

Supplement of

The relationship between precipitation and insurance data for floods in a Mediterranean region (northeast Spain)

Maria Cortès et al.

Correspondence to: Maria Cortès (mcortes@meteo.ub.edu)

The copyright of individual parts of the supplement might differ from the CC BY 4.0 License.

SUPPLEMENTARY MATERIAL

TABLES

944

970

Rieres litorals Ebre Nord

Rieres litorals Ebre Sud

Table S1: Basin aggregation

	BASINS					
	ALL BASINS	JOIN				
CODE	BASIN NAME	CODE	BASIN NAME			
001	Tec, el	1001 (001; 002; 030)	El Tec; Rieres litorals Muga; La Muga			
002	Rieres litorals Muga	1002 (003; 040)	Rieres litorals Fluvià; El Fluvià			
003	Rieres litorals Fluvià	006	El Daró			
006	Daró, el	1003 (015; 852)	El Gaià; Rieres Tarragona Centre			
015	Gaià, el	019	Riera de Riudecanyes			
019	Riera de Riudecanyes	1004 (025; 970)	La Sénia; Rieres litorals Ebre Sud			
025	Sénia, la	050	Tordera, la			
030	Muga, la	060	Besòs, el			
040	Fluvià, el	070	Foix, el			
050	Tordera, la	080	Francolí, el			
060	Besòs, el	090	Garona, eth			
070	Foix, el	100	Ter, el			
080	Francolí, el	200	Llobregat, el			
090	Garona, eth	300	Segre, el			
100	Ter, el	400	Ebre, l'			
200	Llobregat, el	500	Rieres Costa Brava Nord			
300	Segre, el	600	Rieres Costa Brava Centre			
400	Ebre, l'	618	Rieres Costa Brava Sud			
500	Rieres Costa Brava Nord	700	Rieres del Maresme			
600	Rieres Costa Brava Centre	774	Torrents de l' Àrea Metropolitana de Barcelona			
618	Rieres Costa Brava Sud	789	Rieres litorals Llobregat			
700	Rieres del Maresme	800	Rieres del Garraf			
774	Torrents de l'Àrea Metropolitana de Barcelona	833	Rieres Terragona Nord			
780	Rieres litorals Llobragat	900	Rieres Tarragona Sud			
800	Rieres del Corref	900	Rieres Maridionals de Tarragona			
800	Rieres Terragona Nord	913	Riefes Meridionals de Tallagona			
033	Rieres Tarragona Nord	944	Riefes morais Edie Nord			
852 000	Rieres Tarragona Centre					
900	Kieres Larragona Sud					
913	Tarragona					

BASINS

Table S2: Warning zones aggregation

AI	L WARNING ZONE		JOIN		
CODE	WARNING ZONE NAME		CODE	WARNING ZONE NAME	
694304	Litoral sur de Tarragona		694304	Litoral sur de Tarragona	
694302	Cadena prelitorial de Tarragona	694302 Cadena prelitorial de Tarragona			
694301	Depresión central de Tarragona	694301 Depresión central de Tarragona			
694303	Litoral norte de Tarragona		694303	Litoral norte de Tarragona	
690804	Prelitoral de Barcelona		690804	Prelitoral de Barcelona	
692503	Depresión central de Lleida		692503	Depresión central de Lleida	
690803	Prelitoral de Barcelona		690803	Prelitoral de Barcelona	
690802	Depresión central de Barcelona		690802	Depresión central de Barcelona	
691704	Litoral sur de Girona		691704	Litoral sur de Girona	
691702	Prelitoral de Girona		691702	Prelitoral de Girona	
691703	Ampurdán		691703	Ampurdán	
690801	Prepirineo de Barcelona		690000 (690801; 691701)	Prepirineo de Barcelona, pirineo de Lleida y Llivia	
692502	Pirineo de Lleida		692502	Pirineo de Lleida	
691701	Pirineo de Girona y Llivia		692501	Valle de Arán	
692501	Valle de Arán				

WARNING ZONE

Table S3: Parameters of the logistic model and RA values for the basin level with 40 mm/24 h maximum precipitation threshold. Number of flood cases: 331

PERCENTILE	DAMAGE	β ₀	β_1	RA
50	D	-3.62	0.83	0.60
	DPC	-6.83	1.56	0.67
	DPW	-7.16	1.63	0.68
	D	-5.11	1.06	0.63
60	DPC	-7.79	1.67	0.69
	DPW	-8.68	1.87	0.71
	D	-6.06	1.17	0.65
70	DPC	-9.05	1.84	0.71
	DPW	-8.88	1.80	0.71
	D	-9.19	1.73	0.72
80	DPC	-10.73	2.07	0.74
	DPW	-9.74	1.85	0.73
	D	-10.47	1.82	0.74
90	DPC	-11.48	2.03	0.74
	DPW	-13.76	2.52	0.80

PERCENTILE	DAMAGE	βο	β1	RA
	D	-3.95	0.91	0.6
50	DPC	-6.53	1.51	0.65
	DPW	-7.13	1.65	0.66
	D	-6.71	1.45	0.66
60	DPC	-7.39	1.6	0.66
	DPW	-7.87	1.71	0.67
	D	-7.37	1.49	0.66
70	DPC	-10.31	2.15	0.72
	DPW	-8.88	1.83	0.70
	D	-10.26	2.01	0.73
80	DPC	-12.43	2.49	0.76
	DPW	-10.46	2.05	0.73
	D	-10.62	1.89	0.72
90	DPC	-10.83	1.94	0.72
	DPW	-13.45	2.5	0.79

Table S4: Parameters of the logistic model and RA values for the basin level (without taking into account mountain basins: basin 090, 100, 200 and 300, according to Table 1 in supplementary material) with 40 mm/24 h maximum precipitation threshold. Number of flood cases: 247.

Table S5: Parameters of the logistic model and RA values for the basin level (without taking into account mountain basins: basin 090, 100, 200 and 300, according to Table 1 in supplementary material) with 60 mm/24 h maximum precipitation threshold. Number of flood cases: 171.

PERCENTILE	DAMAGE	βο	β_1	RA
	D	-6.51	1.44	0.63
50	DPC	-9.19	2.03	0.66
	DPW	-11.08	2.45	0.69
	D	-10.06	2.13	0.69
60	DPC	-10.28	2.17	0.67
	DPW	-10.25	2.16	0.68
	D	-10.94	2.21	0.69
70	DPC	-13.54	2.78	0.73
	DPW	-11.07	2.24	0.7
	D	-11.15	2.13	0.7
80	DPC	-10.3	1.95	0.69
	DPW	-10.65	2.02	0.7
	D	-12.37	2.21	0.71
90	DPC	-10.9	1.9	0.68
	DPW	-13.52	2.45	0.73

PERCENTILE	DAMAGE	βο	β_1	RA
50	D	-5.38	1.29	0.61
	DPC	-10.32	2.48	0.68
	DPW	-10.16	2.44	0.68
	D	-5.89	1.31	0.61
60	DPC	-10.70	2.46	0.69
	DPW	-9.48	2.17	0.68
70	D	-8.25	1.76	0.66
	DPC	-13.10	2.90	0.73
	DPW	-9.78	2.12	0.68
	D	-11.75	2.44	0.73
80	DPC	-11.86	2.46	0.71
	DPW	-9.96	2.02	0.67
	D	-12.22	2.35	0.72
90	DPC	-13.13	2.56	0.73
	DPW	-14.99	2.98	0.77

Table S6: Parameters of the logistic model and RA values for the basin level with 40 mm/24 h average precipitation threshold. Number of flood cases: 177.

Table S7: Parameters of the logistic model and RA values for the basin level with 60 mm/24 h average precipitation threshold. Number of flood cases: 100. * Indicates no significance (p-value>0.05).

PERCENTILE	DAMAGE	βο	β1	RA
	D	-6.02*	1.37*	0.61*
50	DPC	-14.99	3.42	0.72
	DPW	-13.70	3.13	0.71
	D	-7.95	1.71	0.64
60	DPC	-17.43	3.87	0.75
	DPW	-16.95	3.76	0.75
	D	-11.76	2.47	0.69
70	DPC	-13.61	2.89	0.72
	DPW	-13.44	2.85	0.70
	D	-9.04*	1.73*	0.64
80	DPC	-15.51	3.17	0.73
	DPW	13.68	2.77	0.71
	D	-10.20*	1.80*	0.67
90	DPC	-15.75	3.02	0.74
	DPW	-12.99	2.42	0.69

PERCENTILE	DAMAGE	β_0	β_1	RA
	D	-2.73	0.62	0.6
50	DPC	-6.79	1.53	0.7
	DPW	-6.81	1.54	0.7
	D	-4.05	0.82	0.63
60	DPC	-7.54	1.59	0.71
	DPW	-7.21	1.52	0.71
	D	-4.82	0.89	0.63
70	DPC	-8.25	1.64	0.73
	DPW	-9	1.8	0.74
	D	-7.35	1.31	0.7
80	DPC	-9.67	1.81	0.76
	DPW	-10.65	2.03	0.78
	D	-8.92	1.46	0.73
90	DPC	-11.04	1.9	0.79
	DPW	-11.62	2.02	0.81

Table S8: Parameters of the logistic model and RA values for the warning zone level with 40 mm/24 h maximum precipitation threshold. Number of flood cases: 243.

Table S9: Parameters of the logistic model and RA values for the warning zone level with 60 mm/24 h maximum precipitation threshold. Number of flood cases: 180. * Indicates no significance (p-value>0.05).

PERCENTILE	DAMAGE	β ₀	β_1	RA
	D	-2.13*	0.46*	0.58*
50	DPC	-6.54	1.41	0.66
	DPW	-6.52	1.41	0.67
	D	-2.08*	0.36*	0.55*
60	DPC	-7.07	1.43	0.68
	DPW	-6.94	1.4	0.67
	D	-3.64*	0.6*	0.58^{*}
70	DPC	-8.06	1.54	0.7
	DPW	-10.04	1.96	0.75
	D	-3.9*	0.54*	0.56*
80	DPC	-10.04	1.83	0.75
	DPW	-10.01	1.82	0.74
	D	-8.44	1.32	0.71
90	DPC	-10.61	1.76	0.75
	DPW	-10.57	1.75	0.75

PERCENTILE	DAMAGE	β_0	β_1	RA
	D	-42.27	12.28	0.94
50	DPC	-42.27	12.28	0.94
	DPW	-34.04	9.81	0.91
	D	-75.09	11.66	0.95
60	DPC	-26.47	11.66	0.95
	DPW	-33.68	11.66	0.95
70	D	-27.89	7.23	0.92
	DPC	-27.89	7.23	0.92
	DPW	-27.89	7.23	0.92
	D	-16.25	4.05*	0.82
80	DPC	-16.25	4.05*	0.82
	DPW	-16.25	4.05*	0.82
	D	-6759.73	1727.74*	1*
90	DPC	-6759.73	1727.74*	1*
	DPW	-6759.73	1727.74*	1*

 Table S10: Parameters of the logistic model and RA values for the MAB level with 20 mm/30 min maximum precipitation threshold. Number of flood cases: 21. * Indicates no significance (p-value>0.05).

Table S11: Damage percentiles for all the damage indicators, precipitation indicators and levels. Damage (D) is in euros, damage per capita (DPC) in euros/population and damage per wealth (DPW) in euros/GDP.

DEDCENTH	DAMAGE	BASINS		WARNING ZONES		MAB	
PERCENTILE		40 mm/24h	60 mm/24h	40 mm/24h	60 mm/24h	10 mm/30min	20 mm/30min
	D	76534	91732	180148	228677	191222	332437
50	DPC	0.40	0.48	0.33	0.54	0.06	0.11
	DPW	20	27	15	26	2	4
	D	142642	177573	288708	342690	253197	439954
60	DPC	0.66	0.96	0.61	0.82	0.09	0.14
	DPW	36	57	31	48	3	5
	D	244098	280868	465357	601829	446198	1754684
70	DPC	1.25	1.97	1.12	1.60	0.14	0.56
	DPW	71	97	60	94	5	19
	D	512063	798412	800506	1203333	1394559	2992793
80	DPC	3.15	4.14	2.38	2.76	0.45	0.93
	DPW	141	200	132	164	13	29
	D	1670401	2377659	2504096	3191660	3414333	10680483
90	DPC	7.97	13.15	5.28	6.35	1.07	3.57
	DPW	380	591	301	417	35	103

FIGURES

Figure S1. Basins aggregation

Figure S2. Warning zones aggregation

Figure S3. (a) Warning zone distribution of flood events (1996-2015); (b) total insurance compensations for floods made by CCS (1996-2015); (c) average total population; and (d) average gross domestic product.

Figure S4: Scatter plot showing maximum precipitation in 24 h (mm) and (a) total damages (D); (b) damage per capita (DPC); and (c) damage per unit of wealth (DPW), for flood events recorded in Catalonia between 1996 and 2015 (log-transformed values; damage are given in euros). Each point represents the compensation series (D, DPC or DPW) and the maximum 24 h precipitation for each basin. The dashed line indicates the fit based on a linear regression model. (P₀=40 mm/24 h).

Figure S5: Scatter plot showing maximum precipitation in 24 h (mm) and (a) total damages (D); (b) damage per capita (DPC); and (c) damage per unit of wealth (DPW), for flood events recorded in Catalonia between 1996 and 2015 (log-transformed values; damage are given in euros). Each point represents the compensation series (D, DPC or DPW) and the maximum 24 h precipitation for each warning zone. The dashed line indicates the fit based on a linear regression model. (P_0 =40 mm/24 h).

Figure S6: Scatter plot showing maximum precipitation in 24 h (mm) and (a) total damages (D); (b) damage per capita (DPC); and (c) damage per unit of wealth (DPW), for flood events recorded in Catalonia between 1996 and 2015 (log-transformed values; damage are given in euros). Each point represents the compensation series (D, DPC or DPW) and the maximum 24 h precipitation for each warning zone. The dashed line indicates the fit based on a linear regression model. (P₀=60 mm/24 h).

Figure S7: scatter plot (a) damages (D) versus 24 h precipitation ($P_0=20 \text{ mm}/24 \text{ h}$) and (b) damages (D) versus 30 minute precipitation ($P_0=20 \text{ mm}/30 \text{ min}$) for the MAB (unit: log(mm)).

Above 70th percentile (71.24 Euros/GDP) DPW

Figure S8: Example of logistic regression result to model DPW damages above the 70th percentile as a function of precipitation (log-transformed of the precipitation given in mm) for basin level. The solid line indicates the best estimate while the shaded band indicates the 95% confidence interval. Open circles along the horizontal axis show the events that are above (top) and below (bottom) the 70th percentile. ($P_0=40 \text{ mm}/24 \text{ h}$).

Above 70th percentile (94.34 Euros/GDP) DPW

Figure S9: Example of logistic regression result to model DPW damages above the 70th percentile as a function of precipitation (log-transformed of the precipitation given in mm) for warning zone level. The solid line indicates the best estimate while the shaded band indicates the 95% confidence interval. Open circles along the horizontal axis show the events that are above (top) and below (bottom) the 70th percentile. ($P_0=60 \text{ mm}/24 \text{ h}$).

Figure S10: Example of logistic regression result to model D damages above the 70th percentile as a function of precipitation (log-transformed of the precipitation given in mm) for the MAB. The solid line indicates the best estimate while the shaded band indicates the 95% confidence interval. Open circles along the horizontal axis show the events that are above (top) and below (bottom) the 70th percentile. (P₀=20 mm/30 min).

Figure S11: Relative operating characteristic (ROC) diagram for above 70th DPW predictions for basin level using the logistic regression of Eq. (1) (P_0 =40 mm/24 h). The open dots indicate a set of probability forecasts by stepping a decision threshold with 5% probability through the modelling results. The numbers inside the plots are the ROC Area (RA) and the Best Threshold (BT), here defined as the threshold that maximise the difference between the hit rate (H) and the false alarm rate (F).

Figure S12: Relative operating characteristic (ROC) diagram for above 70th DPW predictions for the warning zones using the logistic regression of Eq. (1) ($P_0=60 \text{ mm}/24 \text{ h}$). The open dots indicate a set of probability forecasts by stepping a decision threshold with 5% probability through the modelling results. The numbers inside the plots are the ROC Area (RA) and the Best Threshold (BT), here defined as the threshold that maximise the difference between the hit rate (H) and the false alarm rate (F).

Figure S13: Relative operating characteristic (ROC) diagram for above 70th D predictions for the MAB using the logistic regression of Eq. (1) ($P_0=20 \text{ mm}/30 \text{ min}$). The open dots indicate a set of probability forecasts by stepping a decision threshold with 5% probability through the modelling results. The numbers inside the plots are the ROC Area (RA) and the Best Threshold (BT), here defined as the threshold that maximise the difference between the hit rate (H) and the false alarm rate (F).