10.4 % in August, −11.8 %
in September, and −13.8 % in October), whilst only extreme
wet conditions in August are positive for annual silage maize
yield (up to +3.77 %). These deviations are as high as the
ones observed for the meteorological variables (Fig. 3).

For the interpretation of the results, the climatology of
mean soil water content needs to be taken into account.
The SMI of each month refers to different fractions of ab-
solute water saturation in the soil. This seasonality is de-
picted in Fig. 4 in Samaniego et al. (2013) for different lo-
cations in Germany. In general, the optimal water content
for plant development is defined as 60 to 80 % of the avail-
able field capacity, whilst less than 40 % field capacity, such
as in the year 2003, is associated with depression in crop
yield (Chmielewski, 2011). In May and June, dry anoma-
lies represent soil moisture fractions above critical water con-
tent because the soil has been replenished with water in pre-
ceding winter and spring. For silage maize, however, rather
dry conditions are preferable during this time because high
soil moisture saturation can induce luxury consumption and
thus reduced root depths (FAO Water, 2016). This is particu-
larly relevant for maize due to its capability to develop deep
roots (FAO Water, 2016). This feature allows the plants to
access deep soil water under dry conditions during the sen-
sitive phase of flowering and grain filling. Empirical studies
indicated that early wet conditions slow down the spreading
of seeds and young plants can be damaged through indirect
effects, such as fungus (Urban et al., 2015a). A detailed anal-
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Figure 5. Percentage change of silage maize yield caused by significant soil moisture anomalies for each month. The vertical axis represents

the change in silage maize converted into percent, approximated by the formula 100(exp(
6∑
n=1

αnI(SMIikm ∈ Cn))−1), where Cn are the soil

moisture classes (refers to Eq. 2). The standard errors are indicated by the black error bars.

ysis indicates that the large effect of severely wet conditions
in June can be partly associated to the 2013 flood in Ger-
many (not shown), which exhibited wet soils in large parts
of the country. Starting in July, the level of soil water con-
tent decreases (see Fig. 4 in Samaniego et al., 2013). As a
consequence, dry anomalies represent damaging conditions
because plant available soil water starts to be too low to pro-
vide enough water during the most susceptible phase. These
effects are increasing over the subsequent months because of
the seasonality, the particular growing stage, and the persis-
tence of soil moisture. Lower levels in absolute soil water
also explain why wet anomalies have a positive impact in
August, but not in July. July exhibits the highest evapotran-
spiration among all months. This leads to a highly dynamic
soil moisture in July which is characterized by a transition
from a wet regime to a dry regime. Thus, small deviations
from average soil moisture in this month have no significant
effect on yield (Fig. 5). These are only observed for the very
extreme conditions.

Additionally, the growing stage modifies the impact of soil
moisture coefficients. In our sample, flowering commonly
begins between the middle and end of July and milk ripening
occurs in the second half of August (based on own calcula-
tion from data provided by Deutscher Wetterdienst, 2017).
Plants exhibit an increased susceptibility to insufficient wa-
ter supply during these development stages. As shown in
Sect. 4.3, July has the highest partial effect with respect to
meteorological variables. In August, soil moisture anomalies
show a significantly higher impact on annual silage maize
yield than in July. Due its seasonality, absolute soil moisture
values are in general lower in August than in July. Further,

soil moisture in August integrates temperature and precipita-
tion effects of the preceding months. Thus, dry soil moisture
anomalies show harmful effects, while wet ones are benefi-
cial. In September and October, soil moisture usually starts
to refill (see Fig. 4 in Samaniego et al., 2013). Maize is in
the less susceptible phase to dryness of ripening in Septem-
ber and harvesting usually starts in the second half of this
month (Deutscher Wetterdienst, 2017). This implies that se-
vere drought anomalies in September and October might be
associated with extended periods of water stress over the sen-
sitive growing stages in the months before.

In this section, it was shown that the seasonality of soil
moisture underlying the soil moisture index needs to be con-
sidered to disentangle its temporal effects on silage maize
yield. Thus, it is necessary to consider seasonality in soil
moisture content and silage maize growth when assessing ef-
fects caused by soil moisture anomalies.

5 Conclusions

In this study, the intraseasonal effects of soil moisture on
silage maize yield in Germany are investigated. It is also
evaluated how approaches considering soil moisture perform
compared to meteorology-only ones. A demeaned reduced
form panel approach is applied, which employs polynomials
of degree three for variables of average temperature, poten-
tial evapotranspiration, precipitation, and a stepwise function
for soil moisture anomalies to capture nonlinearities. Poten-
tial evapotranspiration and average temperature are mutually
exclusive. The model selection is based on the BIC and the
adjusted coefficient of determination (R2).
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This study provides a proof of concept that (a) soil mois-
ture improves the capability of models to predict silage maize
yield compared to meteorology-only approaches and (b) tem-
poral patterns in the seasonal effects of the explanatory vari-
ables matter. Results show that soil moisture anomalies im-
prove the model fit in all model configurations according to
both the BIC and R2. SMI entails the highest explanatory
power in all months but May (most explained by T ) and
July (most explained by P ). This highlights that soil mois-
ture adds different information than meteorological vari-
ables. All time-invariant variables show seasonal patterns in
accordance to each particular growing stage of silage maize.
Furthermore, the dynamic patterns of the SMI effects origi-
nate from the seasonality in absolute soil moisture. Those re-
sults support the supposition that it is necessary to control for
intraseasonal variability in both the index for soil moisture
and meteorology to derive valid impact assessments. Also,
the comparison of various meteorological effects based on
BIC shows that potential evapotranspiration adds no explana-
tory power compared to average temperature. Further, partial
effects of precipitation outweigh those of temperature when
controlling for intraseasonal variability.

The temporal resolution for the meteorological and soil
moisture data is months. This might be too low to accurately
resolve the stage of plant growth. Future improvements will
involve the use of daily data from high-resolution remote
sensing campaigns which would allow us to determine grow-
ing seasons more accurately.

Our results have further implications for climate change
impact assessment. First,soil moisture can improve agricul-
tural damage assessment and enrich the climate adaptation
discourse in this realm, which is mostly based on tempera-
ture measures as major explanatory variable (Carleton and
Hsiang, 2016). We recommend controlling for at least those
seasonal dependent pathways that affect plant growth pre-
sented in our study. Measures of soil moisture should be con-
sidered to derive evidence about climate impacts and adapta-
tion possibilities. This particularly concerns climate econo-
metrics, where frequently used reduced form approaches and
dose-response functions should also control for soil mois-
ture. For example, Butler and Huybers (2013) derived from
a dose-response function only relying on temperature mea-
sures that the sensitivity to EDD is lower in southern than
northern US counties. Based on these estimates, they con-
cluded that the south is better adapted to hot conditions
than the north. Transferring those adaptation potential to fu-
ture impacts diminishes the estimated losses. However, var-
ious issues need to be considered when employing such an
approach, such as the costs of adaptation and wrong in-
stitutional incentives (Schlenker et al., 2013; Annan and
Schlenker, 2015). Also, Schlenker et al. (2013) argued that
higher average humidity levels in the south diminish the cor-
relation between heat and measures based on evapotranspi-
rative demand. Accordingly, it is recommended to directly
control for evapotranspirative demand by VPD. As shown in

Sect. 4.1, no superior effect of potential evapotranspiration
over temperature was found when controlling for either pre-
cipitation or both precipitation and SMI. Potential evapotran-
spiration and VPD both account for the water demand of the
atmosphere. Instead, the results of this study show that con-
trolling for water supply by measures of either soil moisture
and precipitation avoids biased effects in a humid climate.
This study further indicates that it is necessary to account for
the seasonal dynamics in both the meteorological and soil
moisture effects that constitute the variation in crop yield to
employ spatial adaptation as surrogate for future adaptation.

Second, the definition of an index as anomaly has gen-
eral implications for climate econometrics. Such an index is
less prone to systematic errors (Lobell, 2013; Gornott and
Wechsung, 2015, 2016) because any bias associated to the
spatial processing and the meteorological or climatological
modeling is minimized (Auffhammer et al., 2013; Conradt
et al., 2016; Lobell, 2013). Also, the persistence in soil mois-
ture and the resulting smoother distribution in comparison to
the meteorological variables might deliver more reliable esti-
mates than climate assessment based on meteorological vari-
ables because climate simulations only show robust trends at
coarse temporal resolutions (Gornott and Wechsung, 2015).
An index can also be interpreted as interannual variability be-
yond the demeaning framework. Any linear model employ-
ing a categorical variable for each spatial unit is equivalent
to joint demeaning of both the dependent and the indepen-
dent variables and thus the source of variation is the devia-
tion from the mean. For instance, anomalies are used within
the adaptation discourse to derive implications for short-term
measures (Moore and Lobell, 2014). Again, in such a setting
soil moisture can serve as a more comprehensive measure
than the commonly used temperature.

Finally, this study has also several implications for the de-
sign of adaptation measures on weather realizations to reduce
current welfare losses of climate events (UNISDR, 2015;
Kunreuther et al., 2009). First, indexes derived from soil
moisture can be used in risk transfer mechanisms. For in-
stance, insurance schemes based on a particular weather in-
dex can be enhanced in both developed and developing coun-
tries (Agriculture Risk Management Team, 2011). Second,
the detrimental effects of wet soil moisture anomalies might
allow one to extend the risk portfolio of multi-peril crop in-
surance and thus foster the advancement and implementation
of those schemes in Germany (Keller, 2010). Third, the in-
stallation of agricultural infrastructure should be investigated
because negative effects of soil moisture anomalies can be
mitigated by irrigation and drainage. In 2010, only 2.34 % of
the agricultural area used for silage maize was irrigated (own
calculation from data provided by Statistisches Bundesamt,
2011) and the latest numbers about drainage systems in Ger-
many date back to 1993 (ICID, 2015).

Overall, an index of soil moisture considering intrasea-
sonal variability has relevant implications for current and fu-
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ture damage assessment and adaptation evaluation, which are
supposed to gain importance in the course of climate change.
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