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Abstract. The 2016 Kumamoto earthquake sequence was
triggered by an My, 6.2 event at 21:26 on 14 April. Approxi-
mately 28 h later, at 01:25 on 16 April, an My, 7.0 event (the
mainshock) followed. The epicenters of both events were lo-
cated near the residential area of Mashiki and affected the re-
gion nearby. Due to very strong seismic ground motion, the
earthquake produced extensive damage to buildings and in-
frastructure. In this paper, collapsed buildings were detected
using a pair of digital surface models (DSMs), taken before
and after the 16 April mainshock by airborne light detection
and ranging (lidar) flights. Different methods were evaluated
to identify collapsed buildings from the DSMs. The change
in average elevation within a building footprint was found
to be the most important factor. Finally, the distribution of
collapsed buildings in the study area was presented, and the
result was consistent with that of a building damage survey
performed after the earthquake.

1 Introduction

The detection of affected areas after an earthquake is very im-
portant for disaster response activities. Allocating resources
such as relief forces, food, medicine, and shelter is crucial af-
ter a natural disaster strikes (Das and Hanaoka, 2014). Thus,
proper information on the damage situation will improve the
efficiency of distributing relief resources. The extent of the
affected area also provides an idea of the scale of the disaster
and an estimate of the relief demand. Damage assessment af-
ter an earthquake disaster is important for the scientific com-
munity as well. A significant amount of information has been

obtained from previous earthquakes and used to improve
construction design codes to evaluate and mitigate damage
to buildings and infrastructure in the event of future earth-
quakes. For instance, Whitman et al. (1973) provided earth-
quake damage probability matrices using data collected after
the 1971 San Fernando, California earthquake. Yamazaki and
Murao (2000) proposed vulnerability functions for Japanese
buildings based on building inventory and damage data and
the spatial distribution of strong motion (Yamaguchi and Ya-
mazaki, 2001) during the 1995 Kobe earthquake in Japan.

Information gathered from field surveys is invaluable and
very precise; however, the process requires significant time
and effort, and access to affected areas is often hindered by
road closures and secondary hazards. Remote sensing is an
effective tool for detecting damaged areas because it can be
used to document damage to large areas without direct ac-
cess to the affected area (Yamazaki and Matsuoka, 2007;
Rathje and Adams, 2008; Dell’Acqua and Gamba, 2012).
Immense improvement to the accessibility of remote-sensing
imagery data and geospatial data processing tools has been
achieved over the last several years (Vuolo et al., 2016; Ko-
rosov et al., 2016). A dramatic increase in the number of
satellite, aircraft, and unmanned aerial vehicle (UAV) sen-
sors has been observed as well. One of the most successful
approaches for assessing damaged areas is based on change
detection between a pair of images taken before and after
an earthquake (Meslem et al., 2011; Liu et al., 2013; Up-
rety et al., 2013). In addition, remote sensing has been used
for long term urban recovery monitoring (Hoshi et al., 2014;
Hashemi-Parast et al., 2017).
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Figure 1. The post-event lidar data for the study area. Shaded colors represent the elevation. The green rectangle shows the locations of the
area surveyed by Yamada et al. (2017). The inset shows Kyushu Island, and the blue polygon in the inset depicts the study area.

Schweier and Markus (2006) pointed out that airborne
light detection and ranging (lidar) data can be used to classify
collapsed buildings using the following geometrical features
of a building extracted from lidar data: the height change
from the initial one, the reduction of the total volume, the
footprint borders, the inclination of the structure, the debris
spread outside the footprint, the additional covered area out-
side the footprint, and the damage situation of the roof. They
proposed a modification of the previous damage classifica-
tion method (Okada and Takai, 2000) using these geomet-
rical features. Although they suggested the use of airborne
lidar data to analyze collapsed buildings, applications to real
cases were not provided.

Applications of lidar for damage detection are still few
compared with other remote-sensing technologies. The main
reason is the lack of lidar data before a disaster. However,
Aixia et al. (2016) performed a study on the possibility of
detecting building damage using only a post-earthquake li-
dar digital surface model (DSM). Their results are promising
for buildings with simple roof shapes, such as flat and pitched
roofs. Rehor et al. (2008) proposed the use of a plane-based
segmentation method to detect damaged buildings, wherein
the number of unsegmented pixels in damaged buildings is
larger than in undamaged buildings. Labiak et al. (2011) pro-
posed an automated method to detect and quantify building
damage using only a post-earthquake lidar DSM as well, but
their results had low accuracy for heavily damaged and col-
lapsed buildings. Hussain et al. (2011) combined lidar data
with GeoEye-1 imagery to detect damaged buildings after the
2010 Haiti earthquake. They detected 190 damaged build-
ings out of 200; however, their procedure required manual
intervention, and the damage level was not clearly classified.
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Instead of lidar data, Maruyama et al. (2014) constructed
two DSMs from two sets of aerial images: before and after
the earthquake. Then, the collapsed buildings after the 2007
Niigata-Chuetsu-Oki earthquake, Japan, were identified us-
ing the difference in elevation between the DSMs.

An M, 6.2 earthquake struck Kumamoto Prefecture,
Japan, on 14 April 2016 at 21:26JST. The event pro-
duced structural damage and resulted in nine human casu-
alties (Cabinet Office of Japan, 2017). Then, 28 h later, a
second earthquake with My, 7.0 occurred close to the first
one. Thus, the first event was designated the “foreshock” and
the second the “mainshock”. The epicenter of the foreshock
was located at the end of the Hinagu fault, and the epicenter
of the mainshock was located in the Futugawa fault. Both
events were located in the town of Mashiki, which has a
population of 33 000. The number of aftershocks following
these events reached the largest number among recent inland
earthquakes in Japan (Japan Meteorological Agency, 2017).
The total number of deaths due to direct causes reached 50,
and over 8000 residential buildings were severely damaged
or collapsed due to the Kumamoto earthquake sequence.

Among the several remote-sensing technologies used to
monitor the area affected by the Kumamoto earthquake (Ya-
mazaki and Liu, 2016), a pair of lidar data sets taken before
and after the mainshock were available (Moya et al., 2017).
As mentioned before, this kind of data set is not often avail-
able. Therefore, this study explores the potential use of lidar
data to identify collapsed buildings over the affected area.
Building collapse is still the main cause of casualties and
hence its prompt recognition is crucial for search and rescue
operations. The difference in elevation, the standard devia-
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tion, and the correlation coefficient are tested for this pur-
pose.

2 Study area and data set

After the foreshock, a lidar-surveying flight was carried out
during 15:00-17:00 (JST) on 15 April 2016 in order to record
the effects of the earthquake (Asia Air Survey Co., Ltd.,
2017). It produced point clouds with an average point density
of 1.5-2 points m~2. Subsequently, because the unexpected
mainshock occurred, a second mission was set up during
10:00-12:00 (JST) on 23 April 2016, which produced point
clouds with an average point density of 3—4 points m~2. Both
sets of lidar data were acquired using a Leica ALS50II instru-
ment and the same pilot and airplane. After rasterization of
the raw point clouds, two DSMs with a data spacing of 50 cm
were created. The DSMs collected before and after the main-
shock will hereafter be referred to as the BDSM and ADSM.
Figure 1 shows the extent of the ADSM, which represents
the entire study area. It covers the main part of Mashiki and
some parts of Nishihara village, Mifune and Kashima towns,
and Kumamoto city.

The study area is located in the near field of the Kumamoto
earthquake sequence where significant permanent ground
displacements were produced during the earthquake. A direct
comparison of the BDSM and ADSM shows that the build-
ing coordinates do not match because the ADSM contains
coseismic displacements. Therefore, the ADSM was shifted
before detecting the damaged buildings based on the per-
manent crustal movement calculated by Moya et al. (2017).
To do this, an automated procedure for calculating the per-
manent three-dimensional (3-D) displacement was imple-
mented. The permanent ground displacement was calculated
by 100m grid size and then applied to the ADSM pixels
within the grid size. Figure 2 illustrates the calculated per-
manent ground displacement of the common lidar data area.
In the figure, the results of new field measurement carried
out in August 2016 for surveying reference points after the
Kumamoto earthquake are also shown (Geospatial Informa-
tion Authority of Japan, 2017). The coseismic displacements
estimated from the lidar data show good agreement with the
survey results (Fig. 3). In Fig. 2, the causative fault is located
in the areas where sudden changes in the direction of the per-
manent ground displacement are observed. Over the entire
study area, a maximum horizontal displacement of approxi-
mately 2 m was observed.

3 Detection of damaged buildings

To focus on buildings, a geocoded building footprint data
set, provided by the Geospatial Information Authority of
Japan (GSI), was used. Only buildings with footprint areas
greater than 20 m? were evaluated. Because the point densi-
ties of the BDSM and ADSM are different and the footprint
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Figure 2. Estimated three-dimensional coseismic displacement af-
ter the mainshock of the 2016 Kumamoto earthquake. The black
arrows and the shaded colors indicate the horizontal and vertical
displacements obtained from lidar (Moya et al., 2017). The blue
arrows indicate the horizontal displacements at the control points
measured by the Geospatial Information Authority of Japan (2016).
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Figure 3. Comparison between the coseismic displacements esti-
mated from the lidar data (Moya et al., 2017) and from field mea-
surements (Geospatial Information Authority of Japan, 2016).

data include some errors, perfect matching of the DSMs with
the building footprints could not be achieved. For this rea-
son, the building footprints were reduced by 1m (i.e., the
reduced polygon is located inside a building footprint), and
they were projected onto the same reference system as that of
the DSMs (Fig. 4). The lidar data within the reduced build-
ing boundaries were then extracted and processed. The rea-
son for using the reduced building boundaries was to discard
the DSM data near the building boundaries in the subsequent
analysis. The distance of the buffer (1 m) was decided based
on a preliminary evaluation of the data (Moya et al., 2016).
Figure 4 illustrates five buildings located in the study
area. For each case, the BDSM (blue dots), the ADSM (red
dots), and the difference between the two DSMs are depicted.
These buildings were selected in order to demonstrate dif-
ferent damage patterns: nondamaged, tilted, and collapsed
buildings. It is worth noting that the difference between the
DSMs for a nondamaged building (Fig. 4a) shows high val-
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Figure 4. Examples of collapsed buildings from the lidar data. The left column shows the photos taken after the mainshock by the authors.
The middle column shows the lidar data, wherein the blue points depict the BDSM and the red points the ADSM. The right column shows the
elevation differences between the two DSMs, wherein the solid lines depict the building footprints and the dashed lines depict the footprint
reduced by 1 m.

Nat. Hazards Earth Syst. Sci., 18, 65-78, 2018 www.nat-hazards-earth-syst-sci.net/18/65/2018/



L. Moya et al.: Detection of collapsed buildings due to the 2016 Kumamoto earthquake, Japan 69

~ [32.795°

2 13279°

-32.785°

)
130.81°

Figure 5. Building damage survey data from Yamada et al. (2017). The location of the survey area is shown in Fig. 1.

ues around the boundary of the building footprint, which was
caused by the effect mentioned earlier. These errors are cer-
tainly present for tilted buildings as well and make damage
detection very challenging (Fig. 4b). Figure 4c shows a typi-
cal collapsed steel-frame building with a well-known damage
pattern that occurs with a soft story or a weak story, that is, a
significant difference in the stiffness/resistance between one
story and the rest. They show a significant horizontal/vertical
movement, which is easier to detect by lidar data. Figure 4d
shows a collapsed wooden building that was shifted signifi-
cantly in the horizontal direction. Conversely, the collapsed
wooden building shown in Fig. 4e does not exhibit a horizon-
tal movement, only a vertical shift. Lateral spread of debris is
an important issue when the building is located along a main
road. For almost all the collapsed buildings, a clear decrease
in building elevation was observed from the lidar DSMs.

The number of buildings within the study area is very
large, so it is necessary to implement an automated procedure
to evaluate the extent of their damage. In this study, three pa-
rameters were used: the average height difference between
the two DSMs (A H) within the reduced building footprint,
its standard deviation (o), and the correlation coefficient ()
between the two DSMs. These parameters were calculated
for each building using the following equations:

N
AH = %Z(Hai — Hb;) )

i=1

N
> ((Ha; —Hb;) — AH)?
i=1

o= N @)

www.nat-hazards-earth-syst-sci.net/18/65/2018/

r= 3)

N N N
N Z Ha;Hb; — Z Ha; Z Hb;

i=1 i=1 i=1

(vmi- () )(vEmi-(Em) )

where i € {1,2,..., N} and N is the number of elevation
points inside a given reduced building footprint. Ha; and Hb;
are the elevations from the ADSM and BDSM. The correla-
tion coefficient ranges from —1.0 to 1.0 and has proven to
be effective in detecting changes from a pair of satellite im-
ages (Liu et al., 2013; Uprety et al., 2013). A value of r close
to 1.0 indicates no change.

Yamada et al. (2017) presented the distribution of build-
ing damage in the central part of Mashiki, wherein the dam-
age was determined from aerial photos and field surveys.
The damaged buildings were classified into four categories:
no damage (D0), partial/moderate damage (D1-D3), severe
damage/incline (D4), and story collapse (D5). Here, D1-
D5 represent the degree of damage according to Okada and
Takai (2000), which is similar to G1-G5 of the European
Macroseismic Scale (EMS-98). Figure 5 shows the damage
distribution over the surveyed area, which is located along
the north side of the Akitsu River.

Figure 6 shows the scatter plots of the parameters calcu-
lated for the surveyed buildings, and Fig. 7 shows the his-
tograms of the three parameters for the buildings with dif-
ferent damage levels, wherein the average (solid line) and
the standard deviation (dashed line) are also included. Sig-
nificant overlap of damage levels DO, D1-D3, and D4 was

Nat. Hazards Earth Syst. Sci., 18, 65-78, 2018



70 L. Moya et al.: Detection of collapsed buildings due to the 2016 Kumamoto earthquake, Japan

3.0 — T 10

25F e

0.5

2.0

15t

10}

0.5}

0.0}

-0.5 - -1.0 L

-6 -5 -4 -3 -2 -1 0 1 2
AH
(a)

. L L L L L
-6 -5 -4 -3 -2 -1 0 1 2

'-05 00 05 1.0 15 2.0 2.5 3.0
AH 4
(b) (c)

A DO x

D1-D3 D4

o DSJ

Figure 6. Scatter plots of the three parameters (A H, o, r) calculated from the lidar DSMs for the buildings surveyed by Yamada et al. (2017).

observed regardless of which parameter was chosen. On the
other hand, collapsed buildings (D5) tend to have large neg-
ative values of A H. Therefore, this paper focuses on the de-
tection of collapsed buildings. It is important to note that few
collapsed buildings show positive values of AH. A closer
look showed that those buildings were covered by a neigh-
boring building that had collapsed.

Although AH seems to be the dominant parameter for
identifying collapsed buildings, the other two parameters (o
and r) can still provide additional information. For instance,
if we observe the collapsed buildings from the scatter plot
in Fig. 6¢ (red marks), a trend can be observed in which r
trends to one when o is close to zero. This trend is related to
the collapse patterns and can be observed for the collapsed
buildings shown in Fig. 4. Figure 4d shows a completely col-
lapsed building in which the debris has spread laterally. For
those cases, the values of r are low and the values of o are
large. On the other hand, Fig. 4e shows a collapsed build-
ing with a roof that remained almost the same shape while it
collapsed almost vertically. This means that all the elevations
inside the footprint decreased by about the same amount, thus
leading to a high value of rand a low value of o. This pattern
is often difficult to detect from optical aerial and satellite op-
tical images, because the sensor measures the landscape ver-
tically. The histograms for collapsed buildings (Fig. 7) shows
that several collapsed buildings have a value for r greater
than 0.5, and it would be difficult to detect this from aerial or
optical satellite imagery. Readers might notice that noncol-
lapsed buildings also have a value of r close to 1 and oclose
to zero; however, those can be first filtered using A H. Then,
the pattern of collapse can be evaluated from the other two
parameters (using a decision tree).

Within the study area, 26 128 building footprints were
found. It is worth mentioning that few buildings were not
well registered in the GIS map. Figure 8 shows the param-
eters calculated for each building, wherein the shaded color
depicts the density of the dots. Most of the points are lo-
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cated at approximately (AH, o, r) =(0m, 0.5m, 0.9), which
indeed represents noncollapsed buildings. Several buildings
show positive values of AH. A closer look revealed two
principle factors: (1) the collapse of a neighboring building
and (2) plastic covers placed over the roof for protection from
the rain.

The next concern was to define a criterion to set threshold
values that can differentiate collapsed/noncollapsed build-
ings properly. A number of options were evaluated in this
study. Since it is obvious that the buildings with clear nega-
tive values of A H correspond to collapsed buildings, we first
analyzed the classification using a threshold for A Honly.
The buildings with A Hvalues smaller than that threshold
were classified as collapsed; the buildings with AH values
greater than the threshold were classified as noncollapsed.
The possible thresholds were tested on the buildings sur-
veyed by Yamada et al. (2017). Figure 9 shows the Cohen’s
kappa coefficient and the overall accuracy calculated from
the comparison between the estimated collapsed and non-
collapsed buildings (i.e., using a given threshold) and the
building damage classes based on the ground truth. For the
comparison, the buildings with damage levels DO, D1-D3,
and D4 were labeled noncollapsed buildings. The Cohen’s
kappa (k) coefficient and the overall accuracy (OA) are ex-
pressed as follows:

Pno = (P21 + p22)(p12+ p22) 4

Pyes = (p11+ p12)(p11 + p21) (%)

Po = P11+ P2 (6)

Pe = Pyes 1+ Pno (7N

OA = p, ®)

o Po=Pe ©
1—pe

where py; and pj» are the ratio of noncollapsed buildings
predicted as noncollapsed and collapsed buildings. ps; and
p22 are the ratio of collapsed buildings predicted as noncol-
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Figure 7. Histograms of the three parameters (A H, o, r) calculated from the lidar DSMs for the buildings surveyed by Yamada et al. (2017),

separated into four damage levels.

lapsed and collapsed buildings. From Fig. 9, it is observed
that a threshold value of —0.5 m gave the highest values for
both the Cohen’s kappa coefficient (0.80) and the overall ac-
curacy (0.93).

To determine whether the use of all the parameters could
produce better accuracy in detecting collapsed buildings,
the support vector machine (SVM) method was selected to
construct a plane that separates collapsed and noncollapsed
buildings in the three-dimensional database (AH, o, r).
The plane has the largest distance from the nearest train-
ing data (ground truth data). Using kernel functions, SVM
can be used to construct a nonlinear function as well. How-
ever, in this study we only evaluated linear functions (i.e., a
plane or linear kernel function). Figure 10 shows the plane

www.nat-hazards-earth-syst-sci.net/18/65/2018/

constructed using SVM, wherein the red and blue marks
depict the collapsed and noncollapsed buildings based on
the ground truth. The plane was constructed using the same
amount of data for the two classes. Thus, 205 noncollapsed
buildings were selected randomly from the surveyed data.
The analysis was performed several times, and although the
plane obtained showed small variations due to the random
selection of the training data, the Cohen’s kappa coefficient
produced in each analysis was almost constant, with minor
fluctuations around 0.80. The accuracy produced by SVM
is very similar to the accuracy obtained when only a AH
threshold is used. For a linear kernel SVM, the vector w per-
pendicular to the decision plane is defined by the following
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expression:

w:Zaiyixi, (10)
i

where x;is a training vector that contains the three parame-
ters (AH, o and r), y; represents the class that can be either
1 or —1, and the coefficients «; are obtained by solving the
following problem:

1
min (—aTQa—eToz) (1)
a \2
Qij =yiyj (xi-xj) (12)
0O<a;<C,i=1,...n, (13)

where e is a vector with elements that are all ones. C is the
upper bound and is used as a regularization parameter.
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The parameter C trades off misclassification of training
examples against simplicity of the decision surface. A low
C value makes the decision surface smooth and a high C
value aims to classify all training examples correctly (Skit-
learn, 2017a). In this study a value C equals to 1 was used.
In order to evaluate its effects, a cross-validation procedure
was performed. For each C value, 80 % of the surveyed data
were selected randomly and were used to calibrate the SVM
classifier. The rest of the surveyed data were used to calculate
a score that represents the accuracy. The overall accuracy was
chose as the score. The procedure was repeated five times and
the average was stored. Figure 11 shows the cross-validation
accuracy. It is observed the accuracy remains mainly constant
with small fluctuations at lower values. However, a difference
of approximately 3 % is observed between the worst and the
best accuracy. Therefore, it is concluded that the C value did
not affect the SVM classifier in our study.

This study also evaluated the potential use of unsupervised
classification for collapsed buildings. Specifically, k-means
cluster analysis was applied to all the data in the study area.
Unlike SVM, k-means clustering does not require training
data. Therefore, the database of all the buildings in the study
area (Fig. 8) was used. The method clusters the data and sep-
arates them into two groups, which represent the collapsed
and noncollapsed buildings. The objective of the method is
to minimize the inertia of each group, that is, the summation
of the squared distance between all the data points of a group
and its centroid. The result is highly dependent on the ini-
tialization of the centroids. Here, a k-means-++ initialization
scheme was used. K means-++- initializes the centroids to a
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Figure 10. Classification of collapsed (red) and noncollapsed (blue) buildings using the three parameters based on SVM.
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Figure 11. The classifier’s cross-validation accuracy as a function

of C. (a) Overall evaluated range of C. (b) A closer look at values

lower than 5.

distance from each other (Scikit-learn, 2017b). Figure 12 rep-
resents the predicted collapsed and noncollapsed buildings
using the k-means clustering method, for which the Cohen’s
kappa coefficient obtained was 0.76. Figure 13 shows the
confusion matrix calculated from the comparison between
the ground truth data and the predicted results from the three
methods explained above, applying a AH threshold, SVM,
and k-means clustering. The first two methods show the same
level of accuracy, while k-means clustering shows a lower ac-
curacy.

Figure 14 illustrates the spatial distribution of collapsed
buildings estimated using a A H threshold of —0.5 m. A large
number of collapsed buildings were observed in the study
area (Fig. 14a). The red and black polygons represent the
collapsed (D5) and noncollapsed (D0-D4) buildings. The
color of the pixels represents the difference in elevations be-
tween the ADSM and BDSM. Blue pixels depict differences
of elevations less than —0.5 m, and yellow pixels represent
differences greater than O m. Figures 14b and 15 provide a
closer look of the areas where the collapsed buildings are
concentrated. Figure 14b also depicts the location of the col-
lapsed buildings surveyed by Yamada et al. (2017) as black
triangles. Within the study area, a total of 26 128 buildings
were evaluated, and 1760 buildings were classified as col-
lapsed (A H less than —0.5 m).

It was observed that some buildings that collapsed dur-
ing the foreshock (14 April event) were also detected by the
lidar methods. In order to be detected, the debris of those
buildings should be either severely disturbed by the main-
shock (16 April event) or removed before the ADSM was
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recorded. For instance, Fig. 16 shows two buildings that col-
lapsed during the foreshock (Fig. 16a). However, because the
mainshock produced a significant reduction in their eleva-
tions (Fig. 16b), it was also detected from the pair of lidar.

4 Discussion

This paper evaluated the use of lidar data to detect dam-
aged buildings by means of three parameters: AH, o, and
r. It was found that collapsed buildings can be identified pre-
cisely from the average difference in height, A H. However,
the other two parameters can provide additional information
about the collapse pattern. The collapsed patterns are corre-
lated with the failure mechanism of buildings, which might
highlight some deficiencies in the design codes that were
used in the construction process. A detailed understanding of
the failure mechanism is important to the practice of foren-
sic engineering, the investigation of failures and other per-
formance problems. Moreover, with further evaluation, the
collapsed pattern might contribute to future improvements of
the building design codes. Unfortunately, it was not possi-
ble to calibrate a threshold that can properly classify differ-
ent collapsed patterns. The main reason is because there was
no information related to the collapse patterns in the survey
data. Perhaps this task can be done in future research after
new survey data are released.

Some words regarding sources of error that were present in
this study should be mentioned. The footprint data provided
by the Geospatial Information Authority of Japan (GSI)
is rather precise but not perfect. Three drawbacks were
observed: (1) a few buildings were not included in the
database, (2) a slight shift between the building footprint
and corresponding lidar data is sometimes observed, and (3)
in some cases, a group of buildings, consisting mostly of
two or three buildings, were registered within one building
footprint. These uncertainties may have produced errors in
the detection of collapsed buildings. However, they did not
have a significant impact on the overall results, which is con-
firmed in Fig. 9, wherein the Cohen’s kappa coefficient and
the overall accuracy are significantly high. This problem can
be solved by performing a manual inspection or automatic
detection of buildings from the BDSM in order to update

Nat. Hazards Earth Syst. Sci., 18, 65-78, 2018



74 L. Moya et al.: Detection of collapsed buildings due to the 2016 Kumamoto earthquake, Japan

6 — — 1.0
0.5
4« 0.0
-0.5
102 ° 66 4 2 0—2-4-6
6 6 —4 0 2 4 6 AH (m)
AH (m)

Figure 12. Classification of collapsed (red) and noncollapsed (blue) buildings using the three parameters based on the k-means clustering
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Figure 13. Confusion matrix calculated from the comparison of the ground truth data and the predicted damage levels based on the
A Hthreshold (a), SVM (b), and k-means clustering (¢). Two damage levels, noncollapsed (1.0) and collapsed (2.0), were employed.

the data set. However, the authors decided to work with the
data in its current state because this uncertainty is likely to
be present in other real situations in which a quick report on
damage extent is required.

Of the three methods evaluated here, the k-means cluster-
ing exhibits the lowest accuracy. The main reason is that, un-
like the SVM method, the k-means clustering does not use
any truth data. However, it produced a kappa coefficient of
0.76 and overall accuracy of 92 %, which is still quite good.
The k-means clustering method is useful for taking a first
glance at the distribution of collapsed buildings because the
method does not require any training data. The procedure is
well-known and robust, with several efficient algorithms with
proven fast convergence.

Finally we would like to discuss the building damage
rate in the Kumamoto earthquake in comparison to other
recent M7-level crustal earthquakes in Japan. In the 1995
Kobe earthquake (M, 6.9), about 49 000 buildings were col-
lapsed (G5 in EMS-98 scale) or severely damaged (G4) out
of 560 000 buildings in the affected urban area (Building Re-
search Institute, 1996). The recorded strong motion distri-
bution in the Kobe earthquake was at a similar level to that
of the Kumamoto earthquake (Yamaguchi and Yamazaki,
2001). However, in 1995, the number of strong motion ac-
celerometers was much lower, about only 10 in the hard-hit
zone. The building density of the affected area was much
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higher in the Kobe region than that of the Kumamoto re-
gion. Considering these differences, it is difficult to con-
clude which earthquake was more destructive. From our
experiences (Yamazaki and Murao, 2000; Yamaguchi and
Yamazaki, 2000), the severity of damage for timber-frame
houses in Mashiki was at a similar level to that in the hard-hit
zone of the Kobe region. There were a few more recent M7-
level crustal earthquakes in Japan, such as the 2004 Niigata-
Chuetsu earthquake (M, 6.6) and the 2007 Niigata-Chuetsu-
Oki earthquake (My, 6.6). However, the population density of
the affected urban areas was lower in these events, and thus it
is again difficult to compare their damage situations (Nagao
et al., 2011) with that of Kumamoto, although their strong
motion levels were again comparable with that of the Ku-
mamoto event.

Another point of discussion is whether or not the
M,, 6.2 foreshock influenced the overall damage situation of
Mashiki. Our preliminary conclusion is “partially yes, but not
so much”. Based on numerical analyses of the behavior of
collapsed typical timber-frame buildings (Building Research
Institute, 2015), those built by the old seismic code (before
1982) had mostly collapsed only from the mainshock’s exci-
tation, even without being preshaken by the foreshock (Suto
et al., 2017). However, in some cases, building models had
collapsed only from the sequence of the foreshock and main-
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Figure 14. (a) A map showing the distribution of collapsed (A H < — 0.5m) buildings, shown as red polygons, in the study area. The
pixel color represents the difference in elevation between the BDSM and ADSM. The green squares show the locations of areas shown
in panel (b) and Fig. 15. Close-up view of area (b) in which the collapsed buildings were concentrated. The black triangles show the D5

buildings from Yamada et al. (2017).

shock excitations. More detailed results on this matter will
be presented in the near future.

5 Conclusions

In this study, the spatial distribution of collapsed buildings
was extracted from a pair of lidar data sets taken before and
after the 2016 M,, 7.0 Kumamoto earthquake. For this pur-
pose, geographic information on building footprints was em-
ployed. Three parameters were used: the average (AH) and
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standard deviation (o) of the height differences between the
two DSMs and the correlation coefficient between them (r).
The parameters were evaluated using the building damage
survey data set obtained by Yamada et al. (2017); A Hwas
found to be very efficient for identifying collapsed buildings.
However, the other parameters provided insights into the col-
lapse pattern. After evaluating different methodologies with
which to identify collapsed buildings, buildings with A Hless
than —0.5 m were considered to have collapsed. The distribu-
tion of collapsed buildings obtained by Yamada et al. (2017)
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Figure 15. Close-up view of areas (c¢) and (d) in Fig. 14a where collapsed buildings are concentrated. The red and green polygons are the
collapsed and noncollapsed buildings estimated using the threshold (A H < — 0.5 m).

Figure 16. (a) Aerial image taken on 15 April; (b) aerial image
taken on April 23. The thick red polygons show buildings that col-
lapsed after the foreshock and were detected using the A H thresh-
old.
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was illustrated together with the height difference between
the two DSMs, and good agreement was observed. From a
total of 26 128 evaluated buildings, 1760 collapsed buildings
were identified. To our knowledge, this result may be the first
case in which a large number of collapsed buildings were
identified from a pre- and post-event lidar DSM pair.

It is expected that the use of lidar data to identify dam-
aged areas will eventually increase in the near future. How-
ever, because of the current lack of data, the implementa-
tion of a method to identify collapsed building using only
post-event lidar data is important and will be considered in
a future study. Additional future studies related to the use of
these lidar data are the quantification of debris related to road
blockage, and the identification of landslides.

www.nat-hazards-earth-syst-sci.net/18/65/2018/



L. Moya et al.: Detection of collapsed buildings due to the 2016 Kumamoto earthquake, Japan 77

Data availability. The digital surface models used in this study are
owned and provided by Asia Air Survey Co., Ltd. The building foot-
print data are available from the website of the Geospatial Informa-
tion Authority of Japan.

Competing interests. The authors declare that they have no conflict
of interest.

Acknowledgements. This study was financially supported by a
Grant-in-Aid for Scientific Research (project numbers: 17H02066,
24241059) and the Core Research for Evolutional Science and
Technology (CREST) program by the Japan Science and Tech-
nology Agency (JST) “Establishing the most advanced disaster
reduction management system by fusion of real-time disaster
simulation and big data assimilation (Research Director: Shu-
nichi Koshimura of Tohoku University)”.

Edited by: Oded Katz
Reviewed by: two anonymous referees

References

Aixia, D., Zongjin, M., Shusong, H., and Xiaoqing, W.: Building
damage extraction from post-earthquake airborne LiDAR data,
Acta Geol. Sin.-Engl., 90, 1481-1489. 2016.

Asia Air Survey Co., Ltd.: The 2016 Kumamoto earthquake, avail-
able at: http://www.ajiko.co.jp/article/detail/ID5725UVGCD/,
last access: 1 April 2017.

Building Research Institute: Final report of damage survey
of the 1995 Hyogoken-Nanbu earthquake, available at:
http://www.kenken.go.jp/japanese/research/iisee/list/topics/
hyogo/pdf/h7-hyougo-jp-all.pdf (last access: 1 September
2017), 1996 (in Japanese).

Building Research Institute: Wallstat version 3.1, collapsing sim-
ulation program for timber structures, available at: http:/
www.nilim.go.jp/lab/idg/nakagawa/wallstat.html (last access: 1
September 2017), 10 September 2015.

Cabinet Office of Japan: Summary of damage situation in the Ku-
mamoto earthquake sequence, available at: http://www.bousai.
go.jp/updates/h280414jishin/index.html, last access: 1 Septem-
ber 2017 (in Japanese).

Das, R. and Hanaoka, S.: An agent-based model for resource alloca-
tion during relief distribution, Journal of Humanitarian Logistics
and Supply Chain Management, 4, 265-285, 2014.

Dell’Acqua, F. and Gamba, P.: Remote sensing and earthquake
damage assessment: Experiences, limits, and perspectives, Pro-
ceedings of the IEEE, 100, 2876-2890, 2012.

Geospatial Information Authority of Japan: New measure-
ment for survey reference points after the 2016 Kumamoto
Earthquake, available at: http://www.gsi.go.jp/sokuchikijun/
sokuchikijun60019.html, last access: 1 April 2017.

Hashemi-Parast, S. O., Yamazaki, F., and Liu, W.: Monitoring and
evaluation of the urban reconstruction process in Bam, Iran, after
the 2003 My, 6.6 earthquake, Nat. Hazards, 85, 197-213, 2017.

Hoshi, T., Murao, O., Yoshino, K., Yamazaki, F., and Estrada, M.:
Post-disaster urban recovery monitoring in Pisco after the 2007

www.nat-hazards-earth-syst-sci.net/18/65/2018/

Peru earthquake using satellite image, Journal of Disaster Re-
search, 9, 1059-1068, 2014.

Hussain, E., Ural, S., Kim, K., Fu, C., and Shan, J.: Building extrac-
tion and rubble mapping for city Port-au-Prince post-2010 earth-
quake with GeoEye-1 imagery and Lidar Data, Photogramm.
Eng. Rem. S., 77, 1011-1023, 2011.

Japan Meteorological Agency: The number of aftershocks of re-
cent inland earthquakes in Japan, http://www.data.jma.go.jp/svd/
eqev/data/2016_04_14_kumamoto/kaidan.pdf, last access: Jan-
uary 2017 (in Japanese).

Korosov, A. A., Hansen, M. W., Dagestad, K., Yamanaka, A., Vines,
A., and Riechert, M.: Nansat: a scientist-orientated python pack-
age for geospatial data processing, Journal of Open Research
Software, 4, 11 pp., 2016.

Labiak, R. C., Aardt, J. A. N., Bespalov, D., Eychner, D., Wirch,
E., and Bischof, P.: Automated method for detection and quan-
tification of building damage and debris using post-disaster Lidar
data, Proc. SPIE 8037, Laser Radar Technology and Applications
XVI, Vol. 8037, 8 pp., 2011.

Liu, W., Yamazaki, F., Gokon, H., and Koshimura, S.: Extrac-
tion of tsunami-flooded areas and damaged buildings in the
2011 Tohoku-oki earthquake from TerraSAR-X intensity images,
Earthq. Spectra, 29, S183-5200, 2013.

Maruyama, Y., Tashiro, A., and Yamazaki, F.: Detection of col-
lapsed buildings due to earthquakes using a digital surface
model constructed from aerial images, J. Earthq. Tsunami, 8,
1450003 (13 pp.), 2014.

Meslem, A., Yamazaki, F., and Maruyama, Y.: Accurate evaluation
of building damage in the 2003 Boumerdes, Algeria earthquake
from Quickbird satellite images, J. Earthq. Tsunami, 5, 1-18,
2011.

Moya, L., Yamazaki, F., Liu, W., Chiba, T., and Mas, E.: Detection
of collapsed buildings due to the 2016 Kumamoto earthquake
from Lidar data, World Engineering Conference on Disaster Risk
Reduction, Lima, Peru, 5-6 December, 8 pp., 2016.

Moya, L., Yamazaki, F., Liu, W., and Chiba, T.: Calculation of co-
seismic displacement from lidar data in the 2016 Kumamoto,
Japan, earthquake, Nat. Hazards Earth Syst. Sci., 17, 143-156,
https://doi.org/10.5194/nhess-17-143-2017, 2017.

Nagao, T., Yamazaki, F., and Inoguchi, M.: Analysis of build-
ing damage in Kashiwazaki city due to the 2007 Niigata-ken
Chuetsu-oki earthquake, Proc. 32nd Asian Conference on Re-
mote Sensing, Taipei, Paper No. 228, 6 pp., 2011.

Okada, S. and Takai, N.: Classifications of structural types and dam-
age patterns of buildings for earthquake field investigation, Pro-
ceedings of the 12th World Conference on Earthquake Engineer-
ing, paper 0705, Auckland, New Zealand, 2000.

Rathje, E. and Adams, B. J.: The role of remote sensing in earth-
quake science and engineering, opportunities and challenges,
Earthq. Spectra., 24, 471-492, 2008.

Rehor, M., Bahr, H., Tarsha-Kurdi, F., Landes, T., and Grussen-
meyer, P.: contribution of two plane detection algorithms to
recognition of intact and damaged buildings in lidar data, The
Photogrammetric Record, 23, 441-456, 2008.

Schweier, C. and Markus, M.: classification of collapsed buildings
for fast damage and loss assessment, B. Earthq. Eng., 4, 177-192,
2006.

Nat. Hazards Earth Syst. Sci., 18, 65-78, 2018


http://www.ajiko.co.jp/article/detail/ID5725UVGCD/
http://www.kenken.go.jp/japanese/research/iisee/list/topics/hyogo/pdf/h7-hyougo-jp-all.pdf
http://www.kenken.go.jp/japanese/research/iisee/list/topics/hyogo/pdf/h7-hyougo-jp-all.pdf
http://www.nilim.go.jp/lab/idg/nakagawa/wallstat.html
http://www.nilim.go.jp/lab/idg/nakagawa/wallstat.html
http://www.bousai.go.jp/updates/h280414jishin/index.html
http://www.bousai.go.jp/updates/h280414jishin/index.html
http://www.gsi.go.jp/sokuchikijun/sokuchikijun60019.html
http://www.gsi.go.jp/sokuchikijun/sokuchikijun60019.html
http://www.data.jma.go.jp/svd/eqev/data/2016_04_14_kumamoto/kaidan.pdf
http://www.data.jma.go.jp/svd/eqev/data/2016_04_14_kumamoto/kaidan.pdf
https://doi.org/10.5194/nhess-17-143-2017

78 L. Moya et al.: Detection of collapsed buildings due to the 2016 Kumamoto earthquake, Japan

Scikit-learn: Support Vector Machines, available at: http:
/scikit-learn.org/stable/modules/svm.html#svm-classification,
last access: 6 August 2017a.

Scikit-learn: Clustering, available at: http://scikit-learn.org/stable/
modules/clustering.html#k-means, last access: 6 August 2017b.

Suto, T., Yamazaki, F., and Liu, W.: Numerical simulation of
wooden buildings in the Kumamoto earthquake based of Wall-
stat, Annual Meeting of JSCE, Fukuoka, Japan, 2 pp., 2017 (in
Japanese).

Uprety, P., Yamazaki, F., and Dell’ Acqua, F.: Damage detection us-
ing high-resolution SAR imagery in the 2009 L’Aquila, Italy,
earthquake, Earthq. Spectra, 29, 1521-1535, 2013.

Vuolo, E,, Zéttak, M., Pipitone, C., Zappa, L., Wenng, H., Immitzer,
M., Weiss, M., Baret, F., and Atzberger, C.: Data service platform
for sentinel-2 surface reflectance and value-added products: sys-
tem use and examples, Remote Sens., 8, 16 pp., 2016.

Whitman, R. V., Reed, J. W., and Hong, S.: Earthquake damage
probability matrices, Proceedings of the Fifth World Conference
on Earthquake Engineering, Rome, 2531-2540, 1973.

Yamada, M., Ohmura, J. and Goto, H.: Wooden Building Damage
Analysis in Mashiki Town for the 2016 Kumamoto Earthquakes
on April 14 and 16, Earthq. Spectra, 33, 1555-1572, 2017.

Nat. Hazards Earth Syst. Sci., 18, 65-78, 2018

Yamaguchi, N. and Yamazaki, F.: Fragility curves for buildings in
Japan based on damage surveys after the 1995 Kobe earthquake,
Proceedings of the 12th World Conference on Earthquake Engi-
neering, paper 2451, Auckland, New Zealand, 2000.

Yamaguchi, N. and Yamazaki, F.: Estimation of strong motion dis-
tribution in the 1995 Kobe earthquake based on building damage
data, Earthq. Eng. Struct. D, 30, 787-801, 2001.

Yamazaki, F. and Liu, W.: Remote sensing technologies for post-
earthquake damage assessment: A case study on the 2016 Ku-
mamoto earthquake, Keynote Lecture, 6th ASIA Conference on
Earthquake Engineering, Cebu City, Philippines, 8 pp., 2016.

Yamazaki, F. and Matsuoka, M.: Remote sensing technologies in
post-disaster damage assessment, J. Earthq. Tsunami, 1, 193—
210, 2007.

Yamazaki, F. and Murao. O.: Vulnerability functions for Japanese
buildings based on damage data from the 1995 Kobe earthquake.
Implications of recent earthquakes on seismic risk, 91-101, Im-
perial College Press, London, 2000.

www.nat-hazards-earth-syst-sci.net/18/65/2018/


http://scikit-learn.org/stable/modules/svm.html#svm-classification
http://scikit-learn.org/stable/modules/svm.html#svm-classification
http://scikit-learn.org/stable/modules/clustering.html#k-means
http://scikit-learn.org/stable/modules/clustering.html#k-means

	Abstract
	Introduction
	Study area and data set
	Detection of damaged buildings
	Discussion
	Conclusions
	Data availability
	Competing interests
	Acknowledgements
	References

