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Abstract. This study focused on landslides in a catchment
with mountain roads that were caused by Nanmadol (2011)
and Kong-rey (2013) typhoons. Image interpretation tech-
niques were employed to for satellite images captured before
and after the typhoons to derive the surface changes. A mul-
tivariate hazard evaluation method was adopted to establish
a landslide susceptibility assessment model. The evaluation
of landslide locations and relationship between landslide and
predisposing factors is preparatory for assessing and map-
ping landslide susceptibility. The results can serve as a refer-
ence for preventing and mitigating slope disasters on moun-
tain roads.

1 Introduction

Taiwan is an island with three quarters of its land area con-
sisting of slope land that is 100 ma.s.l., or less but has an
average gradient of 5 % above (SWCB, 2017). Much of this
sloped land has a steep gradient and fragile geological for-
mations. Taiwan is hit by an average of 3.4 typhoons every
year during the years 1911 to 2016 (Central Weather Bureau,
2017). In addition, average annual rainfall reaches 2502 mm
in the years 1949 to 2009 (Water Resources Agency, 2017).
Typhoons usually occur between July and October, and 70–
90 % of the annual rainfall is composed of heavy rain directly
related to typhoons (SWCB, 2017). Concentrated rainfall
causes heavy landslides and debris flows every year (Dadson
et al., 2004). The threat of disaster currently influences in-
dustrial and economic development and the road networks in
endangered areas, thus establishing disaster evaluation mech-
anisms is imperative.

Landslide susceptibility can be evaluated by analysing the
relationships between landslides and various factors that are
responsible for the occurrence of landslides (Brabb, 1984;
Guzzetti et al., 1999, 2005). In general, the factors that af-
fect landslides include predisposing factors (e.g. geology, to-
pography, and hydrology) and triggering factors (e.g. rainfall,
earthquakes, and anthropogenic factors) (Chen et al., 2013a,
b; Chue et al., 2015). Geological factors include lithological
factors, structural conditions, and soil thickness; topograph-
ical factors include slope, aspect, and elevation; and anthro-
pogenic factors include deforestation, road construction, land
development, mining, and alterations of surface vegetation
(Chen et al., 2013a, b; Chue et al., 2015). The method used
to assess landslide susceptibility can be divided into quali-
tative and quantitative. Qualitative methods are based com-
pletely on field observations and an expert’s prior knowledge
of the study area (Stevenson, 1977; Anbalagan, 1992; Gupta
and Anbalagan, 1997). Some qualitative approaches incor-
porate ranking and weighting, and become semi-quantitative
(Ayalew and Yamagishi, 2005). For example the analytic hi-
erarchy process (AHP) (Saaty, 1980; Barredo et al., 2000;
Yoshimatsu and Abe, 2006; Kamp et al., 2008; Yalcin, 2008;
Kayastha et al., 2013; Zhang et al., 2016) and the weighted
linear combination (WLC) (Jiang and Eastman, 2000; Ay-
alew et al., 2005; Akgün et al., 2008). Quantitative meth-
ods apply mathematical models to assess the probability of
landslide occurrence, and thus define hazard zones on a con-
tinuous scale (Guzzetti et al., 1999). Quantitative methods
developed to detect the areas prone to landslide can be di-
vided mainly into two categories: deterministic approach and
statistical approach. The deterministic approach is based on
the physical laws driving landslides (Okimura and Kawatani,
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1987; Hammond et al., 1992; Montgomery and Dietrich,
1994; Wu and Sidle, 1995; Gökceoglu and Aksoy, 1996;
Pack et al., 1999; Iverson, 2000; Guimarães et al., 2003;
Xie et al., 2004) and are generally more applicable when
the underground conditions are relatively homogeneous and
the landslides are mainly slope dominated. The statistical
approach is based on the relationships between the affect-
ing factors and past and present landslide distribution (Van
Westen et al., 2008). Statistical methods analyse the relation
between predisposing factors affecting the landslide which
include bivariate statistical models (Van Westen et al., 2003;
Süzen and Doyuran, 2004; Thiery et al., 2007; Bai et al.,
2009; Constantin et al., 2011; Yilmaz et al., 2012), multi-
variate statistical approaches as discriminant analysis (Baeza
and Corominas, 2001; Carrara et al., 2003, 2008; Pellicani
et al., 2014), and linear and logistic regression (Dai and Lee,
2002; Ohlmacher and Davis, 2003; Ayalew and Yamagishi,
2005; Yesilnacar and Topal, 2005; Greco et al., 2007; Carrara
et al., 2008; Lee et al., 2008; Pellicani et al., 2014), as well as
non-linear methods such as artificial neural networks (ANN)
(Lee et al., 2004; Yesilnacar and Topal, 2005; Kanungo et al.,
2006; Wang and Sassa, 2006; Li et al., 2012) and multi-
variate hazard evaluation method (MHEM) (Su et al., 1998;
Lin et al., 2009). The MHEM is a non-linear mathematical
model that presents an instability index to indicate landslide
susceptibility (Lin et al., 2009). In addition, in some stud-
ies, landslide susceptibility analyses have focused on man-
made facilities such as roads and railroads and have exam-
ined the landslide susceptibility of the surrounding environ-
ments (Das et al., 2010, 2012; Pantelidis, 2011; Devkota
et al., 2013; Martinović et al., 2016; Pellicani et al., 2016,
2017). The aforementioned studies on the landslide suscep-
tibility of areas surrounding man-made facilities have not in-
vestigated characteristics such as the location and scale (area)
of landslides occurring in upper or lower slopes, and these
thus constitute one of the objectives of the present study.

Technological progress has provided various advanced
tools and techniques for land use monitoring. In recent years,
aerial photos or satellite images have been commonly used
in post-disaster interpretations and assessments of landslide
damage on large-area slopes (Erbek et al., 2004; Lillesand
et al., 2004; Nikolakopoulos et al., 2005; Lin et al., 2005;
Chen et al., 2009; Otukei and Blaschke, 2010; Chen et al.,
2013a). Satellite images offer the advantages of short data
acquisition cycles, swift understanding of surface changes,
large data ranges, and being low cost, particularly for moun-
tainous and inaccessible areas. With the assistance of com-
puter analysis and geographic information system (GIS) plat-
forms, researchers can quickly determine land cover con-
ditions. Thus, satellite images are suitable for investigating
large areas and monitoring temporal changes in land use (Liu
et al., 2001). Satellites can capture images of the same area
multiple times within a short period. Studies have indicated
that land surface change detection is the process of exploring
the differences between images captured at different times

(Liu et al., 2001; Chadwick et al., 2005; Chen et al., 2009;
Chue et al., 2015). With multispectral satellite images, land
surface interpretations involve comparisons of multitemporal
images that are completely geometrically aligned.

We selected part of the catchment area of Laonung River
which include Provincial Highway 20 in southern Taiwan as
our study area. Regarding time, we focused on periods be-
fore and after landslides that occurred in the study area as
a result of Typhoon Nanmadol (2011) and Typhoon Kong-rey
(2013). We applied the maximum likelihood method to inter-
pret and categorize high-resolution satellite images, thereby
determining the land surface changes and landslides in the
study area before and after the rainfall events. By using a GIS
platform, we constructed a database of the rainfall and natu-
ral environment factors. Subsequently, we developed a land-
slide susceptibility assessment model by using the MHEM.
The model performance was then verified by historical land-
slides. In addition, we extracted the locations of landslide ar-
eas to explore the relationship between the natural environ-
ment and the spatial distribution of the scale of these areas.

2 Methodology

2.1 Maximum likelihood

The maximum likelihood classifier is a supervised classifica-
tion method (SCM). SCMs include three processing stages:
training data sampling, classification, and output. The under-
lying principle of supervised classification is the use of spec-
tral pattern recognition and actual ground surface data to de-
termine the types of data required and subsequently select
a training site, which has a unique set of spectral patterns.
To accurately estimate the various spectral conditions, the
spectral patterns of the same type of feature are combined
into a coincident spectral plot before the class of the train-
ing site is selected. Once training has been completed, the
entire image is classified based on the spectral distribution
characteristics of the training site by using statistical theory
for automatic interpretation (Lillesand et al., 2004).

To facilitate the calculation of probability in the classifi-
cation of unknown pixels, the maximum likelihood method
assumes a normal distribution in the various classes of data.
Under this assumption, the data distribution can be expressed
using covariance matrices and mean vectors, both of which
are used to calculate the probability of a pixel being assigned
to a land cover class. In other words, the probability of X
appearing in class i is calculated using Eq. (1), and the high-
est probability is used to determine the feature of each pixel
(Lillesand et al., 2004).
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In this equation, d denotes the number of features,X denotes
a sample expressed using features and has d dimensions,
p(X|Ci) denotes the probability that X originates from class
i, 6i denotes the covariance matrix of class i, 6−1

i denotes
the inverse matrix of 6i , |6i | denotes the determinant of 6i ,
µi denotes the mean vector of classification i, (X−µi)T de-
notes the transpose matrix of (X−µi), and Sij denotes the
covariance of classes i and j .

During classification, the maximum value of the probabil-
ity density functions of sample X in each class is used to
determine which class the sample belongs to. The maximum
likelihood classification decision is shown in Eq. (2).

X ∈ Cm, m⊂ {1,2, · · ·,k}

if

p(X|Cm)=max
{
p
(
X|Cj

)
, j = 1,2, · · ·k

}
, (2)

in which k denotes the number of classes. The question
regarding classification is how to effectively separate the
classes in the feature space, or in other words, how to di-
vide the feature space. Maximum likelihood is a common ap-
proach that offers fairly good classification accuracy (Bruz-
zone and Prieto, 2001; Chen et al., 2004). Thus, we adopted
maximum likelihood to interpret and classify the satellite im-
ages.

2.2 Accuracy assessment

This study employed the aforementioned maximum like-
lihood method to classify satellite images. To determine
whether the accuracy of image classification was acceptable,
we adopted an error matrix to test for accuracy. An error
matrix is a square matrix that presents error conditions in
the relationship between ground surface classification results
and reference data (Verbyla, 1995). It contains an equal num-
ber of columns and rows, and the number is determined by
the number of classes. For example, Table 1 contains four
classes. The columns show the reference data, and the rows
show the classification results. The various elements in the ta-
ble indicate the quantity of data corresponding to each com-
bination of classes.

In the Table 1, X12 represents the amount of data that
were interpreted as Class A but actually belong to Class B,

Table 1. Relationship table of error matrix (Verbyla, 1995).

Actual ground surface Total

Class A Class B

Classification Class A X11 X12 X+i

results Class B X21 X22 X+i

Total Xi+ Xi+ X++

whereas X21 indicates the amount of data that were inter-
preted as Class B but actually belong to Class A.X11 andX22
represent the amount of data accurately classified as Class
A and Class B. An error matrix is generally used to check
the quality of classification results in statistics (Congalton,
1991; Verbyla, 1995). In the present study, we evaluated the
accuracy of the classification results based on the overall ac-
curacy and kappa value (Cohen, 1960), which is the coeffi-
cient of agreement derived from the relationship between the
classification results and training data. These two parameters
are explained as follows.

2.2.1 Overall accuracy (OA)

OA is the simplest method of overall description. For all
classes, OA represents the probability that any given point
in the area will be classified correctly.

OA=
[

1
N

∑n

i=1
Xii

]
× 100% (3)

In Eq. (3), N denotes the total number of classifications, n
denotes the total number of rows in the matrix, and Xii is the
number of correctly classified checkpoints.

2.2.2 Kappa coefficient

The kappa (K̂) coefficient indicates the degree of agreement
between the classification results and reference values and
shows the percentage reduction in the errors of a classifica-
tion process compared with the errors of a completely ran-
dom classification process. Generally, the kappa coefficient
ranges from 0 to 1, and a greater value indicates a higher de-
gree of agreement between the two sets of results, as shown
in Eq. (4):

K̂ =
N
∑n
i=1Xii−

∑n
i=1 (Xi+×X+i)

N2−
∑n
i=1 (Xi+×X+i)

× 100%, (4)

in whichXi+ is the total number of pixels for a given class on
the actual ground surface and X+i is the number of pixels in
that class. As reported by Landis and Koch (1977), a kappa
coefficient greater than 0.8 signifies a high degree of accu-
racy, whereas a coefficient between 0.4 and 0.8 or less than
0.4 indicates moderate or poor accuracy.
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2.3 Rainfall analysis method

In previous studies regarding the influence of rainfall on
landslides, rainfall intensity and accumulated rainfall have
been most commonly used as predisposing factors of land-
slides (Giannecchini, 2006; Chang et al., 2007; Giannecchini
et al., 2012; Ali et al., 2014). Therefore, we adopted effec-
tive accumulated rainfall and intensity of rolling rainfall as
rainfall indices and predisposing factors of landslides in the
present study. These two indices are explained as follows.

2.3.1 Effective accumulated rainfall (EAR)

Generally, rainfall is considered the trigger of slope collapse,
whereas previous rainfall can be regarded as a potential fac-
tor of a landslide. Previous rainfall influences the water con-
tent of the soil, which in turn affects the amount of rainfall
required to trigger a landslide (Seo and Funasaki, 1973).

Figure 1 shows an illustration of rainfall events defined
based on EAR (Seo and Funasaki, 1973). The diagram shows
a concentrated rainfall event with no rainfall in the preceding
or subsequent 24 h; thus it can be considered a continuous
rainfall event. A continuous rainfall event that occurs simul-
taneously with a landslide is the main rainfall event. The be-
ginning of the main rainfall event is defined as the time point
when the rainfall first reaches 4 mm. The calculation of accu-
mulated rainfall ends at the time when the landslide occurs.
However, because the exact time of a landslide cannot be pre-
cisely determined, we regarded the hour with the maximum
rainfall during the main rainfall event as the time at which
the landslide occurred in this study.

In accordance with previous studies, we defined EAR as
the sum of direct and previous indirect rainfall. Previous in-
direct rainfall is the rainfall accumulated during the 7 days
prior to the main rainfall event and can be expressed as fol-
lows (Seo and Funasaki, 1973; Crozier and Eyles, 1980):∑7

n=1
knPn = Pb, (5)

where Pb denotes the previous indirect rainfall, Pn denotes
the rainfall during the n days prior to the main rainfall event
(mm), and k denotes a diminishing coefficient set as 0.9 in
this study (Chen et al., 2005). Direct rainfall encompasses the
continuous rainfall accumulated during the rainfall events,
starting from the first rainfall to the time of landslide oc-
currence. Direct rainfall has a direct and effective impact on
landslide occurrence and is thus not diminished. Therefore,
EAR could be expressed as follows in this study:

EAR= Pr +Pb, (6)

where Pr (mm) represents the rainfall accumulated during
the main rainfall event from the first rainfall to the time of
landslide occurrence, and Pb (mm) represents the previous
indirect rainfall.

Figure 1. Definition of rainfall events based on effective accumu-
lated rainfall (modified from Seo and Funasaki, 1973).

2.3.2 Intensity of rolling rainfall (IR)

Rainfall intensity refers to the amount of rainfall within a unit
of time. It is considered a crucial index for evaluating disas-
ters because greater intensity or longer durations have con-
siderable impacts on slope stability. Furthermore, rainfall-
induced landslides may be triggered by several hours of con-
tinuous rainfall. The raw rainfall data in this study were
hourly precipitation; thus IR (mmh−1) can be expressed as
follows:

ImR =
∑m

t−m+1
I = It−m+1+ It−m+2+ ·· ·+ It , (7)

where I denotes rainfall intensity, m denotes the number of
rolling hours of rainfall (set as 3 h in this study), ImR denotes
the IR during m hours, and It denotes the rainfall intensity
during hour t .

2.4 MHEM

The MHEM is a diverse non-linear mathematical model.
Based on relative relationships, the MHEM presents an in-
stability index (Dt ) to indicate susceptibility in different ar-
eas. The objective is to estimate the variance of predisposing
factors and then to determine the weight of each factor ac-
cording to the value of variance, finally to derive a suitable
landslide susceptibility assessment model (Su et al., 1998;
Lin et al., 2009; Chue et al., 2015).

The predisposing factors in the MHEM are rated based on
the frequency of landslide occurrence, which is calculated as
follows:

Ri =
ri

rT
, (8)

where Ri represents the landslide pixel ratio of the various
factors in class i, ri represents the number of landslide pixels
in class i, and rT represents the total number of pixels. Thus,
landslide percentage Xi is expressed as

Xi =
Ri∑
Ri
, (9)

whereXi denotes the landslide percentage of class i and6Ri
denotes the sum of the landslide pixel ratios.
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Based on the landslide percentages of the various classes
for each predisposing factor, the normalized score value of
classes for each factor (dn) can be calculated using Eq. (10),
and presented in relative values ranging from 1 to 10.

dn =
9(Xi −Xmin)

(Xmax−Xmin)
+ 1 (10)

In Eq. (10), Xi represents the causal rate of the sample re-
gion, and Xmax and Xmin represent the maximum and mini-
mum landslide percentages of the factor in the various sam-
ple regions.

To estimate the weight of influence of each predisposing
factor, the coefficient of variation (V ) of the landslide ratios
derived from the class of the predisposing factors is used to
represent the sensitivity of landslide ratios in different pre-
disposing factor classes. A smaller coefficient of variation
denotes higher similarity among the landslide probabilities
in the various classes, which indicates that this factor grading
method cannot determine which areas have higher or lower
landslide probabilities. By contrast, a greater coefficient of
variation denotes that this factor grading method can be used
to describe the influence of factor classes on landslides. Thus,
the coefficient of variation among the predisposing factors
can indicate the factor weights. The coefficient of variation
is calculated as shown in Eq. (11):

V =
σ

X
× 100%, (11)

where σ is the standard deviation andX is the mean landslide
percentage of the various factor classes.

We divided the coefficient of variation of each individual
factor by the total coefficient of variation of all factors to de-
rive the factor weight, which represented the degree of influ-
ence of the factor on landslide occurrence. The factor weight
can be calculated as shown in Eq. (12), whereW is the factor
weight and V is a coefficient of variation.

Wi =
Vi

V1+V2+ ·· ·+Vn
(12)

Finally, the weight (Wi) of each factor is determined by the
rank of its variance (V ), and each factor is assigned a differ-
ent weight. Subsequently, a non-linear mathematical model
can be derived as follows:

Dt = d
W1
1 × d

W2
2 × d

W3
3 × d

W4
4 × d

W5
5 · · · · · · × d

Wn
n , (13)

where Dt is the instability index of the samples, expressed
using relative values ranging from 1 to 10. A cumula-
tive value closer to 10 indicates greater landslide potential,
whereas a cumulative value closer to 1 indicates lower land-
slide potential.

By using the concept of log-normal distribution in statis-
tics, we converted the levels of instability index derived using
the MHEM into probabilities of landslide occurrence. The

calculation formula of the log-normal distribution is shown
in Eq. (14):

P(F)=
1

xσ
√

2π
e−

1
2 [(lnx−µ)/σ]2

, (14)

where x denotes the level of the instability index and µ and σ
denote the mean and standard deviation of the level of the in-
stability index. After calculating the probabilities of landslide
occurrence by using the log-normal distribution, we normal-
ized the probabilities to range from 0 to 1 for convenience.
The normalization formula is shown in Eq. (15).

P(F)′ =
(Xi −Xmin)

(Xmax−Xmin)
(15)

In Eq. (15), Xi represents the factor being normalized and
Xmax andXmin represent the maximum and minimum values
of the factor, respectively.

3 Study area

We referred to the historical data on road disasters from the
NCDR (National Science and Technology Center for Dis-
aster Reduction, 2017) and considered road sections where
rainfall-induced landslides occurred frequently in southern
Taiwan. We focused on the periods before and after Typhoon
Nanmadol (2011) and Typhoon Kong-rey (2013) hit south-
ern Taiwan, and we selected part of the catchment area of
Laonung River in southern Taiwan as our study area (Fig. 2),
which includes areas from three districts in Kaohsiung city
(Jiashian, Liouguei, and Taoyan). The Laonung River flows
SW across the south of the study area and originates from
the Jade Mountain. The study area is located in a tropical
monsoon climate zone. According to the climate statistics
(1983–2012) recorded by the Central Weather Bureau, the
average annual rainfall is approximately 2758 mm. Provin-
cial Highway 20 is in an east–west direction, the starting
point of the highway is Tainan city in southern Taiwan, and
the ending point is Degao Community in Guanshan town,
Taitung County, with a total length of 203.982 km. Within
the study area, Provincial Highway 20 starts from Liouguei
District (76 K+ 000) in the west and goes to Taoyan Village
(87 K+ 500) in the Taoyan District. According to the sur-
vey data from the Directorate General of Highways (2017),
the road width of Provincial Highway 20 passing through the
study area is about 8.8 m. The average traffic flow and the to-
tal number of vehicles carried per day for both directions are
2260 PCU (passenger car unit) and 1434. In the study area,
most of the traffic vehicles are sedans, followed by trucks and
buses.
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Figure 2. Study area in the south of Taiwan. Purple line depicts the
mountain road.

4 Image interpretation and classification

4.1 Preprocessing of satellite images

This study employed and interpreted satellite images taken
by FORMOSAT-2 (FM2). FM2 images have been exten-
sively used to identify natural disasters and land use (e.g.
Lin et al., 2004, 2006, 2011; Liu et al., 2007; Chen et al.,
2009, 2013a). The FORMOSAT-2 satellite has a circular and
sun synchronous orbit. With its high torque reaction wheels
for all axes, the FORMOSAT-2 is able to point to a ±45◦

along track and ±45◦ across track and is thus able to capture
any scene each day in all of Taiwan if necessary (Liu et al.,
2007). FORMOSAT-2 images are available in 2 m resolution
in panchromatic (pan) and 8 m in multispectral (ms) from
visible to near-infrared with a coverage of 24km×24km. In
the present study, prior to interpretation, the satellite images
underwent spectral fusion, coordinate positioning, cropping,
and cloud removal. The images taken by FM2 are multi-
spectral with blue, green, red, and near-infrared (NIR) wave-
lengths (Chen et al., 2013a; Chue et al., 2015). Image fusion
and coordinate positioning were conducted using the import
data and coordinate positioning tool of ERDAS IMAGINE
(2013). Then, we used the image analysis tool of ArcGIS to
remove clouds from the images.

4.2 Training site selection and mapping

To map the sample areas required for image interpretation,
we overlapped the high-resolution, preprocessed satellite im-
ages of the study area before and after the typhoons and
mapped the training sites by using a GIS platform. Based on
field investigations and relevant studies (Chen et al., 2009,
2013a; Chue et al., 2015), we selected areas with water,
roads, buildings, crops, vegetation, river channels, and bare
land within the study area as the sample area factors for in-
terpretation training.

4.3 Image interpretation and accuracy assessment

Image interpretation and classification were conducted using
the maximum likelihood module in ERDAS IMAGINE. The
interpretation and classification results of the satellite images
before and after Typhoon Nanmadol in 2011 and Typhoon
Kong-rey in 2013 are shown in Fig. 3. The different colours
in the images represent different interpretation factors.

To verify the accuracy of the results, we randomly ex-
tracted 25 points from the satellite images for each training
factor as checkpoints and tested the accuracy by using the
aforementioned error matrix approach. With the satellite im-
ages before and after Typhoon Kong-rey in 2013 as an exam-
ple, Table 2 shows the error matrix and accuracy assessment
results of the satellite image interpretation and classification
processes. Table 3 presents the kappa values and OA results
of the satellite images captured before and after the two ty-
phoons. As mentioned, kappa values ranging from 0.4 to 0.8
indicate moderate accuracy, and thus the interpretation re-
sults had moderate to high accuracy.

Taking the landslide inventory after Typhoon Kong-rey in
2013 as an example, there were 291 landslides, which totaled
a landslide area around 135 ha. This was equivalent to an
average concentration of 5.1 % throughout the whole study
area of 2659 ha. Among the 291 landslides, 256 landslides
were recognized with an area smaller than 1 ha, the remain-
ing 35 landslides were recognized in the range of 1 to 8 ha.
The biggest landslide, with an area around 7 ha.

5 Landslide susceptibility assessment

To evaluate the landslide susceptibility of slopes within the
study area, we constructed 8m× 8m grids by using the GIS
platform along with the interpretation results of the two ty-
phoons. We also constructed an 8m× 8m digital elevation
model (DEM) (SWCB, 2011) and input the classification re-
sults, thematic map of predisposing factors, and rainfall data
into the pixel to aid subsequent landslide susceptibility as-
sessments.

5.1 Predisposing factor selection and factor
correlation test

5.1.1 Predisposing factor selection

Referring to Chen et al. (2009), we divided the predisposing
factors of landslides into three categories: natural environ-
ment, land disturbance, and rainfall.

Natural environment factors

Elevation

The influence of elevation varies with the climate and
thus affects the distribution of vegetation on the slope and
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Table 2. Error matrix of interpretation results of satellite images after Typhoon Kong-rey in 2013.

Water Roads Buildings Crops Vegetation River Bare Subtotal User’s
channels land accuracy (%)

Water 15 0 0 0 0 0 0 15 100
Roads 1 7 2 0 0 3 0 10 70
Buildings 2 0 22 0 0 0 0 24 92
Crops 0 4 0 11 0 0 1 16 69
Vegetation 1 5 0 12 25 0 2 45 56
River channels 6 3 1 0 0 24 4 38 63
Bare land 0 6 0 2 0 1 18 27 67
Subtotal 25 25 25 25 25 25 25 175
Producer’s accuracy (%) 60 28 88 44 100 95 72

kappa= 0.64; OA= 70 %

Figure 3. Interpretation and classification results of satellite images before (a, c) and after (b, d) Typhoon Nanmadol (a, b) and Typhoon
Kong-rey (c, d).

type of weathering. In addition, elevation reflects the influ-
ence of geological structure, stress, and time. The highest
and lowest elevations in the study area were 1481 and 365 m,
respectively. Using the GIS platform, we extracted the
elevation data from the DEM of the study area to estimate
the mean elevation of each grid. We divided the elevation
data into seven classes at intervals of 300 m.

Slope gradient

A slope’s gradient generally exerts significant impact
on slope stability. By using the DEM and gradient analysis
of the GIS platform, we calculated the mean gradient of each

pixel in the study area; subsequently, we divided the gradient
values in the pixels within the study area into seven classes.

Aspect

Rainfall-induced landslides are subject to the influence
of seasonal changes such as those related to rainfall and
wind direction. Thus, the direction of the slope must be
considered. As described, we used the DEM and aspect
analysis function of the GIS platform to calculate the average
aspect of the pixels in the study area. According to their
direction, we divided them into six classes from windward
to flat ground.
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Table 3. Interpretation results of satellite images before and after
typhoons Nanmadol and Kong-rey.

Time of satellite image Kappa OA (%)

Before Typhoon Nanmadol (17 Aug 2011) 0.64 69
After Typhoon Nanmadol (14 Oct 2012) 0.53 61
Before Typhoon Kong-rey (17 Aug 2013) 0.66 71
After Typhoon Kong-rey (23 Nov 2013) 0.64 70

Geology

Referring to the digital file of the Geologic Map of
Taiwan, scale 1 : 50 000, Chiahsien, which was compiled by
the Central Geological Survey of the Ministry of Economic
Affairs in 2000, we determined that the geology of the study
area includes five types of rock: the upper part of Changshan
Formation, the Tangenshan Formation, the Changchihkeng
Formation from the Miocene period, and modern alluvium
and terrace deposits from the Holocene period. We divided
geological strength into six classes (Chen et al., 2009).

Terrain roughness

Terrain roughness refers to the degree of change in
pixel height. Wilson and Gallant (2000) proposed the use of
the standard deviation of height within a radius to measure
the degree of change in height because of its indicative
meaning in relation to changes in regional height. Using the
Neighborhood (focal statistics) of the Spatial Analyst Tool-
box in ArcGIS, we calculated the terrain roughness of the
DEM. Statistical cluster analysis was used to automatically
divide terrain roughness into six classes.

Slope roughness

Slope roughness refers to the fluctuations in slope gra-
dient in the pixels. High slope roughness means that the
slope gradient varies considerably (Wilson and Gallant,
2000). Slope roughness is calculated through the same
method as terrain roughness, except with the original
elevation values being replaced with the slope gradient
values obtained using ArcGIS. Just as terrain roughness was
graded, we first used the Spatial Analyst Toolbox in ArcGIS
to estimate the slope roughness of each pixel, after which we
used cluster analysis to automatically divide slope roughness
into six classes.

Distance to water

Streams will cause soil erosion and riparian erosion,
which directly or indirectly affect the stability of the slope.
We calculated the distances to water using the Buffer tool in
ArcGIS and divided the distances into seven classes.

Distance to road

The construction of the roads will also have an influ-
ence on the stability of the slope. Therefore, we also
calculated the distances to road using the Buffer tool in
ArcGIS and divided the distances into seven classes.

Land disturbance factors

Land disturbance varies with space and time. Based on the
tendency to promote landslides, the index of land disturbance
was developed, and we made some revisions to the qualita-
tive approach proposed by Chen et al. (2009, 2013b) to cal-
culate land disturbance and selected roads, buildings, crops,
bare land, and vegetation as the land disturbance factors of
landslides in the study area. We extracted the disaster and
ground surface data from previous satellite image interpreta-
tion and classification results and input the land disturbance
factors into the pixels by using the GIS platform. Referring to
Chen et al. (2009, 2013b), the scores of the index for the dis-
turbance condition (IDC) in the pixels are assigned from five
to one, corresponding to bare land, roads, buildings, crops,
and vegetation.

Rainfall factors

We collected precipitation data from weather stations of the
Central Weather Bureau, including Guanshan, Biaohu, Hsiao
Guanshan, Gaojhong, Sinfa, Jiashian, and Xinan. We then
calculated the EAR and 3 h IR (I3R) levels observed at each
station. The results from Typhoon Nanmadol in 2011 and Ty-
phoon Kong-rey in 2013 are compiled in Table 4. By using
the inverse distance weighting (IDW) function of ArcGIS
and the EAR and maximum I3R values of the weather sta-
tions, we estimated the rainfall of each pixel throughout the
study area and then used cluster analysis to divide the results
into six classes.

5.1.2 Factor correlation test

To establish a landslide susceptibility assessment model,
we selected elevation, slope gradient, aspect, geology, ter-
rain roughness, slope roughness, distance to water, distance
to road, IDC, and rainfall as landslide-predisposing factors.
Rainfall included EAR and maximum I3R.

We employed the Pearson correlation test tool in SPSS
software (2005) to examine the correlation among these fac-
tors. The correlation coefficients ranged from−1 to+1, with
+1,−1, and 0 indicating complete positive correlation, com-
plete negative correlation, and no correlation between two
variables, respectively. Factors with high correlation were
then subjected to a paired sample t test conducted using
SPSS to examine the significance of the correlation between
them. Those with high correlation were eliminated.

Table 5 presents the test results regarding the correla-
tion between the predisposing factors. As shown, the degree
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Table 4. Effective accumulated rainfall and intensity of rolling rainfall observed at weather stations during Typhoon Nanmadol and Typhoon
Kong-rey.

Weather station 2011 Typhoon Nanmadol 2013 Typhoon Kong-rey

name EAR (mm) Max I3R (mmh−1) EAR (mm) Max I3R (mmh−1)

Guan-shan 74 57 376 147
Biao-hu 68 39 413 145
Hsiao Guan-shan 101 48 415 123
Gaojhong 337 69 544 136
Sinfa 504 61 288 123
Jiasian 379 46 233 101
Xi-nan 192 48 518 102

Table 5. Correlation test results between the predisposing factors.

Elevation Slope Aspect Slope Terrain Distance Distance IDC EAR
gradient roughness roughness to water to road

Elevation 1 0.39 −0.01 0.47 0.99 0.52 0.62 −0.23 −0.66
Slope gradient – 1 −0.07 0.85 0.37 0.11 0.18 −0.09 −0.19
Aspect – – 1 −0.09 −0.03 0.13 0 0 −0.12
Slope roughness – – – 1 0.48 0.14 0.23 −0.11 −0.25
Terrain roughness – – – – 1 0.53 0.63 −0.24 −0.67
Distance to water – – – – – 1 0.49 −0.21 −0.47
Distance to road – – – – – – 1 −0.14 −0.61
IDC – – – – – – – 1 0.14
EAR – – – – – – – – 1

of correlation between most factors was moderate to low.
A high degree of correlation was found only between ele-
vation and terrain roughness and between slope gradient and
slope roughness. Thus, we administered paired sample t tests
to these two factor pairs to test the significance of the corre-
lation. The results in Table 6 show that the significance was
0 (< 0.05) for the correlation between both pairs, indicating
no correlation; thus these factors were not eliminated.

5.2 Landslide susceptibility assessment and
hazard map

To apply the MHEM in order to establish a landslide suscep-
tibility assessment model, we input the natural environment,
land disturbance, and rainfall factors into the pixels by using
the GIS platform. By using the changes in bare land between
the images before and after the typhoons and applying image
subtraction aided by manual checking, we obtained the pixel
data of the rainfall-induced landslide locations in the study
area. With the study area after Typhoon Nanmadol in 2011
as an example, we examined EAR during the rainfall period
and rated the classes by using the factor weights derived us-
ing the MHEM, as shown in Table A1 of Appendix A.

The calculation process is explained in this paper using
elevation as an example. In accordance with factor selec-
tion, the elevation factor was divided into seven classes.

Aided by the GIS platform, we calculated the total number
of pixels, total number of landslides, and landslide percent-
age within each elevation level in the study area by using
Eqs. (8) and (9). Based on the landslide percentages of the el-
evation factor and the minimum and maximum landslide per-
centages, we subsequently obtained the scores of the factors
by using Eq. (10). We then calculated the standard deviation,
coefficient of variation, and weight values by using Eqs. (11)
and (12); the results are listed in Table A1 of Appendix A.
The presented results show that the standard deviation (σ ),
coefficient of variation (V ), and factor weight (W ) of the
landslide percentage were 0.021, 0.764, and 0.087, respec-
tively. Finally, we calculated the instability indices by using
the weight values and scores of the factors through Eq. (13).
Furthermore, the results in Table A1 of Appendix A indi-
cate that the degrees of land disturbance (IDC), geology (Gs),
slope gradient (Ss), and slope roughness had the greatest in-
fluence on landslides in the study area, followed by distance
to water (Ds), EAR, and elevation (El).

For EAR and I3R we used an instability index to determine
the level of landslide susceptibility of slopes throughout the
study area. The derived instability index intervals (Table 7)
for EAR and I3R ranged from 2.05 to 9.59 and 2.02 to 9.96.
By using Eqs. (14) and (15), the landslide probability inter-
vals calculated based on EAR and I3R are presented in Ta-
ble 7.
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Table 6. Paired sample t test results between elevation and terrain roughness and slope gradient and slope roughness.

Paired t Degree of Significance
difference freedom (two-tailed)

Mean SD Standard 95 % confidence interval
error of mean of difference

Upper limit Lower limit

Elevation – terrain −2.69 46.5 0.07 −2.83 −2.54 −36.8 407 493 0
roughness

Slope gradient – −0.11 7.9 0.01 −0.14 −0.08 −9.1 407 493 0
slope roughness

Table 7. Intervals of instability index and landslide probability of
rainfall factors.

Rainfall factor Dt,min Dt,max P(F)min P(F)max

EAR 2.05 9.59 0.312 0.982
I3R 2.02 9.96 0.305 0.998

We employed the mean probability of landslide occurrence
to differentiate between high and low landslide susceptibil-
ity. Landslides were considered more likely to occur in ar-
eas where the probability of landslide occurrence was greater
than the mean. By contrast, landslides were considered less
likely to occur in areas where the probability of landslide
occurrence was lower than the mean. With rainfall factor
EAR as an example, we determined the mean probability of
landslide occurrence to be 0.46. We further divided landslide
susceptibility into four levels: high (0.731–1), medium high
(0.461–0.73), medium low (0.23–0.46), and low (0–0.23).
The results showed that the mean probability of landslide oc-
currence varied little, regardless of whether it was calculated
using EAR or I3R.

By using the GIS platform, we considered the landslide
susceptibility calculated using EAR for Typhoon Nanmadol
in 2011 as an example. As illustrated in Fig. 4, we included
an overlay created by the NCDR showing the locations of
historical disasters within the study area. The results revealed
a total of 24 historical disasters, 17 of which were situated in
areas of medium high or high landslide susceptibility. There-
fore, the estimation accuracy in this study was approximately
71 %. Regarding Typhoon Kong-rey in 2013, 18 historical
disasters occurred within areas of medium high or high land-
slide susceptibility, thereby yielding 75 % accuracy. Table 8
presents the accuracy levels associated with using different
rainfall factors to calculate landslide susceptibility for differ-
ent typhoons.

Figure 4. Landslide susceptibility in the study area, in which cross
symbols represent the historical disasters collected from NCDR
(2017).

5.3 Investigation of rainfall factors and
instability index

To understand the relationship between the rainfall factors
and the degree of instability on the slopes in the study area
after the typhoons, we first removed the cloud cover grids
from post typhoon images and subsequently employed clus-
ter analysis to divide the instability indices of the pixels
into three levels: high, medium, and low. We then collected
random samples based on the proportions of landslide and
non-slide pixels at each level (50 landslide and 50 non-
landslide pixel points) and plotted their relationship. Table 9
and Fig. 5a–d present the relationships between the rainfall
factors (EAR and I3R), instability index, and landslide oc-
currence in the pixels following Typhoon Nanmadol in 2011
and Typhoon Kong-rey in 2013. Figure 5a and b show EAR,
whereas Fig. 5c and d show I3R. The presented results indi-
cate that the typhoon events increased the degree of slope in-
stability (Dt ) and landslide occurrence, regardless of whether
EAR or I3R was considered. Furthermore, significantly more
landslide points were situated in areas of high instability than
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Table 8. Accuracy of landslide susceptibility map for different rainfall factors and typhoons.

Typhoon Rainfall Landslide susceptibility at locations Accuracy Mean accuracy
event factor of 24 historical disasters (%) (%)

Low Medium low Medium high High
susceptibility susceptibility susceptibility susceptibility

Typhoon EAR 2 5 11 6 71 % 71 %

Nanmadol (2011) I3R 3 4 13 4 71 %

Typhoon EAR 2 4 13 5 75 % 75 %

Kong-rey (2013) I3R 2 4 11 7 75 %

Table 9. Numbers of landslide pixels in the study correspond to different Dt levels under different rainfall factors after typhoons.

Rainfall event Numbers of landslide and
non-landslide pixel (Proportion of
landslide pixel)

Number of pixels at each
level based on EAR

Number of pixels at each
level based on I3R

Dt level Dt level

Low Medium High Low Medium High

Typhoon Nanmadol (2011) Whole area Landslide 16 793 211 3031 13 551 216 3603 12 974

Non-landslide 390 710 168 259 166 289 56 153 177 396 166 358 46 947

(Landslide/
Non-landslide)

0.00125 0.01822 0.24132 0.00122 0.02166 0.27635

Random
sampling

Landslide 50 0 11 39 0 12 38

Non-landslide 50 24 21 5 25 21 4

Typhoon Kong-rey (2013) Whole area Landslide 20 771 392 4303 16 076 434 4482 15 855

Non-landslide 396 175 182 810 181 824 31 541 181 079 185 305 29 791

(Landslide/
non-landslide)

0.00214 0.02367 0.50969 0.00240 0.02419 0.53221

Random
sampling

Landslide 50 1 6 43 0 11 39

Non-landslide 50 27 20 3 20 27 3

in areas of other levels of instability, and landslides rarely
occurred in areas of low instability. Moreover, areas of high
slope instability were prone to landslides even if their EAR
or I3R was low. By contrast, areas of low instability required
more rainfall for the occurrence of landslides. The results
(Table 9) further showed that the EAR and I3R levels of Ty-
phoon Kong-rey in 2013 were greater than those of Typhoon
Nanmadol in 2011. Thus, at any Dt level, the proportion
of landslides that occurred in the study area after Typhoon
Kong-rey was higher than that after Typhoon Nanmadol. Fig-
ure 5e and f present the relationships between EAR× I3R,
the instability index, and landslide occurrence; EAR× I3R is
the index of rainfall-induced landslide (ILR), with a higher
value indicating higher susceptibility to a landslide. The fig-
ures show that for a high instability index, even a small rain-
fall event could trigger a landslide (lower-right corners of the

figures). By contrast, for a low instability index, a larger rain-
fall event could not easily trigger a landslide (upper-left cor-
ners of the figures).

6 Landslide location analysis

We analysed the spatial characteristics of landslides by using
landslide locations collected from before and after the two
typhoons and the land surface interpretation results of the
study area.

6.1 Investigation of landslide predisposing factors
and landslide area

The influence of predisposing factors on landslides varies. In
this study, we examined the relationships between landslide
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Figure 5. Relationships among instability index, effective accumulated rainfall, and landslide occurrence in the study area after typhoons
Nanmadol (2011) and Kong-rey (2013).

area and various predisposing factors. By using the area of
landslides (i.e. the number of landslide pixels) induced by
Typhoon Nanmadol in 2011 as an example, we investigated
the influences of the predisposing factors (elevation, slope
gradient, aspect, geology, slope roughness, terrain roughness,
distance to water, distance to road, and degree of land distur-
bance) on landslides. The various factor classes and corre-
sponding numbers of landslide pixels are shown in Fig. 6a–i.

Figure 6a presents the relationship between different
classes of elevation and the number of landslide pixels (land-
slide area). As shown in the figure, the number of landslide
pixels in the study area peaked at elevations between 450
and 750 m and then declined as the elevation increased. Fig-
ure 6b displays the relationship between different classes of
slope gradient and the number of landslide pixels (landslide

area). As shown in the figure, the number of landslide pixels
in the study area increased with the slope gradient and peaked
between 30 and 55◦. Landslides rarely occurred on slopes
steeper than 55◦. Figure 6c illustrates the relationship be-
tween aspect and the number of landslide pixels, with aspect
divided into eight categories: north, north-east, east, south-
east, south, south-west, west, and north-west. As shown in
the figure, the number of landslide pixels was highest on
slopes facing south, followed by those on slopes facing east
and south-east. We speculate that this is because rainfall dur-
ing the typhoon season in Taiwan promotes poor cementa-
tion and high weathering on slopes along rivers, which con-
sequently prompts these slopes to develop toward low-lying
rivers (which run from the north-east to the south-west) after
rainfall events.
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Figure 6. Relationships between landslide predisposing factors and number of landslide pixels in the study area.
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Figure 7. Diagrams of landslide area on slope, in which dr represents the distance between the highest point of a landslide area and the
nearest ridge, ds the distance between the lowest point of the landslide area and the nearest stream, and dt the distance between ridge and
stream.

Figure 6d shows the relationship between geology and
the number of landslide pixels. As shown in the figure,
the Sanhsia Group and its stratigraphic equivalence lead to
landslides more easily than the Lushan Formation in the
study area. The Sanhsia Group and its stratigraphic equiv-
alence mainly comprise sandstone, shale, and interbedded
sandstone and shale. Shale has weaker cementation, lower
strength, and a greater tendency to weather and fracture. By
contrast, the Lushan Formation consists of argillite, slate, and
interbedded argillite and sandstone, and its strength is con-
trolled by cleaving; some areas are prone to weathering and
fracturing. Thus, both rock types are more likely to collapse,
but on the whole, the Sanhsia Group and its stratigraphic
equivalence collapse more easily than the Lushan Formation.
Furthermore, this result indicates that the locations of land-
slide areas within the study area are associated with geology.
Figure 6e presents the relationship between slope roughness
and the number of landslide pixels. The number of landslide
pixels within a level of slope roughness first increased with
the slope roughness and then began to decline once a certain
level of slope roughness (35–40) was reached. This result is
similar to that of the influence of the slope gradient on the
number of landslide pixels. Figure 6f displays the relation-
ship between terrain roughness and the number of landslide
pixels. As shown in this figure, the results are similar to those
regarding the influence of elevation on the number of land-
slide pixels: the number of pixels declined when the terrain
roughness was greater than 500 and was very small when the
terrain roughness was greater than 1200.

Figure 6g illustrates the relationship between distance to
water and the number of landslide pixels. The presented re-
sults show a significantly greater number of landslide pixels
within 300 m of water. The width of the river channel within
the study area was determined to range from 100 to 200 m,
revealing that the development of landslide areas near water
in the study area is caused by rainfall significantly raising the
water level in the river, which scours the slope toe, affects
slope stability, and triggers landslides. Figure 6h presents
the relationship between distance to road and the number of

landslide pixels. The presented results reveal that areas be-
tween 100 and 300 m from roads had the greatest number
of landslide pixels. Further examination of the relationship
between distance to road and the area and number of land-
slides revealed that most landslides between 0 and 100 m
from roads were small collapses, whereas those between 100
and 300 m from roads were larger in area. The number of
landslides 0–100 m from roads was greater than that 100–
300 m from roads.

The degree of land disturbance can represent the changes
in surface conditions including roads, buildings, crops, bare
land, and vegetation. A greater degree of land disturbance
likely indicates a greater degree of surface changes, which
can yield a greater number of landslide pixels. Figure 6i
shows the relationship between the degree of land distur-
bance and the number of landslide pixels. The presented re-
sults indicate that the number of landslide pixels increased
with the degree of land disturbance.

6.2 Landslide scale and spatial distribution

We employed the terrain tool in ERDAS IMAGINE and the
DEM to identify the ridges and valleys in the study area. Fol-
lowing the methods in previous studies (Meunier et al., 2008;
Chue et al., 2015), we extracted the distances between the
highest point of a landslide area and the nearest ridge (dr),
between the lowest point of the landslide area and the near-
est stream (ds), and between the ridge and the stream (dt)
(Fig. 7). Furthermore, in Taiwan, many slopes are visible on
developed mountain roads built between ridges and streams.
Therefore, we explored the spatial distribution of landslides
above and below mountain roads. Similarly to Fig. 7a, to ex-
plore the spatial distribution of landslides, we extracted the
distances between the highest point of a landslide area on
a slope above a road and the nearest ridge (dr), between the
lowest point of the landslide area and the nearest mountain
road (dmu), and between the ridge and the mountain road
(dtu) (Fig. 7b). We also investigated this distribution by ex-
tracting the distances between the highest point of a landslide
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Figure 8: Spatial Distribution of Bare Land in the Study Area before and after the Typhoons Nanmadol (Top) and Typhoon Kong-
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Figure 8. Spatial distribution of bare land in the study area before and after the typhoons Nanmadol (top) and Kong-rey (bottom). The sizes
of the bubbles reflect the areas of bare land.

area on a slope below a road and the nearest mountain road
(dmd) between the lowest point of the landslide area and the
nearest stream (ds) and between the mountain road and the
stream (dtd) (Fig. 7c).

This study examined the spatial distribution of landslides
in the region along Provincial Highway 20 before and af-
ter Typhoon Nanmadol in 2011 and Typhoon Kong-rey in
2013. Using the approach shown in Fig. 7a, we mapped the
bare land in the study area, as shown in Fig. 8a–d. Of these
figures, Fig. 8a and c show the conditions before the ty-
phoons, whereas Fig. 8b and d present the conditions after
the typhoons. The presence of bare locations near the Y axis
(dr/dt ≈ 0) denotes that the bare land originated near the
ridge. By contrast, the presence of bare locations near the
X axis (ds/dt ≈ 0) denotes that the bare land progressed to-
ward the stream. Thus, the presence of bare locations near
the origin denotes that the bare land originated near the ridge
and progressed toward the stream.

The results in Fig. 8a–d show more bare locations in the
lower-right halves of the graphs, some of which are larger in
area. The figures indicate fewer bare locations in the upper-
left halves of the graphs, and the ones that are present are

smaller in area. These spatial distribution characteristics are
similar to those derived by Meunier et al. (2008). We spec-
ulate that this is because the frequency of rainfall-induced
landslides increases significantly because of bank erosion,
which is shown in the lower-right half of Fig. 8 (dr/dt ≥ 0.5
and ds/dt ≤ 0.5). Furthermore, the bare locations before and
after typhoons Nanmadol and Kong-rey show that the bare
land does not increase in number but increases significantly
in area, implying that old landslides may result in more col-
lapses or expansions of the affected area. In addition, the
number of old landslides is greater than that of new land-
slides.

We explored the spatial distribution of landslides on slopes
above (Fig. 9) and below (Fig. 10) mountain roads in the
study area before and after Typhoon Kong-rey in 2013. Fig-
ures 9a and 10a present the spatial distribution of bare land
before the typhoon, whereas Figs. 9b and 10b present the
spatial distribution of bare land after the typhoon.

As shown in Fig. 9, most landslides on the slopes above
the mountain roads occurred close to the roads, most likely
because road construction involves cutting the slope toe and
increasing the gradient. After the typhoon, the bare loca-
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Figure 9: Spatial Distribution of Bare Land on Slopes above Mountain Roads in the Study Area before and after Typhoon Kong-

rey in 2013, the scales of bubble reflect the area of each bare land. 

  

Figure 9. Spatial distribution of bare land on slopes above mountain roads in the study area before and after Typhoon Kong-rey in 2013. The
sizes of the bubbles reflect the areas of bare land.
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Figure 10: Spatial Distribution of Bare Land on Slopes below Mountain Roads in the Study Area before and after Typhoon Kong-

rey in 2013, the scales of bubble reflect the area of each bare land. 

  

Figure 10. Spatial distribution of bare land on slopes below mountain roads in the study area before and after Typhoon Kong-rey in 2013.
The sizes of the bubbles reflect the areas of bare land.

tions on the slopes above the roads in the study area did
not increase in number significantly; thus rainfall did not ex-
ert a substantial impact on the slopes above the roads. The
results in Fig. 10 show bare locations on the slopes below
the mountain roads developing from near the roads to the
streams. The bare locations near the streams may also have
been affected by rainfall-induced bank erosion. However, the
bare land near the roads may have been a result of roads be-
ing constructed in the study area, which affects slope stability
and increases the probability of landslides. Furthermore, the
bare locations near the roads slightly increased in number af-
ter the typhoon, likely because the roads changed the routes
of surface run-off. The area of bare land near the streams also
increased, possibly because the water flow scours the slope
toe and causes continual bank collapses. Thus, typhoons have
a significant impact on the stability of slopes below mountain
roads.

7 Conclusions

This study applied the maximum likelihood method to in-
terpret and classify satellite images before and after two ty-
phoons in 2011 and 2013. We extracted landslide and land
use information from the areas surrounding roads and then
compiled the rainfall and DEM data from the typhoon events.
By using the MHEM, we established a landslide suscepti-
bility assessment model and examined the relationships be-
tween predisposing factors and the area and number of land-
slides within the study area, as well as the relationships be-
tween roads and the spatial distribution of landslides. The re-
sults show that the kappa coefficients associated with the use
of the maximum likelihood method to interpret and classify
satellite images before and after Typhoon Nanmadol in 2011
and Typhoon Kong-rey in 2013 ranged from 0.53 to 0.66,
whereas the OA ranged from 61 to 71 %, indicating moder-

Nat. Hazards Earth Syst. Sci., 18, 687–708, 2018 www.nat-hazards-earth-syst-sci.net/18/687/2018/



C.-M. Tseng et al.: Scale and spatial distribution assessment of rainfall-induced landslides 703

ately high accuracy. According to the results of the instability
index-based landslide susceptibility assessment model, the
degree of land disturbance, geology, slope gradient, and slope
roughness had the greatest impacts on landslides. A compar-
ison of historical landslides triggered by the typhoons and
the results of the hazard map revealed 71 % accuracy for Ty-
phoon Nanmadol in 2011 and 75 % accuracy for Typhoon
Kong-rey in 2013. Regarding the influence of the predispos-
ing factors, an elevation of 450–750 m, a slope gradient of
30–55◦, and distances within 300 m of water or roads were
associated with a larger scale of landslides. The scale of land-
slides also increased with the degree of land disturbance. The
relationships between the ILR, instability index, and land-
slide occurrence indicate that for a high instability index,
even a smaller rainfall event could trigger a landslide. By
contrast, for a low instability index, a larger rainfall event
could not easily trigger a landslide. Thus, the instability in-
dex can effectively reflect landslide susceptibility. Compar-
isons of the distribution of bare land before and after ty-
phoon events showed that most landslides in the study area
were caused by stream water scouring away the toes of bank

slopes. Although bare locations did not significantly increase
in number after the typhoon events, they increased signifi-
cantly in area, implying that the number of old landslide ar-
eas holding more collapses or expansions was greater than
that of new landslide areas developing. In addition, the re-
sults obtained from observing changes on slopes above and
below mountain roads after the typhoon events indicate that
the number of bare locations on the slopes above the roads
in the study area did not increase significantly, whereas the
bare locations near the roads on the slopes below the roads
slightly increased in number after the typhoon events, likely
because of the roads changing the routes of surface run-off.
The amount of bare land near streams also increased, possi-
bly because the water flow scours the slope toe.

Data availability. The data sets of geology data, rainfall data, satel-
lite images, and topography data can be provided on request from
the institutions and projects mentioned in the acknowledgements.
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Appendix

Table A1. Weights and scores of predisposing factors after rainfall brought by Typhoon Nanmadol in 2011.

Predisposing Class Number Number of Landslide Score Predisposing Class Number Number of Landslide Score
factor no. of pixel landslides percentage factor no. of pixel landslides percentage

Elevation (El) 1 0 0 0 1 Slope gradient (Ss ) 1 0 0 0 1

2 0 0 0 1 2 4096 378 0.092 9.21

3 8377 175 0.021 4.62 3 74 623 7545 0.101 10

4 45 633 2043 0.045 8.75 4 119 696 6704 0.056 5.99

5 84 049 4370 0.052 10 5 100 477 1666 0.017 2.48

6 209 648 8023 0.038 7.62 6 61 442 369 0.006 1.53

7 59 787 2182 0.036 7.32 7 47 160 131 0.003 1.25

σ = 0.021, V = 0.764, W = 0.087 σ = 0.044, V = 1.111, W = 0.127

Aspect (As ) 1 72 961 3381 0.046 10 IDC 1 18 462 7278 0.394 10

2 129 113 4569 0.035 7.87 2 37 591 3735 0.099 3.26

3 95 534 3839 0.040 8.80 3 33 686 2924 0.087 2.97

4 75 666 3505 0.046 10 4 78 519 2611 0.033 1.75

5 34 220 1499 0.044 9.51 5 216 535 83 0 1

6 0 0 0 1 6 22 701 162 0.007 1.15

σ = 0.018, V = 0.504, W = 0.058 σ = 0.148, V = 1.431, W = 0.163

Slope roughness (Sr ) 1 32 672 4136 0.127 10 Terrain roughness (Tr ) 1 20 809 496 0.024 1

2 83 465 7085 0.084 7.01 2 36 844 1969 0.053 10

3 104 560 3903 0.037 3.6 3 47 547 2257 0.047 8.18

4 75 349 1260 0.017 2.12 4 67 105 3330 0.050 8.84

5 51 143 342 0.007 1.4 5 98 836 4121 0.042 6.43

6 60 305 67 0.001 1 6 136 353 4620 0.034 4.05

σ = 0.05, V = 1.098, W = 0.125 σ = 0.011, V = 0.266, W = 0.03

Distance to water (Ds ) 1 134 641 5610 0.042 8.08 Distance to road (Dr ) 1 165 766 3581 0.022 1

2 169 659 8983 0.053 10 2 120 008 4871 0.041 3.08

3 69 076 1446 0.021 4.56 3 44 993 3505 0.078 7.16

4 19 906 754 0.038 7.44 4 25 015 2597 0.104 10

5 8336 0 0 1 5 25 101 1065 0.042 3.28

6 5627 0 0 1 6 21 848 986 0.045 3.58

7 249 0 0 1 7 4763 188 0.039 2.96

σ = 0.023, V = 1.029, W = 0.117 σ = 0.028, V = 0.528, W = 0.058

EAR 1 15 768 139 0.00882 2.05196 Geology (Gs ) 1 70 071 738 0.011 2.56

2 113 386 3590 0.03166 4.77831 2 43 675 598 0.014 3.02

3 163 395 7879 0.04822 6.75433 3 222 814 13 575 0.061 10

4 73 522 3191 0.0434 6.17931 4 70 934 1882 0.027 4.92

5 26 439 1994 0.07542 10 5 0 0 0 1

6 14 984 0 0 1 6 0 0 0 1

σ = 0.028, V = 0.797, W = 0.091 σ = 0.023, V = 1.233, W = 0.141
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