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Abstract. Both Ms 8.0 Wenchuan earthquake on
12 May 2008 and Ms 7.0 Lushan earthquake on
20 April 2013 occurred in the province of Sichuan,
China. In the earthquake-affected mountainous area, a large
amount of loose material caused a high occurrence of debris
flow during the rainy season. In order to evaluate the rainfall
intensity–duration (I–D) threshold of the debris flow in the
earthquake-affected area, and to fill up the observational
gaps caused by the relatively scarce and low-altitude deploy-
ment of rain gauges in this area, raw data from two S-band
China New Generation Doppler Weather Radar (CINRAD)
were captured for six rainfall events that triggered 519
debris flows between 2012 and 2014. Due to the challenges
of radar quantitative precipitation estimation (QPE) over
mountainous areas, a series of improvement measures
are considered: a hybrid scan mode, a vertical reflectivity
profile (VPR) correction, a mosaic of reflectivity, a merged
rainfall–reflectivity (R−Z) relationship for convective
and stratiform rainfall, and rainfall bias adjustment with
Kalman filter (KF). For validating rainfall accumulation
over complex terrains, the study areas are divided into two
kinds of regions by the height threshold of 1.5 km from the
ground. Three kinds of radar rainfall estimates are compared
with rain gauge measurements. It is observed that the
normalized mean bias (NMB) is decreased by 39 % and the

fitted linear ratio between radar and rain gauge observation
reaches at 0.98. Furthermore, the radar-based I–D threshold
derived by the frequentist method is I = 10.1D−0.52 and is
underestimated by uncorrected raw radar data. In order to
verify the impacts on observations due to spatial variation,
I–D thresholds are identified from the nearest rain gauge
observations and radar observations at the rain gauge
locations. It is found that both kinds of observations have
similar I–D thresholds and likewise underestimate I–D
thresholds due to undershooting at the core of convective
rainfall. It is indicated that improvement of spatial resolution
and measuring accuracy of radar observation will lead to
the improvement of identifying debris flow occurrence,
especially for events triggered by the strong small-scale
rainfall process in the study area.

1 Introduction

Rainfall-induced debris flow is a kind of ubiquitous natu-
ral hazard for mountainous areas with complex terrain. It
is a geomorphic movement process which scours the sed-
iment from steep areas into alluvial fans. The formation
of rainfall-induced debris flow is generally related to three
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main factors, including gravitational potential energy, abun-
dant loose materials and meteorological events (Guzzetti et
al., 2008). The gravitational potential energy remains rela-
tively stable for a long period of time. The loose materi-
als are normally made up of sand, unsorted silt, cobbles,
gravel, boulders and woody debris (Wang et al., 2016). High-
magnitude earthquake events can generate abundant loose
solid material from co-seismic rock falls and landslides and
deposited in gullies (Shieh et al., 2009). During the rainy sea-
son, the occurrence of debris flow after an earthquake be-
comes more frequent (Yu et al., 2014; Guo et al., 2016a).
Both the Ms 8.0 Wenchuan earthquake on 12 May 2008 and
the Ms 7.0 Lushan earthquake on 20 April 2013 occurred in
the province of Sichuan, China, and have changed the for-
mation conditions for debris flow. A large number of debris
flows occurred from 2008 to 2014 and caused many casual-
ties and extensive property damage.

Early warning systems (EWS) for rainfall-induced land-
slide and debris flow are widely implemented in many parts
of the world (Baum and Godt, 2010; Glade and Nadim, 2014;
Segoni et al., 2015). The performance of EWS relies highly
on the updating of precipitation thresholds (Rosi et al., 2015).
Furthermore, a large amount of loose materials caused by
earthquake highly increases the occurrence of debris flow
(Tang et al., 2009, 2012), it is necessary to revaluate the pre-
cipitation threshold. The model of rainfall intensity–duration
(I–D) is widely used to represent the precipitation thresh-
olds of triggering landslides and debris flow (Aleotti, 2004;
Guzzetti et al., 2007). Some literature concluded that the I–
D relationships for some of the regions were severely af-
fected by the Wenchuan earthquake (Su et al., 2012; Cui et
al., 2013; Zhou and Tang, 2014; Guo et al., 2016b). How-
ever, most of these I–D relationships are derived from rain
gauge observation. This is a common technical way to esti-
mate the I–D thresholds of debris flows using rainfall obser-
vation from the nearest rain gauge. However, the uncertainty
of I–D thresholds from rain gauge observations could not be
ignored. This is related to two critical limitations which prob-
ably lead to underestimation of observation of strong convec-
tive events occurring at high-altitude areas. The first limita-
tion is the relatively sparse network density of rain gauges in
the mountainous region (Marra et al., 2014); the other one is
the altitude of gauge deployments, which is at low elevation
for sustainability. The same limitations of rain gauge obser-
vation also exist in the mountainous regions of Sichuan. The
technique of microwave remote sensing has become a nec-
essary way for observing rainfall events in complex terrain.
The radar-based quantitative precipitation estimation (QPE)
has been shown to be useful for the study of debris flows,
as its unique advantage of high spatial and temporal resolu-
tion. Radar observations offer the unique merit of estimating
rainfall over the actual debris flow location (David-Novak
et al., 2004; Chiang and Chang, 2009; Marra et al., 2014;
Berenguer et al., 2015). However, there are many challenges
when radar-based QPE in the mountainous area is applied

to the study of debris flow. Commonly, keeping the eleva-
tion angle close to the ground and estimating the sample cut
at the same height is a basic requirement for radar QPE to
represent the actual rainfall distribution on the ground. The
radar beam blocked by the mountain is a serious problem for
the low angle observation. The radar beam angle has to be
elevated to avoid the blockage. However, doing this intro-
duces another problem: rainfall distribution at higher heights
is different from that at the surface and varies greatly ac-
cording to the precipitation type (Zhang et al., 2012). Er-
rors due to radar system calibration and uncertainty in hy-
drometeor’s DSD (drop size distribution) also decrease the
accuracy of rainfall estimates. Therefore, the combination of
radar and rain gauges to provide accurate rainfall estimates
in complex terrain is attracting increasingly more interest for
improving warnings of future precipitation and situational
awareness (Willie et al., 2017). Furthermore, debris-flow-
triggering events are often related to high precipitation gradi-
ents of storms which occur for a short duration and are on a
small scale (Nikolopoulos et al., 2015). Considering this, raw
S-band radar reflectivity data are used to estimate rainfall and
assess the impact of estimation errors on the identification of
the I–D threshold over the study area.

The main aim of this study is to merge the radar QPE,
thereby improving its estimation over complex terrain, and to
assess the impact of rainfall estimate accuracy on the identi-
fication of I–D threshold over the study area. To do that,
a series of accuracy-improving measures have been adopted
including a hybrid scan mode, a vertical reflectivity pro-
file (VPR) correction, a mosaic of reflectivity, a combina-
tion of rainfall–reflectivity (R−Z) relationship for convec-
tive and stratiform rainfall, and rainfall bias adjustment with
Kalman filter (KF). Three radar rainfall estimation scenar-
ios are evaluated with the rain gauge observations for six
debris-flow-triggering rainfall events to validate the accu-
racy of radar estimate. I–D thresholds are identified from
519 rainfall-induced debris flow events with the frequentist
method (Brunetti et al., 2010; Peruccacci et al., 2012). An-
other aim of this study is to understand the impact on the
I–D identification due to spatial variability of rainfall ob-
servation. Rain gauge observations nearest to the debris flow
within 10 km and radar observations at the rain gauge loca-
tions are used to get the I–D relationship.

2 Study domain and data

The study area is located in Sichuan in southwest China,
which consists of 16 administrative districts and counties.
The area of study is about 38 000 km2 and occupies nearly
8 % of the land area of Sichuan (see Fig. 1). This area was
strongly affected by the Ms 8.0 Wenchuan earthquake which
occurred on 12 May 2008 and the Ms 7.0 Lushan earthquake
which occurred on 20 April 2013. In the following years, de-
bris flow happened frequently. During the period from 2012
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Figure 1. Location and topography of the study area. Asterisks show the location of Chengdu and Mianyang S-band weather radars which
monitor the study area within 150 km (dash black circle) from the radar location. Rain gauges in the study area are marked with black
triangles and mostly deployed in the valley. The two blue circle dots are the epicenter of the Ms 8.0 Wenchuan earthquake on 12 May 2008
and the Ms 7.0 Lushan earthquake on 20 April 2013.

Figure 2. Land use map (a) and lithology map (b) for the study area.

to 2014, the debris flow occurring in this area accounted for
58.3 % of the annual debris flow events which occurred in
the entire province. The area is in the transitional zone of the
Qinghai–Tibet Plateau to the Sichuan Basin. Terrain changes
steeply and the average altitude above sea level (a.s.l.) for
this area is between 500 m and 6 km. The geological struc-
ture of the study area shows a northeast to southwest orienta-
tion. The rocks over this region are mainly comprised of vol-
canic rocks, mixed sedimentary rocks, siliciclastic sedimen-
tary rocks, carbonate sedimentary rocks, acid plutonic rocks,
intermediate volcanic rocks, intermediate plutonic rocks, un-
consolidated sediments, metamorphic rocks, basic plutonic
rocks and pyroclastic rocks. Figure 1a shows the litholog-
ical map. Quaternary deposits were distributed in the form
of river terraces and alluvial fans. Owing to frequent tec-

tonic activities, most of the gully is steeply sloped over this
area, as shown in Fig. 2b. The main land use types in this
region are mixed forest, cropland and grassland, as shown in
Fig. 2a. Potential debris flow watersheds over the study area
were extracted from morphological variables, using the lo-
gistic regression method. Berenguer et al. (2015) simplified
the geomorphological variables, as the watersheds maximum
height (hmax), mean slope (smean), mean aspect (θmean) and
Melton ratio (MR) are the variables with the smallest over-
lapping areas for assessing the susceptibility of the water-
sheds. The hmax, smean, θmean and MR were retrieved from
DEM data. Combined with the debris flow occurrence over
this area during 3 years, the potential susceptibility map was
calculated with the logarithm regression method, as shown
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Table 1. Characteristics of S-band Doppler weather radar.

Items Value

Wavelength 10.4 cm
Polarized mode horizontal
Antenna gain 45
First side lobe level −29 dBc
Peak transmitted power 750 kW
Noise figure 4 dB
Dynamic range 90 dB
Range resolution 300 m
Volume scanning elevation 0.5, 1.5, 2.4, 3.4, 4.3,

6.0, 9.5, 14.5, 19.5◦

Altitude above sea level 595 m for Chengdu site
of radar location 557 m for Mianyang site

in Fig. 3. The identification results show that there are 673
potential debris flow watersheds in this region.

The climate type of the study area is humid subtropical.
The monthly precipitation distribution is commonly affected
by the plateau monsoon, the East Asian monsoon and com-
plex terrain. The mean annual rainfall over the central and
southern parts of this region varies from 1200 to 1800 mm,
sometimes even reaching 2500 mm (Xie et al., 2009). The
mean annual rainfall over the western part of this area is less
than 800 mm. The northern and southwestern areas of this
region are in the transition zone from hot dry to humid cli-
mates, with mean annual precipitation ranging between 800
and 1200 mm.

The area is monitored by two well-maintained S-band
Doppler weather radars (see Fig. 1). One is deployed in
Chengdu city at an altitude of 596 m a.s.l. and the other one
is deployed at Mianyang city at a height of 557 m a.s.l. Both
of the radar systems have same system specifications, which
can be seen in Table 1. The system provides radar rainfall
estimates at a radial range resolution of 300 m and an angu-
lar resolution of 1◦. There is a rain gauge network consisting
of 551 gauges equipped at the meteorological surface station
in the study areas. The number of rain gauges seems to be a
lot, but most of them are deployed at the valleys. The den-
sity of rain gauges is severely scarce at the high altitude of
the mountains, resulting in observation gaps where the de-
bris flow initially takes place. The average altitude above sea
level of those rain gauges is far lower than 3 km.

3 Methods

3.1 Radar-accumulated rainfall estimation methods

S-band weather radar has a unique advantage of being unaf-
fected by attenuation, as it is subjected to Rayleigh scatter-
ing for almost all hydrometeors. However, in complex terrain
conditions, S-band radar observations still face serious chal-
lenges. The main problem comes from ground clutter and

severe beam blockage, resulting in inaccurate estimates of
radar rainfall. A number of signal processing techniques have
been developed to detect and remove clutter and anomalous
propagation, including fuzzy logic, ground echo maps and
Gaussian model adaptive processing (GMAP) filters (Harri-
son et al., 2000; Berenguer et al., 2006; Nguyen and Chan-
drasekar, 2013). For the radar data used in this study, ground
clutter is filtered with the GMAP algorithm configured in the
Vaisala Sigmet digital processor. Furthermore, in order to
overcome the beam blockage and improve the rainfall esti-
mation accuracy, radar data are corrected concerning the fol-
lowing issues: (i) beam shielding and hybrid scan, (ii) verti-
cal profile of reflectivity, (iii) mosaic of hybrid scan reflectiv-
ity, (iv) combination of reflectivity rainfall relationship and
(v) rainfall bias adjustment.

3.1.1 Beam shielding and hybrid scan

The hybrid scan mode is used to form the initial reflectivity
field for rainfall estimate by keeping the radar main beam
away from the blockage of the complex terrain (Zhang et
al., 2012). In the study area, the grids with 0.36 km2 reso-
lution on the ground are aligned with radar bins of each ele-
vation angle. The blockage coefficients of the low elevation
angles at 0.5, 1.5 and 2.4◦ are calculated according to the
digital elevation model (DEM), earth curvature, antenna pat-
tern and the wave propagation model (Pellarin et al., 2002;
Krajewski et al., 2006). The blockage ratio distribution of
two S-band radars can be seen in Fig. 4. There is almost no
topographical shielding in the near-field within a distance of
50 km from each radar. The main factor considered in the hy-
brid scan within 50 km is to meet the estimated rainfall from
the same vertical height as much as possible. Thus the area
within 20 km from radar is assigned with elevation angle of
3.4◦, the area from radar between 20 and 35 km is assigned
the elevation angle of 2.4◦ and the area from radar between
35 and 50 km is assigned the elevation angle of 1.5◦. It is as-
signed with the elevation angle of 0.5◦ by default when there
is no blockage over 50 km distance from the radar. The ter-
rain transforms from plain land to a mountainous region over
about 70 km westward of each radar. At this region the alti-
tude rises sharply, and the elevation angle of 0.5◦ is totally
obscured. Therefore, the lowest angle at which the blockage
ratio does not surpass 0.5 is assigned to the aligned grid.
Meanwhile, the blockage ratio is correspondingly used to
compensate the energy loss of reflectivity. The final adaptive-
terrain hybrid scan maps are combined as shown in Fig. 4d
and h. It can be seen that most of the study area is covered by
the 1.5 and 2.4◦ radar scans.

3.1.2 Vertical profile of reflectivity

Due to the hybrid scan, the radar elevation angle is raised,
resulting in the majority of the observed reflectivity com-
ing from the upper levels of precipitation profiles. This is
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Figure 3. Morphology and potential debris flow watersheds map over study area: (a) slope; (b) aspect; (c) potential debris flow watersheds
(gray polygon) with debris flow observation (blue circle).

Figure 4. Blockage ratio of beam shielding for the radar main lobe beam and hybrid scan map. Panels (a)–(c) represent the blockage ratio of
Chengdu radar at elevations of 0.5, 1.5 and 2.4◦, respectively. Panels (e)–(g) represent the blockage ratio of Mianyang radar at elevations of
0.5, 1.5 and 2.4◦, respectively. Hybrid scan maps for Chengdu (d) and Mianyang (h) are merged as long as the blockage ratio is lower than
0.5.

quite different from the actual reflectivity on the ground. It
is necessary to account for the reflectivity correction at the
ground level. This study adopts the VPR method to adjust
the reflectivity (Zhang et al., 2012). The processing steps ap-
plied in this study are as follows: (i) convection precipitation
is discriminated from stratiform based on the composite re-
flectivity > 50 dBz or VIL > 6.5 kg m−2, where VIL is verti-
cally integrated liquid water content, an estimate of the total
mass of precipitation in the clouds (Amburn and Wolf, 1997).
(ii) The parameterization of VPR is carried out to generate
bright band top, peak, bottom heights and piecewise linear
slopes S1, S2 and S3 (see Fig. 5). (iii) Observed reflectiv-
ity is adjusted based on the parameterized VPR to piecewise
extrapolate the corresponding reflectivity at the ground. Fig-
ure 5 shows a sample scatter plot of the vertical reflectivity
profiles from 11:30 to 12:30 UTC+8 on 21 July 2012. Im-

pacted by the temperature, air dynamics, particle size and
phase are changed along the vertical falling. Figure 5 shows
the vertical profile of reflectivity varied approximately as
three piecewise linear sections. Altitude is one the critical
factors affecting the atmosphere physics parameters and the
performance of VPR. The areas of study are classified into
two types, region types I and II, in relation to the height from
the ground (≤ 1.5 km for region type I and > 1.5 km for re-
gion type II) and the distance from the radar (≤ 100 km for
region type I and > 100 km for region type II). Figure 6 shows
the identification results for both radars. Apart from the VPR
adjustment, these two kinds of regions are assessed during
the validation of radar QPE in order to understand the actual
impact of distance and height of radar observations on the
rainfall estimation.
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Figure 5. A real sample of VPR model processed in the study on
21 July 2012. The blue circle represents azimuthal mean of reflec-
tivity over 1 h. The orange line represents the idealized VPR with
piecewise linear slope α, β and γ . The horizontal blue line is the
bright band (BB) top and dashed blue line is BB bottom. The solid
red line and dashed red line are BB peak and the 0 ◦C height, re-
spectively.

3.1.3 Mosaic of hybrid scan reflectivity

Both S-band radars have common coverage areas where re-
flectivity data should be mosaicked to construct a large-scale
sensing for rainfall events. Taking the distance and altitude
as weighing parameters, the mosaic formula is defined as

ZM =

∑
iwi × ki ×Zi∑

iwi × ki
, (1)

and

wi = exp

(
−
d2
i

L2

)
, (2)

ki = exp

(
−
h2
i

H 2

)
. (3)

Here, ZM represents the mosaicked hybrid scan reflectivity,
Zi is the single radar hybrid scan reflectivity, i is the radar
index,w is weighing component for the horizontal weighting
and k is weighing component for the vertical weighting. The
variable d is the distance between the analysis grid and the
radar, and h is the height above the ground of the single radar
hybrid scan. The parameters L and H are scale factors of the
two weighting functions.

3.1.4 Combination of rainfall relationship

Rainfall rates are calculated from radar reflectivity by a
power law empirical relationship called the R−Z relation-

ship (Austin, 1987; Rosenfeld et al., 1993) and, theoretically,
the R−Z relationships should be adjusted when the DSDs
change over the rainfall duration. However, it is still a chal-
lenge to obtain fine spatial distribution of DSDs with changes
of time over complex terrains. This study adopts the two
widely verified R−Z relationships defined as Z = 300R1.4

for convective precipitation (Fulton et al., 1998) and Z =
200R1.6 for stratiform (Marshall et al., 1955), and the rainfall
type is identified during VPR processing.

3.1.5 Rainfall bias adjustment

The errors of the R−Z relationship mainly come from DSD
variation, radar calibration errors, etc. (Berne and Krajewski,
2013), so the rainfall biases change over time. The mean field
bias correction is a method to calculate the ratio of the means
of radar estimate and the rain gauge observation (Anagnos-
tou and Krajewski, 1999; Chumchean et al., 2003; Yoo and
Yoon, 2010). In this study, the bias is calculated based on
hourly radar rainfall accumulation and rain gauge accumu-
lated observation. It is defined as

BIAS=
1
N

∑N
i ri

1
N

∑N
i gi

, (4)

where BIAS is mean rainfall bias in 1 h, g is 1 h accumulated
rainfall of rain gauge, i is rain gauge index, r is the radar-
based 1 h accumulated rainfall over the ith rain gauge and N
is the total number of rain gauges. As described above, the
density of rain gauge deployment over the mountainous area
is relatively scarce. Therefore the precipitation measured by
individual gauges at high and low altitudes may lead to over-
estimation and underestimation, respectively. Therefore, the
KF is adopted to alleviate the measurements noise of the bias
(Ahnert, 1986; Chumchean et al., 2006; Kim and Yoo, 2014).

The basic steps of KF in this study are as follows.

1. State the estimate prediction:

BIASP (n)= BIASKF (n− 1) , (5)

where BIASP represents the bias prediction, BIASKF
represents the bias estimate update and n is discrete
time.

2. State the estimate error covariance prediction:

PP (n)= F
2
×PKF (n− 1)+Q, (6)

where PP represents the bias estimate error covariance
prediction, PKF represents the bias estimate error co-
variance update and Q represents covariance function
of the system error.
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Figure 6. The height from the ground of hybrid scan for two S-band radar (a) radar located at Chengdu (b) radar located at Mianyang. The
regions surrounded by green dash lines meet the condition of that the height from the ground is 1.5 km below and the distance from radar is
inner 100 km and is recognized as region type I. The regions surrounded by the red dash lines represents the area under the opposite condition
and is recognized as region type II.

3. Calculate the Kalman gain:

G(n)= PP (n)× (PP (n)+ S)
−1, (7)

where G represents the Kalman gain. S represents co-
variance function of the measurement error.

4. Update the state estimate:

BIASKF (n)= BIASP (n)+G(n)× [BIASm (n)−BIASP (n)], (8)

where BIASm represents the bias measurement.

5. Update the estimate error covariance:

PKF (n)= (1−G(n))×PP (n) . (9)

It is assumed that the variation of the real bias within each
hour is negligible, and the initial estimator for mean field
radar rainfall logarithmic bias and its error variance are as-
sumed to equal their updated values, which are, respectively,
BIASKF (0) and PKF (0).

3.2 Intensity–duration threshold identification
methods

Rainfall thresholds for the possible initiation of debris flows
are identified according to the I–D power law relationship
(Guzzetti et al., 2007), it is defined as follows:

I = αD−β . (10)

Calculating the event duration (D) and the average inten-
sity (I ) requires the start and end times of the rainfall event.
The duration and intensity of each debris flow can be di-
rectly identified with the time-sequential radar rainfall esti-
mate. These times are determined by an interval of at least
24 h, rain rates of less than 0.1 mm h−1 (Guzzetti et al., 2008;
Marra et al., 2014) or corresponding radar reflectivity of less
than 10 dBz to separate two consecutive rainfall events. The
parameters of a and β are estimated with the frequentist
method (Brunetti et al., 2010).

In order to illustrate the impacts of radar rainfall estimate
on I–D threshold, basic procedures of the frequentist method
are applied to radar rainfall accumulation and are described
below:

i. Radar-identified rainfall durations and average intensi-
ties are log transformed as log(I ) and log(D). Both of
them are fitted by least-squares method to form a lin-
ear equation as log(If)= log(α50)−βlog(D), where α50
and β are the fitted intercept and slope, respectively.

ii. For each debris flow, the difference δ(D) between the
actual rainfall average intensity log[I (D)] and the cor-
responding fitted intensity value log[If(D)] is calcu-
lated: δ(D)= log[I (D)] − log[If(D)].

iii. The probability density function (PDF) of the δ(D) dis-
tribution is determined through kernel density estima-
tion and furthermore fitted with a Gaussian function,
which is defined as

f (δ)= a× exp

(
−
(δ− b)2

2c2

)
, (11)

where a > 0, c > 0 and a, b and c ∈ R.
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iv. The threshold for expected minimum exceedance prob-
ability (Pmep) is determined by PDF function, as∫ δmep

−∞

f (δ)dδ = Pmep, (12)

where δmep is the intercept parameters. δmep can be re-
solved through Eq. (12) for given Pmep and then the
αmep corresponding to the Pmep is calculated as

αmep = α50 exp
(
δmep

)
. (13)

Finally, αmop and β are the best-fitted parameters for
exceedance probabilities Pmep.

The minimum exceedance probability is set to 5 % for this
study.

4 Events, results and discussion

Six debris-flow-triggering rainfall events which occurred in
the area of study between 2012 and 2014 are analyzed. Those
events happened at the most severely earthquake-affected re-
gion during rainy season and triggered a total of 519 debris
flows that caused casualties and extensive property damage.
Table 2 summarizes the characteristics of the rainfall events.
Three events occurred in August, two events occurred in July
and one occurred in June. These events are deemed to be
representative of the debris-flow-triggering precipitation in
the region during the rainy season. The event duration and
maximum rainfall accumulation are also retrieved by the rain
gauge nearest to debris flow location and radar observations.
The identification of the rainfall event was determined by an
interval of at least 24 h, during which the rain rate is less
than 0.1 mm h−1 (Guzzetti et al., 2008; Marra et al., 2014).
Table 2 indicates that the durations and rainfall accumula-
tions identified by gauge and radar are different due to the
precipitation type and density of rain gauges. The identifi-
cation differences of event nos. 1, 2 and 6 between gauge
and radar are not as large as event nos. 3, 4 and 5. From
Fig. 7, showing radar-estimated rainfall accumulation for the
six rainfall events (the improving measures described below
are applied in Fig. 7), it can be seen that the precipitation
of event nos. 3, 4 and 5 is dominated by convection and the
strong core of rainfall regions is located in the high-altitude
area where rain gauges are relatively scarce. A few debris
flow events occurred in the long range, approaching radar
detection edges, while the rainfall measured there was low.
This may be caused by the decreasing resolution at long ra-
dial range. In following section, rainfall estimation accuracy,
I–D, the distance and height are considered as evaluation
factors to assess the radar-based rainfall estimate.

Considering the accuracy and robustness of the I–D
threshold of the debris flow are determined by the accuracy

of rainfall observation and positioning, a series of process-
ing steps including hybrid scan, VPR correction, a combined
R−Z relationship and mean bias adjustment are performed
on six rainfall events to improve the accuracy of radar-based
accumulated rainfall. In order to evaluate the overall perfor-
mance and verify the impact on I–D threshold due to rain-
fall accumulation accuracy, the assessment was performed
on three scenarios of radar-based estimates: scenario I, the
estimate from raw data of hybrid scan without VPR and bias
adjustment; scenario II, the estimates with VPR adjustment
after scenario I; and scenario III, the estimates with rainfall
bias correction after scenario II. According to rainfall esti-
mate evaluation, I–D thresholds are derived from those sce-
narios and also assessed with regard to accuracy and spatial
resolution.

4.1 Assessment of rainfall estimation accuracy

The accuracy of the radar-based rainfall event accumula-
tion is assessed with the rain gauge observations. In order to
perform an evaluation, a set of criteria is calculated includ-
ing normalized standard error (NSE), normalized mean bias
(NMB) and correlation coefficient (CORR), defined as

NSE=
1
N

∑N
i |ri − gi |

1
N

∑N
i gi

× 100%, (14)

NMB=
1
N

∑N
i (ri − gi)

1
N

∑N
i gi

× 100%, (15)

CORR=
∑N
i (gi − g)(ri − r)√∑N

i (gi − g)
2
√∑N

i (ri − r)
2
, (16)

where NMB and NSE are in percent, CORR is dimension-
less, ri and gi represent the rainfall accumulation from radar
and gauge andN is the total sampling number. The statistical
criteria comparisons between rain gauges and the three radar
estimate scenarios are shown in Table 3, and the scatter plot
of radar-based estimates and rain gauge rainfall observations
is shown in Fig. 8. The comparison of scenario I indicates
that the NSE, NMB and CORR of the study areas are 50.7,
−41.1 % and 0.78, respectively. The radar-based rainfall is
underestimated. The linear ratio is estimated from linear re-
gression of radar rainfall estimation and rain gauge obser-
vation, with the predefined intercept of zero. The linear ra-
tio approximates to 1 when radar-based rainfall estimation
is consistent with rain gauge observation. The linear ratio of
rainfall observation between radar and gauge for scenario I is
0.51, as shown in Fig. 8a. The reason for the underestimation
is the systematic bias and uncertainty of reflectivity on the
ground. From the comparison of two types of regions, it can
be observed that the NSE, NMB and CORR of region type I
are relatively better than region type II. It is revealed that im-
proved measures are needed for the hybrid scan estimate.

The comparison of scenario II indicates that the NSE,
NMB and CORR for the study areas are 46.1, −18.6 % and

Nat. Hazards Earth Syst. Sci., 18, 765–780, 2018 www.nat-hazards-earth-syst-sci.net/18/765/2018/



Z. Shi et al.: Radar-based quantitative precipitation estimation 773

Figure 7. Images of radar-estimated rainfall accumulation for the six rainfall events (a–f). Circles represent the location of triggered debris
flows. Events are shown in chronological order: (a) 9 July 2012; (b) 21 July 2012; (c) 17–18 August 2012; (d) 19 June 2013; (e) 8–
12 July 2013; (f) 10, 12 July 2014.

Table 2. Characteristics of the rainfall events.

Event Date Number of Event duration Event duration Max. rainfall Max. rainfall
no. triggered by rain by radar accumulation by accumulation by

debris flows gauge (h) (h) rain gauge (mm) radar (mm)

1 9 Jul 2012 9 12 11 17.5 29.6
2 21 Jul 2012 9 10 12 29.3 23.6
3 17–18 Aug 2012 200 7 49 19.2 195.8
4 19 Jun 2013 15 5 12 55.3 101.8
5 8–12 Jul 2013 261 55 73 562.2 416.9
6 10–12 Jul 2014 25 20 21 28.5 17.8

0.80, respectively. This is an improvement over scenario I.
The radar-based rainfall is also underestimated through the
VPR adjustment, and the linear ratio of rainfall observation
between radar and gauge is 0.76, as shown in Fig. 8b. This
means rainfall biases still exist in the estimate. The NSE and
CORR of region type I are also slightly better than region
type II.

The comparison of scenario III indicates that the NSE,
NMB and CORR of the entire study area are 44.0, 1.91 %

and 0.84, respectively. The linear ratio of rainfall observa-
tion between radar and gauge is 0.98, as shown in Fig. 8c,
and this means the consistency between rainfall and radar ob-
servation is achieved through the KF-based bias correction.
Figure 9 shows the average and covariance of bias estimation
by KF and mean field bias method for six rainfall events. The
CORR and NSE improvement also verifies the efficiency of
the KF for radar QPE in mountainous areas. Kalman filter-
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Figure 8. Scatter plots of radar and rain gauge event–rainfall accumulations. (a) Scenario 1: radar estimate from hybrid scan. (b) Scenario 2:
radar estimate from hybrid scan and VPR. (c) Scenario 3: radar estimate through the hybrid scan, VPR and bias correction.

Table 3. The comparison of radar and rain gauge for each estimate scenario.

Criteria Scenario I (hybrid scan) Scenario II (VPR) Scenario III (bias adjustment)

Region Region All study Region Region All study Region Region All study
type I type II regions type I type II regions type I type II regions

NSE (%) 46.4 50 50.7 45.8 49.0 46.1 43.5 47.2 44.0
NMB (%) −40.9 −42.8 −41.1 −17.1 −21.2 −18.6 1.7 10.8 1.91
CORR 0.80 0.77 0.78 0.82 0.77 0.80 0.85 0.82 0.84

Figure 9. The average and covariance of bias estimation by Kalman
filter and mean field bias method for six rainfall events.

ing frees the entire rainfall event estimate of large significant
overestimation or underestimation.

Scenario III provides the optimum rainfall estimation for
this study. In the following, all three scenarios are used to as-
sess the impact of QPE accuracy on I–D relationship identi-
fication.

4.2 Intensity–duration thresholds based on radar QPE

The radar rainfall estimates with high spatial resolution
can retrieve rainfall duration and average intensity for each
rainfall-triggered debris flow, so an abundant of sample data
are captured to induce the I–D relationship. Scatter distribu-
tion of event duration–intensity for the three radar-estimated

Table 4. The parameters of Gaussian fitting, which are used by the
frequentist method to account for I–D threshold.

Parameters of Scenario I Scenario II Scenario III
Gaussian fitting

a 3.144 2.55 2.22
b 0.011 0.003 −0.003
c 0.1273 0.1578 0.1868

scenarios is shown in Fig. 10. Comparisons of scatter distri-
bution between scenarios I, II and III indicate that the average
rainfall intensity and duration are incrementally increased
when applying the improvement measures. The PDF estima-
tions reveal that the number of positive differences δ(D) is
more than the number of negative differences. This can be
accounted for by storm triggering, which is relatively dom-
inant. The parameters of the Gaussian function are summa-
rized in Table 4. Parameter a incrementally decreases. When
applying the improvement measures, parameter c has the op-
posite trend and parameter b randomly changes in a small
range around zero.

The I–D threshold derived from the scenario III is
10.1D−0.52 . It is higher than the other two I–D thresholds
derived from scenario I and scenario II, due to application of
accuracy improving measuring.
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Figure 10. Scatter plots of radar and rain gauge event–rainfall accumulation and probability density functions (PDFs). Panels (a), (b)
and (c) are the scatter plots of scenario I, II and III, respectively. Panels (d), (e) and (f) are the Gaussian fitted PDF of scenario I, II and III,
respectively.

Figure 11. Event–rainfall scatter plots of rain gauges nearest to de-
bris flow locations and radar-based estimate from scenario III over
the same location of rain gauge.

4.3 Comparison with intensity–duration thresholds
from rain gauge observations

In order to analyze the impact of the spatial sampling vari-
ability on identification of I–D threshold for radar estimates
and rain gauge observations, I–D thresholds are derived
from the rain gauge nearest to the debris flow and radar es-
timates at the corresponding co-location of the rain gauge
(Marra et al., 2014). There are some same predefined condi-
tions for comparison: (1) duration times are identified sepa-
rately by two kinds of sensors, rainfall duration time is re-

quired to be more than 1 h and minimum mean rainfall rate
is 0.1 mm h−1. (2) The maximum distance from debris flow
location is less than 10 km. (3) The identification of I–D
threshold is calculated from frequentist methods with ex-
ceedance probabilities of 0.5 %. Firstly, the event’s rainfall
accumulation is compared between rain gauge observations
nearest to the location of debris flows and radar estimates at
the location of the corresponding rain gauge. The scatter plot
of rain gauge and radar estimates is shown in Fig. 11. The
corresponding metrics are calculated. The CORR is 0.88,
NMB is 17.07 %, NSE is 28.32 % and the linear ratio is
1.13, indicating that rainfall observations from the rain gauge
nearest to the debris flow location and radar estimates at co-
location have the tendency of consistency. The I–D thresh-
olds are derived from rain gauge and radar estimates. Scatter
plots of I–D pairs are shown in Fig. 12. The I–D threshold
estimated from rain gauges is I = 5.1D−0.42. The other I–D
threshold estimated from radar is I = 5.8D−0.41. Both I–D
thresholds seem slightly lower than I = 10.1D−0.52, since
the scarce gauge network did not capture the strong core of
rainfall which triggered the debris flow. It is interesting to
note that I–D thresholds of both radar and rain gauge are
very similar, although there are some measurement errors be-
tween them, as shown in Fig. 11.
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Figure 12. Intensity–duration thresholds (black line) derived from (a) rain gauges nearest to debris flow locations and (b) radar rainfall
estimation at the same location of the rain gauges nearest to the debris flow.

Figure 13. Scatter plot of relative changes versus distance. Blue circles represent relative change between radar estimate at debris flow
location and rain gauge observation nearest to debris flow location. Red asterisks represent relative change between radar estimate at debris
flow location and radar estimate at the co-location of the nearest rain gauge. (a) Accumulated rainfall relative change. (b) Duration relative
change. (c) Rainfall intensity relative change.

4.4 Impact of rainfall spatial variation on intensity and
duration

The accumulated rainfall, duration and rainfall intensity
identified from the nearest rain gauge probably are differ-
ent from the realities occurred at the debris flow location,
since the rainfall varies in space especially for convective
precipitation with sharp variation in short distance. The ob-
served rainfall differences rely on the distance from the near-
est rain gauge to the debris location and could be considered
as rainfall spatial change. To this end, relative changes of
the accumulated rainfall, duration and rainfall intensity ver-
sus distance are calculated from the comparisons with the
radar-based estimate at the location of debris flow. The met-
rics for evaluating relative change versus distance are defined
in Table 5. There are also some predefined conditions for
the comparison of relative changes versus distance. (1) The
radar rainfall estimations used for comparison are all from
scenario III. (2) The radar rainfall estimations and duration
identification at the debris flow location are considered as the

referred value. (3) The maximum distance from debris flow
location to the nearest rain gauge is predefined within 10 km
and the distance resolution is set equal to the range resolu-
tion of 300 m of the China New Generation Doppler Weather
Radar (CINRAD). (4) In order to assess the rainfall spatial
variation using a multi-sensor, the radar-based estimate at the
co-location of the nearest rain gauge, as well as rain gauge
observations, is also compared with the radar-based estimate
at the location of debris flow.

The metrics of accumulated rainfall relative change
(ARRC), duration relative change (DRC) and rainfall inten-
sity relative change (RIRC) are calculated for the nearest rain
gauge and radar estimate at the co-location. The results of
ARRC, DRC and RIRC versus distance are shown in Fig. 13.
The main findings from the evaluation results are summa-
rized as follows:

1. The results of ARRC, DRC and RIRC all have an en-
larging tendency along with the increasing distance. The
maximum ARRC, DRC and RIRC for rain gauge obser-
vations are 42.2, 41.67 and 55.88 %, respectively. The
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Table 5. The metric for assessing the relative changes of the accumulated rainfall, duration and rainfall intensity versus distance.

Factors Rain gauge observation nearest to debris flow
location versus radar estimate at debris flow lo-
cation

Radar estimate at the co-location of rain gauge
versus radar estimate at debris flow location

Accumulated rainfall relative
change (ARRC)

ARRCg (s)=
∑N(s)
i=1 |Rdf(i)−Rg(i)|∑N(s)

i=1 Rdf(i)
× 100% ARRCr (s)=

∑N(s)
i=1 |Rdf(i)−Rr (i)|∑N(s)

i=1 Rdf(i)
× 100%

Duration relative change
(DRC)

DRCg (s)=
∑N(s)
i=1 |Ddf(i)−Dg(i)|∑N(s)

i=1 Ddf(i)
× 100% DRCr (s)=

∑N(s)
i=1 |Ddf(i)−Dr (i)|∑N(s)

i=1 Ddf(i)
× 100%

Rainfall intensity relative
change (RIRC)

RIRCg (s)=
∑N(s)
i=1 |Idf(i)−Ig(i)|∑N(s)

i=1 Idf(i)
× 100% RIRCr (s)=

∑N(s)
i=1 |Idf(i)−Ir (i)|∑N(s)

i=1 Idf(i)
× 100%

Note: R represents accumulated rainfall for debris flow event, D represents duration for rainfall event and I represents the mean intensity for rainfall event. The variables with
subscript df, g and r represent the observation from radar at debris flow location, rain gauge nearest to debris flow location and radar at the co-location of the nearest rain gauge,
respectively. s represents the distance between the nearest rain gauge location and debris flow location with the range resolution of 300 m. N(s) represent the number of rain gauge
observation for debris flow at the distance of s.

Table 6. Parameters of the identified ID thresholds and relative changes.

α
α−αS3
αS3
× 100% β

β−βS3
βS3
× 100%

Scenario I 7.62 −24.5 0.67 28.8
Scenario II 8.7 −13.8 0.43 −17.3
Scenario III 10.1 0.0 0.52 0.0
Rain gauges 5.1 −49.5 0.42 −19.2
Radar estimate at the co-location
of the nearest rain gauge 5.8 −42.6 0.41 −21.2

Note: αS3 and βS3 are α and β, respectively, estimated from scenario III.

maximum ARRC, DRC and RIRC for radar-based es-
timate at the co-location of the nearest rain gauge are
43.33, 41 and 45.2 %, respectively.

2. Nonlinear regression is applied for ARRC, DRC and
RIRC versus distance to investigate the average ten-
dency, as shown in Fig. 13. The regression curves of
ARRC and DRC for rain gauge and radar are simi-
lar, within 10 and 4 km, respectively, indicating the ob-
served difference as a function of distance is dominated
by the natural spatial variability and the potential im-
pact from differences in rainfall estimates coming from
different sensors is secondary, especially for estimating
duration.

It is clear from the above discussion that the rainfall esti-
mation accuracy and spatial variation impact the identifica-
tion of I–D threshold. We further take the α and β estimated
from scenario III as a reference value and calculate the rel-
ative change of α and β for each scenario, as shown in Ta-
ble 6. The relative change of α for scenarios I, II and III is
−24.5, −13.8 and 0 %, respectively. The relative change of
β for scenarios I, II and III is −28.8, −17.3 and 0 %, respec-
tively. It is indicated that improving the accuracy of rainfall
estimate is able to decrease the relative changes of α and β.

Concerning rainfall spatial variation, the relative change of α
for the nearest gauge observation and radar-based estimate at
the co-location is−49.5 and−42.6 %, respectively. The rela-
tive change of β for the nearest gauge observation and radar-
based estimate at the co-location is −19.5 and −21.2 %, re-
spectively. The relative change of α is remarkably larger than
the one derived from radar-based estimate on the debris flow
location, but the differences of α and β for rain gauges and
radar-based estimate at the co-location are not significant.

4.5 Comparison with previous results

The I–D threshold for the study regions is compared with
other global and regional thresholds in the literature. It can
be seen from Fig. 14 that the threshold obtained in this work
(red in Fig. 14) falls in the range of other I–D thresholds.
The results were also compared with the rainfall thresholds
previously proposed in the Wenchuan earthquake area (Tang
et al., 2012; Zhou and Tang, 2014; Guo et al., 2016a). Our
result lies in the middle range of them. The difference comes
from the database we used, the radar data which are used
to fill the observation gap of rain gauges, and the identifica-
tion method of I–D threshold that was also different due to a
different exceedance probability. The I–D threshold of this
study was cross-checked with that proposed in the area af-
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Figure 14. I–D thresholds determined for this study (red line)
and those of various other studies. G is global and R is region.
G-1: Guzzetti et al. (2008); G-2: Caine (1980); R-1: Wenchuan
earthquake area (Zhou and Tang, 2014); R-2: Qingping, a re-
gion in Wenchuan earthquake area (Tang et al., g120 2012); R-3:
Wenchuan earthquake area (Guo et al., 2016a); R-4: Italy (Marra et
al., 2014); R-5: central Taiwan (Jan and Chen, 2005); R-6: Japan
(Jibson, 1989).

fected by the Chi-Chi earthquake in Taiwan (Chien Yuan et
al., 2005), mainly due to the climatic differences like storm
occurrence duration and intensity. The result nearly over-
lapped with the one proposed in Adige, Italy (Marra et al.,
2014). Guzzetti et al. (2008) updated the global I–D thresh-
old, which is significantly lower than the global threshold
first proposed by Caine (1980). Our result is higher than that
for the world (Guzzetti et al., 2008).

5 Summary

The main purpose of this paper is to evaluate the debris flow
occurrence thresholds of the rainfall intensity–duration in
the earthquake-affected areas of Sichuan over the rainy sea-
sons from 2012 to 2014. The paper calculates the intensity–
duration threshold from radar-based rainfall estimates, which
is different from the common method of using rain gauge ob-
servation. Radar observations have high spatial resolutions
sensitive to convective precipitation, which is a critical issue
for rain gauge observation due to its scarcity and low-altitude
deployment over mountainous areas. However, the accuracy
of radar-based QPE over complex areas is affected by the
terrain and remains a challenge for hydrological application.
The following work was done to draw the conclusions.

a. Two S-band Doppler radars covered the study area.
Radar observations for six rainfall events were pro-
cessed with a series of mountain-oriented QPE algo-
rithms, including a terrain-adapted hybrid scan, VPR
correction, a reflectivity mosaic, a combination ofR−Z
relationships a rainfall bias correction. Three types of

estimation from radar are performed and compared with
rain gauge observations to validate the accuracy. The re-
sults show that the combination of all correction proce-
dures reduces the bias to 1.91 % and the NSE to 44 %
and improves the correlation coefficient to 0.84 and the
linear ratio to 0.98.

b. Intensity–duration rainfall thresholds for the trigger-
ing debris flow are calculated with a frequentist ap-
proach. The I–D threshold of I = 10.1D−0.52 is de-
rived from the KF-corrected radar estimates. The accu-
mulated rainfall is lower than rain gauge observations
and the derived I–D is also underestimated. The hybrid
scan, VPR correction and combination of R−Z rela-
tionship are strongly required.

c. The I–D deduced from rain gauge observations nearest
to the occurrence of debris flow is highly similar to the
one deduced from the radar estimates at the same loca-
tion as rain gauge: I = 5.1D−0.42 and I = 5.8D−0.41,
respectively. These I–D thresholds are underestimated
due to the rainfall spatial variation and the noncontinu-
ous sampling effect.

Finally, it is clear that radar-based rainfall estimates and
thresholds supplement the monitoring gaps of EWS where
rain gauges are scarce. A better understanding of the re-
lationship between rainfall and debris flow initiation for
earthquake-affected areas can be gained by improving the
spatiotemporal resolution and low-elevation-angle coverage
of radar observation, especially for monitoring the convec-
tive storm occurring at the mountains.
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