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Abstract. Uncertainty in rainfall datasets and landslide in-
ventories is known to have negative impacts on the assess-
ment of landslide-triggering thresholds. In this paper, we
perform a quantitative analysis of the impacts of uncertain
knowledge of landslide initiation instants on the assessment
of rainfall intensity–duration landslide early warning thresh-
olds. The analysis is based on a synthetic database of rainfall
and landslide information, generated by coupling a stochas-
tic rainfall generator and a physically based hydrological and
slope stability model, and is therefore error-free in terms of
knowledge of triggering instants. This dataset is then per-
turbed according to hypothetical “reporting scenarios” that
allow simulation of possible errors in landslide-triggering in-
stants as retrieved from historical archives. The impact of
these errors is analysed jointly using different criteria to
single out rainfall events from a continuous series and two
typical temporal aggregations of rainfall (hourly and daily).
The analysis shows that the impacts of the above uncertainty
sources can be significant, especially when errors exceed 1
day or the actual instants follow the erroneous ones. Errors
generally lead to underestimated thresholds, i.e. lower than
those that would be obtained from an error-free dataset. Po-
tentially, the amount of the underestimation can be enough to
induce an excessive number of false positives, hence limiting
possible landslide mitigation benefits. Moreover, the uncer-
tain knowledge of triggering rainfall limits the possibility to
set up links between thresholds and physio-geographical fac-
tors.

1 Introduction

Thresholds estimating rainfall conditions correlated to land-
slide occurrence are useful for landslide early warning sys-
tems (Guzzetti et al., 2007; Highland and Bobrowsky, 2008;
Sidle and Ochiai, 2013). Commonly, thresholds are derived
by empirical approaches based on the direct statistical anal-
ysis of historical rainfall series and landslide inventories,
from which a line roughly separating triggering from non-
triggering conditions is drawn. Among the various thresholds
types, precipitation intensity–duration power law thresholds
(hereafter referred to as ID thresholds), introduced by Caine
(1980), have been derived for many regions of the Earth and
are still considered as a valid empirical model (Caracciolo et
al., 2017; Gariano et al., 2015; Peruccacci et al., 2017; Ven-
nari et al., 2014), though they are affected by several theoret-
ical and practical limitations (Bogaard and Greco, 2018).

Thresholds derived for different geographical areas vary
significantly, and some attempts have been made to find
a rationale underlying this variability by linking thresh-
old parameters to physio-geographical and climatic features
(Guzzetti et al., 2007, 2008). Nevertheless, rainfall and land-
slide data quality issues, reported in almost all of the papers
on threshold determination, are known to potentially ham-
per the assessment of this link. As reported in many stud-
ies, the triggering instants available from real landslide in-
ventories are imprecise. For instance, Guzzetti et al. (2007,
2008) reported that in a global database of 2626 landslides,
the vast majority (68.2 %) had no explicit information on the
date or the time of occurrence of slope failure; for most of
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the remaining events only the date of failure was known,
and more precise information was available for only 5.1 %
of landslides. These issues are confirmed with reference to
an updated dataset of landslides occurred in Italy (Peruccacci
et al., 2017). In their analysis, only information with an ac-
curacy at least of 1 day was retained from the larger avail-
able dataset. Still, for this trimmed dataset, triggering instants
were available with high precision (minute or hour) for only
37.3 % of the data, with the day or part of it available for the
majority (27.6 and 35.1 %, respectively).

Other data artifacts include (i) rainfall measurement delays
related to manual collection of data, (ii) different criteria to
identify rainfall events; (iii) lack of completeness of land-
slide catalogues, and (iv) imprecise location of landslides, or
precipitation measurements available at a significant distance
apart from the location of failure. Though there is general
agreement that these factors affect the accuracy of landslide-
triggering thresholds, a quantification of their influence has
only partially been carried out in the literature. In particular,
to the authors knowledge, only the effect of rain gauge loca-
tion and of the density of rainfall networks (point iv) has been
analysed (Nikolopoulos et al., 2014), showing that the use of
rainfall measured at some distance from debris flow location
can lead to an underestimation of the triggering thresholds.

Quantitative assessments of the influence of the sources of
errors listed above are difficult to be based on observational
datasets, since it cannot be ensured that these are immune of
errors. In this paper we capitalize on the synthetic rainfall–
landslide dataset of a preceding study (Peres and Cancelliere,
2014), to quantify the effects of the imprecise identification
of triggering rainfall on the assessment and performances
of landslide-triggering thresholds. The dataset is in princi-
ple “error-free” in the sense that the instants of landslide-
triggering are exactly known, as well as the triggering rain-
fall time history. We then fictitiously introduce errors in the
triggering instants and in the rainfall series based on hypo-
thetical scenarios of landslide data retrieval and analysis, and
analyse the implications on the accuracy of ID thresholds.
The quality of information available in real datasets is gen-
erally intermediate of that corresponding to the hypothesized
scenarios. These scenarios are combined with different crite-
ria for event rainfall identification, and different aggregations
of rainfall data (hourly and daily, and daily in the presence of
a shift due to manual collection of data), so the effects of
these other two sources of uncertainty are analysed as well
(items i and ii of the above list). The synthetic data used for
our analyses are based on characteristic for hillslopes in the
landslide-prone region of Peloritani Mountains, in northeast-
ern Sicily, southern Italy.

Figure 1. Location of the Peloritani Mountains area in Sicily, Italy,
and of the Fiumedinisi rain gauge.

2 Dataset: generation of synthetic rainfall and
landslide data

We refer to the dataset developed in Peres and Cancelliere
(2014). Here we provide a basic description of the method-
ology used for its generation, which includes the following
steps:

– Synthetic generation of hourly rainfall time series:
a seasonal Neyman–Scott rectangular pulses (NSRP)
stochastic rainfall model (Cowpertwait et al., 1996;
Rodríguez-Iturbe et al., 1987a, b) is used for the gen-
eration of 1000 years of hourly rainfall data. The model
is calibrated on approximately 9 years of hourly obser-
vations from the Fiumedinisi rain gauge located in the
area (Fig. 1).

– Computation of hillslope pressure-head response: a
two-state hydrological model is used for the computa-
tion of pressure head. State 1 and 2 are activated sep-
arately during rainfall events and during no-rain inter-
vals, respectively. Rainfall events are defined as a sec-
tion of the rainfall series preceded and followed by no
rainfall for a minimum time interval of 24 h. Within
state 1 the TRIGRS-v2 model (Baum et al., 2010)
is applied, which is based on the Richards’ equation
for mono-dimensional vertical infiltration with a Gard-
ner negative exponential soil water characteristic curve.
This is the least simplified form of the Richards’ equa-
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Table 1. Soil and morphological properties of a representative hill-
slope in the Peloritani Mountains area, Sicily, Italy (after Peres and
Cancelliere, 2014).

Variable Units Value

Soil friction angle ϕ′ ◦ 37
Soil cohesion c′ kPa 5.7
Unit weight of soil γs N m−3 19 000
Saturated soil water content θs – 0.35
Residual soil water content θr – 0.045
Saturated soil hydraulic conductivity KS m s−1 0.00002
Saturated soil hydraulic diffusivity D0 m2 s−1 0.00005
Gardner soil characteristic m−1 3.5
curve parameter α0

∗

Soil depth dLZ m 2
Terrain slope δ ◦ 40
Basal drainage leakage ratio cD

∗ – 0.1

∗ See Baum et al. (2010) for details.

tion for which an analytical solution has been derived
so far (Srivastava and Yeh, 1991). A leakage flux at
the soil–bedrock interface is considered, assuming the
vertical hydraulic conductivity of the bedrock strata
cD = 0.1 times the saturated conductivityKS of the per-
vious soil layer. Within state 2 a linear reservoir wa-
ter table recession model is activated to simulate sub-
horizontal drainage and used to compute water table
height at the beginning of the next passage to state 1.
A linear reservoir scheme computes a drainage flow
that depends on the water table level, determining a
negative-exponential decay of pressure head at the bot-
tom of the regolith layer, with recession constant τM.

– Derivation of virtual landslide occurrence times: an in-
finite slope model to compute the factor of safety FS
for slope stability is applied. For this schematization,
failure surface coincides with the regolith–bedrock in-
terface. The time instants at which a downward crossing
of FS = 1 occurs are assumed to be the instants at which
landslides are triggered.

The dataset is generated considering soil hydraulic and
geotechnical properties shown in Table 1 that can be consid-
ered representative of hillslopes in the Peloritani Mountains
landslide-prone area (see Fig. 1). Application to a hillslope
of definite characteristics enables us to isolate the impact of
triggering rainfall identification uncertainty. Regional deter-
mination of thresholds also contains factors of uncertainty re-
lated to the heterogeneity of landslide characteristics. How-
ever, the assessment of this combined uncertainty is out of
the scope of our present analysis. The Peloritani area has
been affected several times by catastrophic shallow landslide
phenomena in the past, including the 1 October 2009 disas-
ter, which has been analysed and described in several studies
(Cama et al., 2017; Schilirò et al., 2015a, b, 2016; Stancanelli

Table 2. Some characteristics of the ideal Monte Carlo simulation
dataset.

Variable Value

Number of simulated years 1000
Number of rainfall events 19 826
Number of landslide events for τM = 0 81
(return period) 12.3
Number of landslide events for τM = 2.75 115
(return period) 8.7

et al., 2017). A morphological analysis of the catastrophic
landslides that occurred on 1 October 2009 has shown that
a reasonable value of the recession constant for the specific
case study area is τM = 2.75 days (Peres and Cancelliere,
2014). Nevertheless, for the purposes of this study, we focus
our analysis mainly on the hypothetical case of no pressure
head memory (τM = 0), so that the main source of uncer-
tainty considered in threshold determination is that related
to identification of triggering rainfall events. In other words,
in the “ideal” simulations described above, the only uncer-
tainty present is that of rainfall intra-event intensity variabil-
ity, which is relatively small, so that a landslide-triggering
threshold expressed in terms of rainfall duration and intensity
performs almost perfectly (Peres and Cancelliere, 2014). For
completeness, however, we present a secondary analysis in-
cluding antecedent rainfall memory with τM = 2.75 days. Ta-
ble 2 shows some characteristics of the 1000-year-long syn-
thetic databases, which do not change among the different
scenarios illustrated in the following section.

3 Methodology

3.1 Simulation of uncertainty in triggering rainfall
identification

As already mentioned, the available triggering instants from
real landslide inventories are seldom precise. On the other
hand, the instants at which landslides are triggered are known
exactly (on hourly resolution) for the synthetic series illus-
trated in previous Sect. 2. We then introduce errors into this
synthetic dataset by hypothesizing the way such an infor-
mation may be retrieved from newspapers, and similar re-
sources (blogs and fire brigade reports), which are the main
primary sources available to build landslide historical inven-
tories (e.g. Guzzetti and Tonelli, 2004).

We suppose that only the date of the landslide is reported,
with some delay (See Fig. 2). For a landslide to be reported
on day D, it has to be spotted within a time interval we de-
note as the “observers’ day” D′. Then the user of the land-
slide archive (the analyser), makes an interpretation of the
available information, i.e. chooses an instant of the reported
day of landslide occurrence to search backwards for the trig-
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Figure 2. Diagram illustrating simulation of uncertainty in trigger-
ing instants likely present in landslide inventories built from news-
papers or similar sources. The black numbered circles indicate one
of the reporting scenarios (RS), which may induce a random error
ei = t

′
i
− ti in landslide-triggering instants. In particular, a landslide

that occurs within the observers’ day is reported at day D and at-
tributed to the end of the same day (small delay reporting scenario,
RS1) or to its beginning (anticipated reporting scenario, RS3). It
can also be reported at day D+ 1 and then attributed to the end of
it (large delay reporting scenario RS2). These scenarios can be de-
scribed in terms of two parameters: TO, the ending hour of the ob-
servers’ day, and TA, the triggering instant, referred to hours 00:00
of dayD, assumed by an analyser who interprets the newspaper-like
information.

gering rainfall. In particular, the ith landslide observed at ti
within the observers’ day D′, i.e. hours [TO− 24 h, TO] of
day D, is assumed by the analyser to be triggered TA hours
after the start of day D (civil day D starts at 00:00). The
observer day is made of the hours in which observers can re-
port a landslide on day D. We assume that the observer day
is given by hours going from 18:00 of day D− 1 to 18:00 of
dayD(TO = 18 h); this choice is an attempt to resemble usual
working hours, and the fact landslides occurring by night
may be reported the morning after. The analyser time, TA,
is the instant of landslide triggering as considered by who-
ever analyses the data (the “analyser”) to derive landslide-
triggering thresholds, counted from the beginning of day D.
This way to process the data introduces a sampling error and
a shift between the actual instant at which the generic land-
slide i is triggered, ti , and that assumed by whoever analyses
the data, t ′i . Hence, the error for the ith landslide is given by

ei = t
′

i − ti . (1)

These errors are implicitly random, since though t ′i are deter-
ministically chosen, the actual instant ti varies in an aleatory
fashion according to rainfall time history.

A positive error can be in general considered as more
likely than a negative, since landslides are typically reported
some time after they have occurred (Guzzetti et al., 2007,
2008; Peres and Cancelliere, 2013). This, however, does not
exclude the possibility of a significant number of negative
errors, because of temporal shifts in rainfall data, as will be
discussed later.

The two parameters TO and TA can be set to simulate a
range of scenarios, for which real situations may represent
intermediate cases. We perform our analysis based on four
scenarios (which include the “ideal” one), hereafter referred
to as landslide information “reporting scenarios” (RS), and
illustrated in Fig. 2:

– Ideal scenario, RS0 (TO = 0, TA = 0; ei = 0 for all
landslides). This is the error-free scenario (described in
Sect. 2) that is considered for definition of the actual
instants of landslide triggering, ti .

– Small delay reporting, RS1 (TO = 18 h, TA = 24 h; ran-
dom in the range 0≤ ei ≤ 30 h). A landslide occurring
within the interval from night hours of D–1 until the
evening of dayD (i.e. within the observers’ dayD′) will
be reported at day D. Here we suppose that the analyst
attributes the landslide at the end of dayD (TA = 24 h),
i.e. searches the triggering event backwards from that
instant.

– Large delay reporting, RS2 (TO = 18 h, TA = 48 h; ran-
dom in the range 0≤ ei ≤ 54 h). This scenario is similar
to the previous, but here larger errors are hypothesized.
We suppose that the landslide occurring during the ob-
servers’ day D′ is reported on day D+ 1, which is also
erroneously assumed by the analyser as the day at which
the landslide was triggered. The observer then attributes
the landslide at the end day D+ 1(TA = 48 h). These
timing errors may also be likely when landslides occur
on weekends.

– Anticipated reporting, RS3 (TO = 18 h, TA = 0 h; ran-
dom in the range – 18≤ ei ≤ 6 h): this case is the same
of RS1, but here the analyst searches backwards for the
triggering event from the beginning of day D, i.e. at
00:00 (instead of that at 24:00).

Within the context of sampling errors, another point is related
to the way rainfall data are collected, specifically for daily
data manually measured until some decades ago. A signifi-
cant amount of papers derive landslide-triggering thresholds
using daily rainfall data (Berti et al., 2012; Leonarduzzi et al.,
2017; Li et al., 2011; Terlien, 1998). In an ideal situation rain-
fall intensity should be aggregated from 00:00 to 23:59, i.e.
over a civil “calendar day”, as illustrated in Fig. 3. With ref-
erence to manual collection of rainfall data, this requires that
rain gauge be read at midnight of each day, which is an un-
comfortable hour. Manual collection of daily data is usually
carried out at easier hours. For instance, in Italy, where the
widest source of information is the hydrological bulletins (lo-
cally known as Annali Idrologici), the operator would mea-
sure the rainfall collected in the rainfall bucket every day at
09:00. Thus, daily rainfall in a given day is the amount of
rainfall that occurred in the 24 h preceding 09:00 of the same
day. As illustrated in Fig. 3, in this case the reported daily
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Figure 3. Aggregation of rainfall data from hourly to daily timescale: daily rainfall depths on the top row result from correct aggregation;
those on the bottom row are from shifted aggregation, as occurs for the Italian hydrological bulletins (Annali Idrologici). The shift is due
to manual collection of data in early decades of operation of the monitoring network; the presence of the shift is still continued, in spite of
installation of automatic rain gauges, to preserve homogeneity of the entire historical time series.

Figure 4. Sketch illustrating the algorithm for the identification of triggering and non-triggering rainfall events, and relative parameters smin
and umin. When a landslide is triggered in a dry period, it is attributed to the whole event preceding it; otherwise, only the part of the event
preceding the landslide-triggering instant is considered. For non-triggering rainfall (the first one in the diagram), duration and intensity are
computed considering the entire rainfall event.

rainfall amounts can be dramatically different than the actual
amounts (see also Caracciolo et al., 2017).

Identification of triggering rainfall is uncertain also be-
cause of the different criteria that one can apply to isolate
rainfall events from a continuous time series – Table 3 lists
a range of criteria adopted in the literature. Here we analyse
how the different criteria can impact the identification of trig-
gering rainfall, both in the case that uncertainty in the trig-
gering instants is present (datasets RS1–RS3) and the case in
which it is not (dataset RS0).

The automatic procedure we adopt for isolating events is
as follows (see diagram in Fig. 4). First, a minimum rain-
fall threshold smin is applied to all rainfall pulses at the fixed
temporal aggregation. This means that from the original se-
ries a new one is obtained, where precipitation pulses less
than smin are replaced by zeros. In the diagram, these pulses
are coloured in light grey. Afterwards, rainfall events are sin-
gled out when separated by zero-rain intervals longer than
umin. This parameter is the most important parameter for
the identification of rainfall events. With the aim of quan-
tifying how the impact of the errors implied by the different
reporting scenarios changes with rainfall identification crite-
ria, various pairs of smin and umin have been set (see Table 4).
The described algorithm defines the rainfall event regardless

of whether it is associated or not with a landslide. For at-
tributing a rainfall event to a landslide, the cases where the
triggering instant is within a dry or a wet period should be
analysed separately. In the first case, the landslide is associ-
ated with the whole closest event occurring before the land-
slide; in the other case it is associated with the part of the
rainfall event occurring before the triggering instant. Auto-
matic procedures have the advantage of being objective and
reproducible and thus more scientifically sound than subjec-
tive judgement (Melillo et al., 2015; Vessia et al., 2014); nev-
ertheless, algorithms are suitable to reproduce the latter with
a certain level of fidelity (Berti et al., 2012).

Finally, triggering rainfall identification uncertainty is
simulated by combining the reporting scenarios, different pa-
rameters of the rainfall event identification algorithm, and
three rainfall aggregation schemes (hourly, daily correct and
daily shifted). This results in 28 combinations for each reces-
sion constant value τM (see Table 4).

3.2 Threshold definition, calibration and testing
performance

Seventeen different landslide-triggering threshold types
based on rainfall characteristics have been proposed in the
literature in the period 1970–2006 (according to the list re-
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Table 3. Some rainfall event identification algorithms found in the literature.

Reference Aggregation Algorithm parameters
smin umin

Pizziolo et al. (2008) daily 5 mm 1 day
Berti et al. (2012)1 daily 2 mm, 1 mm, or 2/3 mm 1 day, 2 days, or 3 days
Rappelli (2008) hourly 1 mm 12 h
Melillo et al. (2015);

hourly 0.2 mm 3 h, 6 h
Vessia et al. (2014)2

Saito et al. (2010) hourly 1 mm 24 h
Segoni et al. (2014a, b) hourly 0 umin = 10/36 h selected so that threshold

performances were optimized
Brunetti et al. (2010);

sub-hourly 0 mm 2 days (May–Sep), 4 days (Oct–Apr)
Peruccacci et al. (2017)
Peres and Cancelliere (2014) hourly 0.2 mm 24 h
Nikolopoulos et al. (2014) hourly 0.2 mm 24 h

1 More precisely “the algorithm scans a rainfall time series and detects the rainfall events using a moving-window technique: a new event starts when the
precipitation cumulated over DT days exceeds a certain threshold ET, and ends when it goes below this threshold. For instance, if DT = 3 days and
ET = 2 mm, the rainfall event starts when the cumulative rainfall exceeds 2 mm in 1, 2, or 3 days (that is if 2 mm are exceeded on the first day, the rainfall
starts at day 1). Then, the rainfall event stops when it rains less than 2 mm in 3 days; the end of the event is defined as the last of the three days in which
the rainfall is greater than zero”. DT = 3 days and ET = 5 mm were chosen.
2 The algorithm can be only approximately expressed in terms of smin and umin. In particular, the algorithm additionally excludes “sub-events” with a
total event rainfall below a seasonally variable threshold

Table 4. Set-up of the numerical experiments. Each set of algorithm
parameters is considered for the four hypothesized landslide report-
ing scenarios.

Aggregation Event identification algorithm
parameters

Hourly umin = 24 h, smin = 0.2 mm
umin = 12 h, smin = 0.2 mm
umin = 6 h, smin = 0.2 mm

Daily correct and daily shifted umin = 1 day, smin = 0 mm
(Italian database) umin = 1 day, smin = 5 mm

ported at rainfallthresholds.irpi.cnr.it, last date accessed 15
January 2018). In spite of this variety, the most widely used
threshold is rainfall intensity–duration (ID), as 96 out of
125 (about 77 %) thresholds are of this type, if one includes
equivalent rainfall depth–duration (ED) thresholds. There-
fore, our analysis adopts this threshold type, which may be
defined as follows:

I = αD−β (2)

where I (L T−1) is the mean rainfall event intensity, and D
(T) is the rainfall event duration (both defined according to
scheme of Fig. 4); α,β>0 are respectively the intercept and
slope parameters of the threshold. ED thresholds are equiv-
alent to IDs, since rainfall intensity I is the ratio between
event rainfall E (the total depth of a rainfall event) and its
duration D; thus, they can be converted into the ID type by
simply subtracting 1 from the exponent of duration.

The procedures for the identification of best threshold pa-
rameters have historically increased their complexity over

time. Earlier works considered lower boundary curves of
the triggering events traced with subjective criteria (Caine,
1980). Then more objective procedures have been then pro-
posed, still based on the triggering events only, such as the
so-called “frequentist” method (e.g. Brunetti et al., 2010).
More advanced approaches are currently used, and these
are derived from the analysis of both triggering and non-
triggering events. These procedures are more transparent
than methods based on triggering events only, as the uncer-
tainty of the thresholds can be assessed through indices based
on the confusion matrix or the receiver-operating character-
istics (ROCs), that is, in terms of the count of true positives
(TP), true negatives (TN), false positives (FP) and false neg-
atives (FN) (Table 5). More importantly, these methods are
also more robust, since the presence of non-triggering data
points makes the choice of the threshold less sensitive to
possible errors in the attribution of triggering rainfall event
duration and intensity. Here we use these methods of recent
application, implicitly assuming that the impact of the un-
certainty under analysis is likely to be higher on thresholds
derived from procedures based on triggering rainfall only.

Best thresholds can be calibrated by maximizing their per-
formances expressed in terms of suitable metrics. One widely
used metric is true skill statistics (Ciavolella et al., 2016;
Peres and Cancelliere, 2014; Staley et al., 2013) originally
proposed by Peirce (1884):

TSS=
TP

TP+FN
−

FP
TN+FP

. (3)

An apparently alternative approach is given by Bayesian
analysis (Berti et al., 2012). Indeed, this approach can be
interpreted as a special case of the ROC analysis, since
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Table 5. Confusion matrix for evaluation of landslide-triggering thresholds (assumed here to be of the ID type: I = f (D)).

Actual

Landslide
(POS = TP + FN)

No landslide (NEG)
(NEG = FP + TN)

Predicted Landslide (POS’): I ≥ f (D)
(POS’ = TP + FP)

true positives, TP false positives, FP

No landslide (NEG’): I<f (D)
(NEG’ = FN + TN)

false negatives, FN true negatives, TN

Bayesian a posteriori probability is equivalent to the ROC-
based precision (PRE):

P (L|R)=
P(R|L)P (L)

P (R)
=

TP
TP+FN

TP+FN
NT

TP+FP
NT

=
TP

TP+FP
= PRE, (4)

where P(L|R) is the probability of landslide occurrence
given rainfall exceeding the threshold (a posteriori proba-
bility), NT is the total number of rainfall events (triggering
and non-triggering), P(R)= (TP + FP)/NT is the probabil-
ity of rainfall events exceeding the threshold, P(L)= (TP +
FN)/NT is the (a priori) probability of landslide occurrence,
and P(R|L)= TP/(TP + FN) is the probability of a rain-
fall event exceeding the threshold, given that a landslide has
occurred (known as the likelihood).

Different papers discuss advantages and disadvantages of
various indices proposed in natural-hazard forecasting, as
one single index is not sufficient to fully describe the confu-
sion matrix (Frattini et al., 2010; Murphy, 1996; Stephenson,
2000). Nevertheless, the choice of a single index is essen-
tial to keep the calibration procedure simple, i.e. a single-
objective optimization problem. Hence, here we calibrate
thresholds by maximizing the TSS. One advantage of the
TSS is that it includes all the entries of the confusion ma-
trix, and thus its maximization yields thresholds that result in
a good trade-off between correct and incorrect warnings/non-
warnings.

Once thresholds for each RS scenario are derived, the TSS
and the confusion matrix provide a measure of the uncer-
tainty inherent in the data, as assessable by whoever derives
the threshold and is not aware of the errors. On the other
hand, it is also of interest to test how a threshold derived
from erroneous data may perform when, after its determi-
nation, it is applied to precise monitored data, and is thus
potentially free of the errors present in the threshold calibra-
tion dataset. In order to do this, the calibrated thresholds are
applied to the error-free synthetic dataset (Sect. 5). The per-
formances in this test are indicative of the impacts of errors
when thresholds are actually used.

4 Impact of uncertain identification of triggering
rainfall on threshold calibration

4.1 Hourly data

Results relative to the use of hourly data are shown in Fig. 5,
for a given separation algorithm (smin = 0.2 mm, umin =

24 h).
For the reference dataset RS0, there is a negligible overlap-

ping between triggering and non-triggering events (Fig. 5a),
due to intra-event rainfall intensity variability. In fact in this
case the best ID threshold (I = 101D−0.80) performs almost
perfectly, with a TSS of 0.99 (for umin = 24 h). The pres-
ence of small delay reporting errors (RS1) has little impact
on the position of triggering rainfall points (Fig. 5b), which
in general are shifted slightly down along the intensity axis;
this is related to the higher durations produced by positive
errors in triggering instants, combined with an induced de-
crease in mean rainfall event intensities – a general behaviour
exhibited by extreme events (cf. the negative slope of well-
known rainfall intensity–duration–frequency curves; see Bo-
gaard and Greco, 2018). Only two rainfall events (2.5 %
of triggering events) are highly impacted, Only two rain-
fall events are highly impacted: see the two events in Fig.
5b whose duration moved to 1 h. The latter, but mainly the
former effect, contributes to slightly flattening the threshold
for TSS maximization (decrease in β to 0.7). When high de-
lay sampling errors are present (RS2), the effects may not be
negligible as in the previous case, as more highly impacted
rainfall events are present, now also for significant durations
(up to 24 h in the plot, Fig. 5c). These erroneous data points
are difficult for an analyser to identify, and thus their im-
pact on threshold determination can be significant and can
lead to a lower slope and intercept, i.e. an underestimation
of the threshold, which changes to I = 19D−0.50 (the refer-
ence is I = 101D−0.80). The impact of these errors may be
more dramatic when thresholds are assessed, making use of
triggering rainfall events only, following “traditional”, less
robust, approaches.

Negative errors, introduced by an anticipation of the real
landslide instant (RS3), can have very high impacts, as can
be seen from the relative plot in Fig. 5d, and the loss of the
correct position of many of the triggering points. The best
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Figure 5. Scatter plot, in the double-logarithmic rainfall duration–intensity plane, of triggering and non-triggering events for hourly data
and separation algorithm parameters umin = 24 h, smin = 0.2 mm. Thresholds correspond to the maximum performance in terms of true skill
statistic. The plots show outcomes relative to (a) reference RS0, and (b–d) various erroneous reporting scenarios (RS1, RS2, RS3).

threshold corresponds to TSS= 0.49, which reflects the high
degree of uncertainty implied by these kinds of data errors.

4.2 Daily data

Shallow landslides can be triggered by rainfall events that are
only few hours long (Bogaard and Greco, 2016; Highland
and Bobrowsky, 2008; Sidle and Ochiai, 2013), and various
studies have shown that the impact of small-scale intra-event
rainfall intensity variability can have a significant effect on
landslide triggering (D’Odorico et al., 2005; Peres and Can-
celliere, 2014, 2016). Hence, apart from the errors in the
dataset, it is of interest to see how the change from hourly
to daily data may affect threshold determination. This can be
done by comparing thresholds determined from the hourly
and daily datasets.

Figure 6 shows the results of calibration obtained with
correctly aggregated daily rainfall data and smin = 0 and
umin = 1 day. As can be seen from the plots, the impact of
delayed reporting of landslides (errors RS1 and RS2) is less
significant than with hourly data. In fact, though α and β are
lower than those determined from hourly data, the threshold
determined from daily data passes more or less in the same
zone for durations in their range of validity, D>1 day. This
is because the smaller slope β in the log–log plane compen-

sates for the smaller intercept α. The effect of anticipating
landslide time location (RS3) here also has high impacts on
the thresholds (Fig. 6d).

Figure 7 plots the results relative to daily rainfall data af-
fected by a delay in the aggregation interval, as present for
instance in Italian datasets, and related to availability of data
from non-automatic rain gauges. The impacts of this system-
atic rainfall error can be high (Fig. 7a, b, and d). There is,
however, the possibility that the errors due to rainfall aggre-
gation and reporting landslide time interval compensate for
each other, as in the case of scenario RS2 (delayed reporting
of landslides), Fig. 7c (note that this plot is similar to Fig. 6b).
If analysers are aware of the rainfall-aggregation shift, then
they should correct as much as possible for this error – in this
specific case by shifting the entire daily rainfall dataset 1 day
forward.

4.3 Possible effects of rainfall separation criteria and
antecedent rainfall

Table 6 shows the results obtained by setting the parameters
of rainfall event separation algorithms, in the hourly, daily
correct, and daily shifted aggregation cases. From the TSS
values obtained for hourly data, it can be seen that the impact
of RS1 and RS2 increases with decreasing minimum interar-
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Figure 6. Scatter plot, in the double-logarithmic rainfall duration–intensity plane, of triggering and non-triggering events for daily data and
separation algorithm parameters umin = 1 day, smin = 0. Thresholds correspond to the maximum performance in terms of true skill statistic.
The plots show outcomes relative to (a) reference RS0 and (b–d) various erroneous reporting scenarios (RS1, RS2, RS3).

Table 6. Threshold calibration results for all simulations, in the case of nulled effects of antecedent precipitation (τM = 0).

RS0 RS1 RS2 RS3

Aggregation umin smin TSS α β TSS α β TSS α β TSS α β

(h) (mm) (mm h−1) (mm h−1) (mm h−1) (mm h−1)

Hourly 24 0.2 0.99 101 0.80 0.95 61 0.70 0.79 19 0.50 0.49 28 0.60
12 0.2 0.95 60 0.7 0.87 41 0.6 0.69 25 0.5 0.49 47 0.7
6 0.2 0.98 91 0.9 0.73 19 0.4 0.57 27 0.6 0.52 17 0.6

Daily 24 0 0.99 36 0.6 0.99 34 0.6 0.94 35 0.6 0.44 28 0.6
24 5 0.98 60 0.7 0.99 31 0.6 0.9 48 0.7 0.44 27 0.6

Daily (Shifted) 24 0 0.56 20 0.6 0.75 21 0.6 0.99 34 0.6 0.16 13 0.5
24 5 0.54 38 0.8 0.73 62 0.8 0.98 43 0.7 0.14 30 0.7

rival value umin. For RS3, differences obtained with different
umin are not relevant, since the performances are poor in gen-
eral (TSS about 0.5). In the case of daily data, the importance
of different criteria for separating events (values of the mini-
mum daily rainfall threshold smin) is relatively lower than in
the hourly data case. Though differences in the TSS are not
significant, this may not be true for the threshold parameters,
which can vary significantly. In fact, higher thresholds are
obtained from an increase in smin, because of the decrease in
the number of days counted as rainy.

The behaviour related to hourly data is related to the
fact that, by choosing lower umin, events generally become

shorter, and thus it is more likely that a landslide event is
attributed to only a part of the actual triggering event. In
this case the effect of preceding rainfall events cannot be
neglected in general. In other words, our analysis suggests
that the choice of the umin is crucial and must be based on
the timescales of the hydrological processes governing land-
slide triggering, in terms of long- and short-term responses
(Iverson, 2000). This means that the effect of different cri-
teria for rainfall separation is somehow related to that of an-
tecedent precipitation. The effects of antecedent precipitation
are specifically taken into account performing Monte Carlo
simulations with τM = 2.75 days (results shown in Table 7).
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Figure 7. Scatter plot, on the double-logarithmic rainfall duration–intensity plane, of triggering and non-triggering events for daily data with
aggregation shift as in the Italian rainfall databases. Separation algorithm parameters are umin = 1 day, smin = 0 mm. Thresholds correspond
to the maximum performance in terms of true skill statistic. The plots show outcomes relative to (a) reference RS0 and (b–d) various
erroneous reporting scenarios (RS1, RS2, RS3).

For this simulation, regardless of the rainfall separation time
interval, the initial water table height measured from the bot-
tom of the soil column is in general greater than zero, becom-
ing negligible after a dry interval of 3τM = 3× 2.75= 8.5
days (exponential decay). As can be seen, the results are
qualitatively similar to the no-memory case; the main dif-
ference is that lower TSS values are obtained for the added
uncertainty due to antecedent conditions, and the thresholds
are lower, since less event rainfall is needed on average to
trigger a landslide because of non-zero initial wetness condi-
tions.

5 Impact of uncertain identification of triggering
rainfall on threshold use

Thresholds determined based on historical datasets are then
meant to be used for early warning systems when, conse-
quently, more detailed meteorological and landslide monitor-
ing is set up. This means that it is reasonable to hypothesize
that after thresholds are determined, they are subsequently
applied to high-quality datasets, which suffer less from the
limitations and errors present in datasets used for threshold
calibration, which are generally not conceived for that spe-

cific purpose. This might induce modification of the thresh-
olds in view of the new data, but this is a process whose im-
plementation may take several years. Hence, with the aim of
determining which would be the consequences of building an
early warning system with thresholds derived from historical
data with errors, Fig. 8 shows a visual comparison between
the thresholds determined in the various numerical experi-
ments and the ideal hourly dataset, for results related to the
hourly (Fig. 8a) and daily datasets (Fig. 8b). For the sake of
clarity, it may be worthwhile to remember that the dataset of
triggering and non-triggering points has been used in cali-
brating the thresholds only for the RS0 scenario, with hourly
data and umin = 24 h and smin = 0.2 mm (the related thresh-
old is shown in Fig. 8 as a thick black line). Thus, the other
thresholds are tested against this ideal dataset, which differs
from the one used for their calibration.

The plots show that the presence of errors can induce a
significant variability of thresholds which is completely un-
related to the different characteristics of a site (i.e. the geo-
morphological, hydraulic, geotechnical and land use charac-
teristics). This allows for speculation that a significant part
of the variability of landslide-triggering thresholds reported
in the literature (cf. Guzzetti et al., 2007) may be due to the
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Table 7. Threshold calibration results for all simulations, when antecedent precipitation memory is present (τM = 2.75 days).

RS0 RS1 RS2 RS3

Aggregation umin smin TSS α β TSS α β TSS α β TSS α β

(h) (mm) (mm h−1) (mm h−1) (mm h−1) (mm h−1)

Hourly 24 0.2 0.88 45 0.7 0.84 42 0.7 0.73 38 0.7 0.46 28 0.6
12 0.2 0.9 54 0.8 0.81 45 0.7 0.67 17 0.5 0.48 28 0.6
6 0.2 0.91 31 0.6 0.7 29 0.5 0.56 18 0.6 0.51 17 0.6

Daily 24 0 0.91 25 0.6 0.91 25 0.6 0.87 25 0.6 0.47 22 0.6
24 5 0.9 52 0.8 0.9 52 0.8 0.86 24 0.6 0.49 20 0.6

Daily (shifted) 24 0 0.61 21 0.6 0.77 21 0.6 0.9 21 0.6 0.3 9 0.5
24 5 0.6 28 0.7 0.73 40 0.8 0.89 30 0.7 0.29 21 0.7

Figure 8. Comparison of thresholds, calibrated in the various scenarios and event identification parameters, with the correct hourly dataset.
Thresholds determined with (a) hourly and (b) daily data (both correct and with aggregation shift) are distinguished. Correct thresholds are
relative to the following event identification parameters: umin = 24 h, smin = 0.2 mm, and umin = 1 day, smin = 0 mm, for hourly and daily
data, respectively. These plots are representative of how thresholds calibrated with uncertain information of triggering rainfall data may
perform in early warning systems that use high-quality rainfall and landslide monitoring.

sources of uncertainty discussed here. As a consequence, it
is challenging to search for links between the variability of
physio-geographical characteristics and that of thresholds, as
determined from different sites.

The presence of errors in the landslide dataset yields
thresholds that are in general underestimated, i.e. lower than
the correct ones. Many thresholds in Fig. 8 are significantly
lower than the correct ones, and the number of false positives
can be relatively high and not balanced by true positives. A
good trade-off between correct and wrong predictions is es-
sential for the success of an early warning system, since with
a high number of false alarms the so-called cry-wolf effect
may occur, inducing the populations to not take precaution-
ary actions when warnings are issued (Barnes et al., 2007).

6 Conclusions

We have analysed and discussed the possible effects of un-
certain triggering rainfall identification on the assessment of
empirical landslide early warning ID thresholds, capitalizing
on a synthetic rainfall–landslide dataset generated by Monte
Carlo simulation. To this aim, we have investigated the ef-
fect of a set of hypothesized scenarios of landslide informa-
tion retrieval and interpretation which can induce errors in
the identification of instants of landslide occurrence. More-
over, we have analysed how the impact of reasonable sce-
narios may vary depending on rainfall aggregation (hourly
or daily) and rainfall event identification criteria. Real situa-
tions may be a mixture of the considered scenarios, and thus
the impacts are presumably intermediate between the ones
hypothesized.

www.nat-hazards-earth-syst-sci.net/18/633/2018/ Nat. Hazards Earth Syst. Sci., 18, 633–646, 2018



644 D. J. Peres et al.: Landslide early warning thresholds

The errors in the time instants can be, in an algebraic
sense, positive or negative, according to whether a landslide
is reported after its actual occurrence or before, respectively.
According to the literature, positive errors are more likely
than negative, since a landslide is typically reported some
time after its actual occurrence. Our analyses have shown that
if such errors are limited to less than 30 h (about 1 day), their
impacts on the threshold may be relatively low; yet if the
delay is higher, impacts can be significant. Negative errors,
though less probable, can also exist, based on how an analyst
interprets the information retrieved from landslide historical
archives. The impact of these errors can be dramatic, as the
location of triggering events in the logD – logI plane can
be completely altered. Errors in landslide-triggering instants
can lead to triggering events that are shorter than the actual
ones, so that their effect is to induce an incorrect identifi-
cation of triggering rainfall for short durations. For higher
durations (> 1 day), the location of triggering events seems
to be more robust, except when negative errors are present.
This behaviour induces a flattening of the ID thresholds (i.e.
a lower slope β) and an underestimation of the position pa-
rameter of the threshold (i.e. a lower intercept α).

The impact of reporting errors can change significantly de-
pending on the algorithm adopted for rainfall event identifi-
cation. Specifically, a shorter “maximum dryness” interval
for event separation induces an increase in the impacts of all
reporting scenarios.

From our analysis no significant impacts seem to be in-
duced by the use of daily data; however, it is of fundamental
importance to check, and correct where possible, for the pres-
ence of delays in the rainfall accumulation interval, that is,
if precipitation reported for a given day is the total amount
that occurred in a shifted period (e.g. within the 24 h pre-
ceding 09:00 of that day rather than before midnight). Such
a shift affects, for instance, the Italian Hydrological Annual
Reports, which constitute the largest rainfall data collection
in Italy. The impacts of these shifts are potentially dramatic.

Overall, the presence of reporting errors in landslide-
triggering instants yields underestimated thresholds, making
them less suitable for setting up landslide early warning sys-
tems, as they can lead to a high number of false alarms, gen-
erating distrust by populations that are expected to benefit
from their implementation. Similar effects have been found
as a consequence of rainfall measurement uncertainty on
thresholds (Nikolopoulos et al., 2014). These two sources
of errors – always present in observed datasets – are alone
enough to generate an uncertainty in threshold assessment
that is of significant magnitude. These results bring us to
the conclusion that the uncertainty inherent in the available
data can jeopardize the possibility to find a physically based
rationale underlying the variability of empirical landslide-
triggering thresholds across different sites. In other words,
with the quality of current available data, attempts to relate
thresholds to climate and other regional characteristics can
be very difficult. An improvement in landslide and rainfall

monitoring – e.g. rainfall, soil moisture and landslide satel-
lite data, as well as landslide data crowdsourcing (Guzzetti et
al., 2012; Strozzi et al., 2013; Wan et al., 2014) – may be a
step forward for overcoming these problems. Once accurate
rainfall–landslide data are available, standardized method-
ologies must be implemented to derive the thresholds in or-
der to allow their comparisons and to link their variability to
site-specific landslide susceptibility factors.

Data availability. Rainfall data used for this research are avail-
able from the Servizio Informativo Agreometeorologico Siciliano
(SIAS) website (http://www.sias.regione.sicilia.it/, last access: 28
February 2018).

Special issue statement. This article is part of the special issue
“Landslide early warning systems: monitoring systems, rainfall
thresholds, warning models, performance evaluation and risk per-
ception”. It is not associated with a conference.

Acknowledgements. David J. Peres was supported by post-doctoral
contract on “Studio dei processi idrologici relative a frane superfi-
ciali in un contesto di cambiamenti climatici” (Analysis of landslide
hydrological processes in a changing climate), at University of
Catania. Part of the work was developed during his three-month
stay as a visiting researcher at the Water Resources Section of
TUDelft. The authors thank the two anonymous reviewers for their
comments, which helped to considerably improve the paper.

Edited by: Luca Piciullo
Reviewed by: two anonymous referees

References

Barnes, L. R., Gruntfest, E. C., Hayden, M. H., Schultz, D. M.,
and Benight, C.: False Alarms and Close Calls: A Conceptual
Model of Warning Accuracy, Weather Forecast., 22, 1140–1147,
https://doi.org/10.1175/WAF1031.1, 2007.

Baum, R. L., Godt, J. W., and Savage, W. Z.: Estimating the tim-
ing and location of shallow rainfall-induced landslides using a
model for transient, unsaturated infiltration, J. Geophys. Res.,
115, F03013, https://doi.org/10.1029/2009JF001321, 2010.

Berti, M., Martina, M. L. V, Franceschini, S., Pignone, S., Simoni,
A., and Pizziolo, M.: Probabilistic rainfall thresholds for land-
slide occurrence using a Bayesian approach, J. Geophys. Res.-
Earth, 117, 1–20, https://doi.org/10.1029/2012JF002367, 2012.

Bogaard, T. and Greco, R.: Invited perspectives: Hydrological
perspectives on precipitation intensity-duration thresholds
for landslide initiation: proposing hydro-meteorological
thresholds, Nat. Hazards Earth Syst. Sci., 18, 31–39,
https://doi.org/10.5194/nhess-18-31-2018, 2018.

Bogaard, T. A. and Greco, R.: Landslide hydrology: from hydrol-
ogy to pore pressure, Wiley Interdiscip. Rev. Water, 3, 439–459,
https://doi.org/10.1002/wat2.1126, 2016.

Nat. Hazards Earth Syst. Sci., 18, 633–646, 2018 www.nat-hazards-earth-syst-sci.net/18/633/2018/

http://www.sias.regione.sicilia.it/
https://doi.org/10.1175/WAF1031.1
https://doi.org/10.1029/2009JF001321
https://doi.org/10.1029/2012JF002367
https://doi.org/10.5194/nhess-18-31-2018
https://doi.org/10.1002/wat2.1126


D. J. Peres et al.: Landslide early warning thresholds 645

Brunetti, M. T., Peruccacci, S., Rossi, M., Luciani, S., Valigi, D.,
and Guzzetti, F.: Rainfall thresholds for the possible occurrence
of landslides in Italy, Nat. Hazards Earth Syst. Sci., 10, 447–458,
https://doi.org/10.5194/nhess-10-447-2010, 2010.

Caine, N.: The Rainfall Intensity-Duration Control of Shallow
Landslides and Debris Flows, Soc. Swedish Ann. Geogr. Geogr.
Phys., 62, 23–27, 1980.

Cama, M., Lombardo, L., Conoscenti, C., and Rotigliano, E.:
Improving transferability strategies for debris flow suscep-
tibility assessment: Application to the Saponara and Itala
catchments (Messina, Italy), Geomorphology, 288, 52–65,
https://doi.org/10.1016/J.GEOMORPH.2017.03.025, 2017.

Caracciolo, D., Arnone, E., Lo Conti, F., and Noto, L. V.: Exploiting
historical rainfall and landslide data in a spatial database for the
derivation of critical rainfall thresholds, Environ. Earth Sci., 76,
222, https://doi.org/10.1007/s12665-017-6545-5, 2017.

Ciavolella, M., Bogaard, T., Gargano, R. and Greco, R.: Is there
Predictive Power in Hydrological Catchment Information for Re-
gional Landslide Hazard Assessment?, Procedia Earth Planet.
Sci., 16, 195–203, https://doi.org/10.1016/j.proeps.2016.10.021,
2016.

Cowpertwait, P. S. P., O’Connell, P. E., Metcalfe, A. V., and
Mawdsley, J. A.: Stochastic point process modelling of rain-
fall. I. Single-site fitting and validation, J. Hydrol., 175, 17–46,
https://doi.org/10.1016/S0022-1694(96)80004-7, 1996.

D’Odorico, P., Fagherazzi, S., and Rigon, R.: Potential for lands-
liding: Dependence on hyetograph characteristics, J. Geophys.
Res.-Earth, 110, 1–10, https://doi.org/10.1029/2004JF000127,
2005.

Frattini, P., Crosta, G., and Carrara, A.: Techniques for evaluating
the performance of landslide susceptibility models, Eng. Geol.,
111, 62–72, https://doi.org/10.1016/j.enggeo.2009.12.004, 2010.

Gariano, S. L., Brunetti, M. T., Iovine, G., Melillo, M., Peruc-
cacci, S., Terranova, O., Vennari, C., and Guzzetti, F.: Calibration
and validation of rainfall thresholds for shallow landslide fore-
casting in Sicily, southern Italy, Geomorphology, 228, 653–665,
https://doi.org/10.1016/j.geomorph.2014.10.019, 2015.

Guzzetti, F. and Tonelli, G.: Information system on hydrolog-
ical and geomorphological catastrophes in Italy (SICI): a
tool for managing landslide and flood hazards, Nat. Hazards
Earth Syst. Sci., 4, 213–232, https://doi.org/10.5194/nhess-4-
213-2004, 2004.

Guzzetti, F., Peruccacci, S., Rossi, M., and Stark, C. P.: Rain-
fall thresholds for the initiation of landslides in central
and southern Europe, Meteorol. Atmos. Phys., 98, 239–267,
https://doi.org/10.1007/s00703-007-0262-7, 2007.

Guzzetti, F., Peruccacci, S., Rossi, M., and Stark, C. P.: The rainfall
intensity-duration control of shallow landslides and debris flows:
An update, Landslides, 5, 3–17, https://doi.org/10.1007/s10346-
007-0112-1, 2008.

Guzzetti, F., Mondini, A. C., Cardinali, M., Fiorucci, F., Santan-
gelo, M. and Chang, K. T.: Landslide inventory maps: New
tools for an old problem, Earth-Science Rev., 112, 42–66,
https://doi.org/10.1016/j.earscirev.2012.02.001, 2012.

Highland, L. M. and Bobrowsky, P.: The Landslide Handbook – A
Guide to Understanding Landslides, Reston, Virginia, 2008.

Iverson, R. M.: Landslide triggering by rain infiltration, Water Re-
sour. Res., 36, 1897–1910, 2000.

Leonarduzzi, E., Molnar, P., and McArdell, B. W.: Predictive per-
formance of rainfall thresholds for shallow landslides in Switzer-
land from gridded daily data, Water Resour. Res., 53, 6612–6625,
https://doi.org/10.1002/2017WR021044, 2017.

Li, C., Ma, T., Zhu, X., and Li, W.: The power-law relationship be-
tween landslide occurrence and rainfall level, Geomorphology,
130, 221–229, https://doi.org/10.1016/j.geomorph.2011.03.018,
2011.

Melillo, M., Brunetti, M. T., Peruccacci, S., Gariano, S. L., and
Guzzetti, F.: An algorithm for the objective reconstruction of
rainfall events responsible for landslides, Landslides, 12, 311–
320, https://doi.org/10.1007/s10346-014-0471-3, 2015.

Murphy, A. H.: The Finley Affair: A Signal Event
in the History of Forecast Verification, Weather
Forecast., 11, 3–20, https://doi.org/10.1175/1520-
0434(1996)011<0003:TFAASE>2.0.CO;2, 1996.

Nikolopoulos, E. I., Crema, S., Marchi, L., Marra, F., Guzzetti,
F., and Borga, M.: Impact of uncertainty in rainfall es-
timation on the identification of rainfall thresholds for
debris flow occurrence, Geomorphology, 221, 286–297,
https://doi.org/10.1016/J.GEOMORPH.2014.06.015, 2014.

Peirce, C. S.: The numerical measure of the success predic-
tions, Science, 4, 453–454, https://doi.org/10.1126/science.ns-
4.93.453-a, 1884.

Peres, D. J. and Cancelliere, A.: Defining rainfall thresholds for
early warning of rainfall-triggered landslides: The case of North-
East Sicily, in: Landslide Science and Practice: Global Environ-
mental Change, vol. 4, edited by: Margottini, C., Canuti, P., and
Sassa, K., 257–263, 2013.

Peres, D. J. and Cancelliere, A.: Derivation and eval-
uation of landslide-triggering thresholds by a Monte
Carlo approach, Hydrol. Earth Syst. Sci., 18, 4913-4931,
https://doi.org/10.5194/hess-18-4913-2014, 2014.

Peres, D. J. and Cancelliere, A.: Estimating return period of land-
slide triggering by Monte Carlo simulation, J. Hydrol., 541, 256–
271, https://doi.org/10.1016/j.jhydrol.2016.03.036, 2016.

Peruccacci, S., Brunetti, M. T., Gariano, S. L., Melillo, M.,
Rossi, M., and Guzzetti, F.: Rainfall thresholds for possi-
ble landslide occurrence in Italy, Geomorphology, 290, 39–57,
https://doi.org/10.1016/j.geomorph.2017.03.031, 2017.

Pizziolo, M., Del Maschio, L., Gozza, G., and Pignone, S.: Determi-
nazione di soglie pluviometriche per l’innesco di frane in Emilia
– Romagna, Geol. dell’Emilia-Romagna, 29, 21–27, 2008.

Rappelli, F.: Definizione delle soglie pluviometriche d’innesco di
frane superficiali e colate torrentizie: accorpamento per aree
omogenee, Rapp. per IReR, Milano, 2008.

Rodríguez-Iturbe, I., de Power, B. F., and Valdés, J. B.:
Rectangular pulses point process models for rainfall:
Analysis of empirical data, J. Geophys. Res., 92, 9645,
https://doi.org/10.1029/JD092iD08p09645, 1987a.

Rodríguez-Iturbe, I., Cox, D. R., and Isham, V.: Some Mod-
els for Rainfall Based on Stochastic Point Processes,
Proc. R. Soc. A Math. Phys. Eng. Sci., 410, 269–288,
https://doi.org/10.1098/rspa.1987.0039, 1987b.

Saito, H., Nakayama, D., and Matsuyama, H.: Relationship be-
tween the initiation of a shallow landslide and rainfall intensity-
duration thresholds in Japan, Geomorphology, 118, 167–175,
https://doi.org/10.1016/j.geomorph.2009.12.016, 2010.

www.nat-hazards-earth-syst-sci.net/18/633/2018/ Nat. Hazards Earth Syst. Sci., 18, 633–646, 2018

https://doi.org/10.5194/nhess-10-447-2010
https://doi.org/10.1016/J.GEOMORPH.2017.03.025
https://doi.org/10.1007/s12665-017-6545-5
https://doi.org/10.1016/j.proeps.2016.10.021
https://doi.org/10.1016/S0022-1694(96)80004-7
https://doi.org/10.1029/2004JF000127
https://doi.org/10.1016/j.enggeo.2009.12.004
https://doi.org/10.1016/j.geomorph.2014.10.019
https://doi.org/10.5194/nhess-4-213-2004
https://doi.org/10.5194/nhess-4-213-2004
https://doi.org/10.1007/s00703-007-0262-7
https://doi.org/10.1007/s10346-007-0112-1
https://doi.org/10.1007/s10346-007-0112-1
https://doi.org/10.1016/j.earscirev.2012.02.001
https://doi.org/10.1002/2017WR021044
https://doi.org/10.1016/j.geomorph.2011.03.018
https://doi.org/10.1007/s10346-014-0471-3
https://doi.org/10.1175/1520-0434(1996)011<0003:TFAASE>2.0.CO;2
https://doi.org/10.1175/1520-0434(1996)011<0003:TFAASE>2.0.CO;2
https://doi.org/10.1016/J.GEOMORPH.2014.06.015
https://doi.org/10.1126/science.ns-4.93.453-a
https://doi.org/10.1126/science.ns-4.93.453-a
https://doi.org/10.5194/hess-18-4913-2014
https://doi.org/10.1016/j.jhydrol.2016.03.036
https://doi.org/10.1016/j.geomorph.2017.03.031
https://doi.org/10.1029/JD092iD08p09645
https://doi.org/10.1098/rspa.1987.0039
https://doi.org/10.1016/j.geomorph.2009.12.016


646 D. J. Peres et al.: Landslide early warning thresholds

Schilirò, L., Esposito, C., and Scarascia Mugnozza, G.: Evalua-
tion of shallow landslide-triggering scenarios through a physi-
cally based approach: an example of application in the south-
ern Messina area (northeastern Sicily, Italy), Nat. Hazards
Earth Syst. Sci., 15, 2091–2109, https://doi.org/10.5194/nhess-
15-2091-2015, 2015a.

Schilirò, L., De Blasio, F. V., Esposito, C., and Scarascia Mug-
nozza, G.: Reconstruction of a destructive debris-flow event
via numerical modeling: The role of valley geometry on flow
dynamics, Earth Surf. Process. Landforms, 40, 1847–1861,
https://doi.org/10.1002/esp.3762, 2015b.

Schilirò, L., Montrasio, L., and Scarascia Mugnozza, G.: Prediction
of shallow landslide occurrence: Validation of a physically-based
approach through a real case study, Sci. Total Environ., 569–570,
134–144, https://doi.org/10.1016/j.scitotenv.2016.06.124, 2016.

Segoni, S., Rosi, A., Rossi, G., Catani, F., and Casagli, N.:
Analysing the relationship between rainfalls and landslides to de-
fine a mosaic of triggering thresholds for regional-scale warning
systems, 14, 2637–2648, https://doi.org/10.5194/nhess-14-2637-
2014, 2014a.

Segoni, S., Rossi, G., Rosi, A., and Catani, F.: Landslides trig-
gered by rainfall: A semi-automated procedure to define con-
sistent intensity-duration thresholds, Comput. Geosci., 63, 123–
131, https://doi.org/10.1016/j.cageo.2013.10.009, 2014b.

Sidle, R. C. and Ochiai, H.: Landslides: Processes, Prediction, and
Land Use, Water Resources Monograph., 2013.

Srivastava, R. and Yeh, T.-C. J.: Analytical solutions for one-
dimensional, transient infiltration toward the water table in ho-
mogeneous and layered soils, Water Resour. Res., 27, 753–762,
https://doi.org/10.1029/90WR02772, 1991.

Staley, D. M., Kean, J. W., Cannon, S. H., Schmidt, K.
M., and Laber, J. L.: Objective definition of rainfall
intensity-duration thresholds for the initiation of post-fire de-
bris flows in southern California, Landslides, 10, 547–562,
https://doi.org/10.1007/s10346-012-0341-9, 2013.

Stancanelli, L. M., Peres, D. J., Cancelliere, A., and Foti, E.: A
combined triggering-propagation modeling approach for the as-
sessment of rainfall induced debris flow susceptibility, J. Hydrol.,
550, 130–143, https://doi.org/10.1016/j.jhydrol.2017.04.038,
2017.

Stephenson, D. B.: Use of the “Odds Ratio”
for Diagnosing Forecast Skill, Weather Fore-
cast., 15, 221–232, https://doi.org/10.1175/1520-
0434(2000)015<0221:UOTORF>2.0.CO;2, 2000.

Strozzi, T., Ambrosi, C., and Raetzo, H.: Interpretation of
aerial photographs and satellite SAR interferometry for
the inventory of landslides, Remote Sens., 5, 2554–2570,
https://doi.org/10.3390/rs5052554, 2013.

Terlien, M. T. J.: The determination of statistical and deterministic
hydrological landslide-triggering thresholds, Environ. Geol., 35,
124–130, https://doi.org/10.1007/s002540050299, 1998.

Vennari, C., Gariano, S. L., Antronico, L., Brunetti, M. T., Iovine,
G., Peruccacci, S., Terranova, O., and Guzzetti, F.: Rain-
fall thresholds for shallow landslide occurrence in Calabria,
southern Italy, Nat. Hazards Earth Syst. Sci., 14, 317–330,
https://doi.org/10.5194/nhess-14-317-2014, 2014.

Vessia, G., Parise, M., Brunetti, M. T., Peruccacci, S., Rossi,
M., Vennari, C., and Guzzetti, F.: Automated reconstruction of
rainfall events responsible for shallow landslides, Nat. Hazards
Earth Syst. Sci., 14, 2399–2408, https://doi.org/10.5194/nhess-
14-2399-2014, 2014.

Wan, Z., Hong, Y., Khan, S., Gourley, J., Flamig, Z.,
Kirschbaum, D., and Tang, G.: A cloud-based global flood
disaster community cyber-infrastructure: Development
and demonstration, Environ. Model. Softw., 58, 86–94,
https://doi.org/10.1016/j.envsoft.2014.04.007, 2014.

Nat. Hazards Earth Syst. Sci., 18, 633–646, 2018 www.nat-hazards-earth-syst-sci.net/18/633/2018/

https://doi.org/10.5194/nhess-15-2091-2015
https://doi.org/10.5194/nhess-15-2091-2015
https://doi.org/10.1002/esp.3762
https://doi.org/10.1016/j.scitotenv.2016.06.124
https://doi.org/10.5194/nhess-14-2637-2014
https://doi.org/10.5194/nhess-14-2637-2014
https://doi.org/10.1016/j.cageo.2013.10.009
https://doi.org/10.1029/90WR02772
https://doi.org/10.1007/s10346-012-0341-9
https://doi.org/10.1016/j.jhydrol.2017.04.038
https://doi.org/10.1175/1520-0434(2000)015<0221:UOTORF>2.0.CO;2
https://doi.org/10.1175/1520-0434(2000)015<0221:UOTORF>2.0.CO;2
https://doi.org/10.3390/rs5052554
https://doi.org/10.1007/s002540050299
https://doi.org/10.5194/nhess-14-317-2014
https://doi.org/10.5194/nhess-14-2399-2014
https://doi.org/10.5194/nhess-14-2399-2014
https://doi.org/10.1016/j.envsoft.2014.04.007

	Abstract
	Introduction
	Dataset: generation of synthetic rainfall and landslide data
	Methodology
	Simulation of uncertainty in triggering rainfall identification
	Threshold definition, calibration and testing performance

	Impact of uncertain identification of triggering rainfall on threshold calibration
	Hourly data
	Daily data
	Possible effects of rainfall separation criteria and antecedent rainfall

	Impact of uncertain identification of triggering rainfall on threshold use
	Conclusions
	Data availability
	Special issue statement
	Acknowledgements
	References

