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Earthquake and tsunami data

This supplement includes a reproduction of theiwaigfigure by Gusev (2004) of source regions for
large Kamchatka earthquakes since 1899 (Fig. Bilgur paper, we use a revised version of thisréigu
(Fig. 1) and discuss the bases for our suggestasions.

Tsunamis have arrived to Kamchatka not only fronal@arthquakes but also from other regions, of
which Kamchatka is particularly susceptible to tsurs from Chile; Kamchatka is shadowed (protected)
from non-local tsunamis originating in the NorticHia (Table S1; localities on Fig. S2). In order t
interpret 28' century tsunami deposits in our field sites, we tese data to evaluate the possibility that at
least one of the deposits is from a far-field ey&titile 1960.

Table S2 provides a summary of different reseagtl@ssignments of moment magnitude, locations of
mainshock epicenter and centroid determinationthi December 1997 Kronotsky earthquake. There ar
some significant differences, which we discussunmaper in terms of our documented evidence for
tsunami runup averaging about 6 m along the caah of Kronotsky Peninsula.

Figure S3 is a version of a previously publishedtptand sketch interpretation of 1997 Kronotsky
tsunami effects on Kronotsky Cape (Pinegina efa03).

The magnitudes of tsunamigenic and other largdgaakes originating along the Kamchatka
subduction zone (and to its north) have been eteduay Gusev and Shumilina (2004), with some
suggested revisions to other catalogues (Table 88k indicator of moment magnitude of earthquakes
originating along the Kuril-Kamchatka subductiomeas their tide-gage amplitude in Hilo, Hawaii, as
shown in Table S3 for all historical earthquakes @nFigure S4 for events with a tide-gage recarHiilo.

In A.D. 1923, there were two tsunamigenic earthggadong the northern Kamchatka subduction zone.
Table S4 is a compilation of information about #abso tsunamis, which both affected Kamchatsky Bay.

Methodology for reconstructing paleoshorelines (Figre S5)

Many profiles show evidence of changes through timgeach-plain width and in surface elevation
relative to sea level; that is, the shoreward, ofdets of profiles are higher or lower than thaveard parts
(Figure S5). Ideally, a reconstruction of the j&dric coast and hence of paleotsunami size (ramap
inundation as approximated by deposit extent) wilude an estimate of horizontal shifts of shoreli
location for paleo- inundation and an approximatbchange in relative sea level for paleo- runde. use
tephra stratigraphy (as in Pinegina et al., 2018&¢lkhes et al., 2016) and tephra mapping alongl@sah
order to reconstruct paleo- profiles. The recarcsion of the south Kamchatsky Bay profiles andrthe
paleotsunamis was first performed and reportedibgdha (2014).

Horizontal changes(Figure S5). We use the methods of Pinegina ¢2@l.3; also see Maclnnes et al.,
2016). These methods make an assumption that respriglad erosion has occurred, which is reasonable f
the last 2000 years in south Kamchatsky Bay, batgdstential source of error. South Kamchatsky Bay
profiles all indicate net progradation during thed interval examined. A tephra deposit is tyhjca
preserved in stratigraphy inland from the first skemegetation (poirdv on Figure S5) landward of the
active (sandy) beach. Therefore, the seaward egfentephra in the stratigraphgvl or dv3 in Figure S5)
indicates thelv position at the time of eruption and ash depasitidssuming today's active beach width is
representative of the past, we estimate the sherplbsition at time “tephra x” to be the patkgx) plus the
modern active beach width. In general, our pal@eadation estimates are minima because even thitvegh
beach-ridge plains are net progradational, sheedliperiods of erosion can remove some of the
accumulated coastal width. A general limitatiopabeotsunami inundation reconstruction on a prigta
shoreline is that estimates of maximum paleo- iatiod will decrease back in time as the reconstdict
beach plain width decreases. On the other hantdepasion, which cannot be reconstructed, will itdsuan
underestimate of beach plain width.

Vertical changes(Figure S5) In order to determine the change in land leveltradato the sea, in each
excavation we identify an elevation tied to sealgfor which we also use the point of the firahgth of
dense vegetationy, Figure S5). We measure and mark this point ommagtern profiles and associate this
point in excavations with good preservation of aoiic ash layers (tephra). The limit of dense vegeta
approximates the swash limit and storm high tideysard of which tephra will rarely be preservédnse
vegetation (primarily dune graddymus sp.) grows only on the part of the profile thatasely affected by
storms, except for some washover, and thus sdilréepover begins to form on these surfaces. Néft opl
subsidence is the difference between the modestevation and the palaly elevation (Figure S5). A
general limit to paleotsunami runup estimateslierdase of uplifting coastlines is that maximunepal
runup will decrease back in time as the reconstustbring paleo- profiles downward.



Historical and paleotsunami data, including excavaon elevations and distances from shoreline

Herein we summarize graphically the data on whichpaleotsunami analysis is based. These data were
first synthesized by Pinegina (2014) for many liies along the Pacific coast of Kamchatka. I1$ thi
supplement, we include data from Ust'-Kamchatsk(\J{Pinegina et al. 2012; Pinegina 2014) becatise i
within (at the north end of) Kamchatsky Bay (Fi@).S

The distribution of elevations (meters above seal)eand distances (meters from modern shorelifie) o
excavations in the field area, southern KamchaBsky, are shown in Figure S6. We use these dissance
and elevations for reconstructing tsunami sedimemip and inundation for 2@entury tsunami deposits
(Fig. S7). For south Kamchatsky Bay, the maximuofije width is less than 800 m; in north Kamchatsk
Bay, distances reach about 1.8 km (Figs. S7, S8).

The elevation and distance of tsunami deposits@B&qo7, including data from the Ust’-Kamchatsk
area, north Kamchatsky Bay, are shown in Figure &dme excavations contain no deposits abovgiKS
The deposit that is present in the most excavati@nsiterpret as from 1923; the second-most extensi
deposit is from 1997. Rarely there is a third d#fplmetween the other two, which we assign to 106ile.

The number of paleotsunami deposits per tephravaitéor three intervals below K&-are shown in
Figure S8, which includes data from north KamchaBly near Ust'-Kamchatsk. For each interval, the
elevation and distance from shoreline of each eaté@w is reconstructed using methods as in Figére S

Locations of the 5 December 1997 Kronotsky earthque rupture, according to different studies

Our tsunami-deposit study has implications forrthgture zone of the 1997 Kronotsky earthquake.
Figure S9 is a compilation of several different migdor the location of this rupture zone, fromvioessly
published work.

Table S1. HISTORICAL TSUNAMIS AFFECTING (or possjtaffecting) THE KAMCHATSKY BAY COAST OF KAMCHATKA*

EARTHQUAKE PARAMETERS RECORDS OF TSUNAMI RUNURide gage recordsinitalics) in meters
Locations South to North, Olga Bay to Bering Island MAX Hilo
Date Source region Mw" Olga Kron. CHAZHMA Cape souttJ-K tide Kamch Bering ||Kamchal HI '
(UTC) Bay Cape ADR-BIST Shuberta of U-K gage River  (south ka
5-Dec-97 Kronotsky Peninsula  7.8/7.9 0.5-1 15 thisgpap Wor:ﬁ:ng i?;g;gl ptz:aser 0.24
7-May-86 Andreanof Islands 8 0.04 009 | 009 | 028
3-Mar-85 Chile 8 0.03 0.77
28-Dec-84 Kamchatsky Strait 6.7 0.02 0.17
17-Aug-83 Kamchatsky Bay 7.1 0.02
15-Dec-71 Commander Is. 7.6 0.47 0.10
22-Nov-69 Bering Sea 7.7 0.2 10-15| 0.10
4-Feb-65 w. Aleutians 8.7 only recorded on Petropavlovsk tide gage 0.08 0.30
28-Mar-64 Alaskan Peninsula 9.2 only recorded on Petropavlovsk tide gage 0.06 ~3
22-May-60 Chile 9.5 4 3 0.8 3-4 3-3.5 7 ~10
4-Nov-52 s. Kamchatka 9 10-13 0.5-1 0.1 2 10-15 11
1-Apr-46 Aleutians 8.6 no record on Kamchatka 0.1-0.2 in northern Japex 1.1 in Japan — ~9
13-Apr-23 Kamchatskiy Bay 7.3/8.2 effects obs.” large™ 20 11 4 20 0.30
3-Feb-23 Kronotskiy Bay 8.5n jr;sritg ;ﬁ:zrzr:zr 3 68 | 6.1
17 May 1841 s. Kamchatka N 15 4.6
August 1792 A"If;mﬁgss%;"' 8.25%
15 Apr 1791 Kamchatskiy Bay (7.5) effects 7 km upstream —
4 Nov 1737 N Kamchatskiy Bay (7.8) large?
17 Oct 1737 s. Kamchatka 9.2 >307? —

*Primary sources: Zayakin & Luchinina, 1987; NHiérmerly NGDC) Natural Hazards Data, online ; Seble S4 for 1923 details

"Mw from https://earthquake.usgs.gov

AKamchatka Mw's from Gusev & Shumilina, 2004; &2 £3Apr23 is based on tsunami (Gusev & Shumil2®4); 7.3 is Ms; see text discussion
*Andreanof Islands, 1996, 7.9 and 1957, 8.6, ndague observations for Russia

**Ms from Zayakin & Luchinina, 1987

ATroshin & Diagilev, 1926; see details in Table S4



Table S2. Epicentral locations, centroids and niameagnitudes for the 5 December 1997 Kronotskthgaake (ISC* Event 1056468 "Near east coast of
Kamchatka Peninsula")

Origin of analysis ISC*origin ID___ Lat°N  Long°E Moment/Mw___Additional information
Epicenter / Mainshock®
Russian Geophysical Agency (KEMSD) 54.95 163.23 Guagal. 1998, Luneva & Lee, 2003
Zobin & Levina, 2001; Slavina et al., 2007 54.64 BR. Kamchatka net. catalogue; Slavina et al., 2007
KRSC reported in ISC database 2296136 54.64 162.55 KSEC = KEMSD
ISC--International Seismological Centre 1056468 5430 162.0069 accessed online 13 Mar 2017
Engdahl & Villasenor, 2002 2329842 54.797  162.003 |FENCT--Centennial Catalogue
EHB — reported in ISC online 9258772 54.792  162.001 4SEngdahl et al., 1998
NAO — reported in ISC online 2296140 55 162 ISC — NORSAorway
EIDC — Arlington, VA 2296135 54.8523 161.9921 ISC—Exper(GSETT3) Internatl Data Ctr
BJI — China 2296137 54.82 161.90 ISC — China Earthgueakministration
Centroid / Moment Tensor solutions & models
Geophys Survey Russian Academy Sci. 2296139 54.881 .94B1 2.2x16°Nm  ISC — MOS, Obnins
NEIC, Golden, CO [USGS] 2296138, 5159529 54.841 162.03 4.1x16°Nm  ISC; National Earthquake Information Center
Global CMT [formerly Harvard] 2296141 54.31 161.91 7.8 SCI- HRVD, Global GMT #120597C
Harvard CMT early 54.08 162.29 7.9 reported in Gusev et al., 1998
Sohn, 1998 54.8 162  uses 2.5x18Nm model from tsunami analysis; location app
Biirgmann et al., 2001 5419  162.57 uses 3.8x1Nm acos model based on GPS data
Biirgmann et al., 2001 54.23  162.33 uses 4.1x1INm bcos model based on GPS data

last accessed 20 March 2(

"Ordered by longitude, easternmost to westernmost

“Latitude and longitude refer to the center of thper dislocation edge of the modeled centroid

*|SC = International Seismological Cent@n-line Bulletin, http://mww.isc.ac.uk, Internatl. Seismol. Cefithatcham, United Kingdom, 2014;



Table S3: Historical tsunamigenic events in theilkKamchatka region and their record in Hilo, Haiwva

Date (young to old) Location epicenter/rupture Earthquake Tsunami runup/tide
. . M Runup Hilo Hilo
vear Mo Day Ldtitude Region vog  Mw ma)p ide runy  COMMENTS
°N m m m

2009 1 15 46.857 Central Kuril Is. 7.4 ~ * 0 0.11 m tide gage
Severo Kurilsk

2007 1 13 46.243 Central Kuril Is. 8 ~ 6-20**0.11 outer rise event

2006 11 15 46.592 Central Kuril Is. 8.3 ~ 6-20*0.475

1997 12 5 54.88 Kamchatka 7.8 7.9 (9) 0.24 (runup max from
deposits

1995 12 3 44.663 S. Kuril Is. 7.9 ~ * 0.228

1994 10 4 43.773 Shikotan Is. 8.3 ~ 10.4 0.16 outer rise event

1993 6 8 51.25 S. Kamchatka 7.5 7.5 * 0.06

1971 12 15 55.91 N. Kamchatka 7.8 7.8 (23) 0.1 0.47 on Ust'-Kamch.
tide gage; (runup max
from deposits)

1969 11 22 57.8 N. Kamchatka 7.7 7.7 15 01

1963 10 13 44.81 S. Kuril Is. 8.5 ~ 45 04

1963 10 20 44.1  S. Kuril Is. 6.7 ~ 15 01

1959 5 4 53.9 Kamchatka 8.2 8 1.5-201*

1958 11 6 44,53 S. Kuril Is. 8.3 ~ 5 02 limited nearfield obs,
5 m on Shikota

1958 11 12 44.2  S. Kuril Is. 7 ~ 1 o1

1952 11 4 52.3 Kamchatka-Kuril 9 9 (20) 11 3.4 (runup max from
deposits)

1933 1 8 49.12 N. Kuril Is. na na 9 0 Kharimkotan landslide

1927 12 28 53.8 Kamchatka 7.3 7.5 * 01

1923 4 13 55.4 N. Kamchatka 7.3 8.2 14 03

1923 2 52.5 Kamchatka 8.3 8.5 8 6.1

1918 9 7 455 S, Kuril Is. 8.2 ~ 12 15

1917 1 30 55.2 N. Kamchatka 8 * no tsunami; strike-slip
event, Steller f.z

1841 5 17 52.5 Kamchatka 8.4 9 15 4.6

1737 10 17 50.5 S. Kamchatka 9.2 30?

1737 11 4 55.5 N. Kamchatka 7.8 *

Primary sources: Zayakin & Luchinina, 1987; NCEuURami database
*no nearfield data
from Gusev & Shumilina, 2004

#1959 measurement is from Honolulu
**2006 and 2007 runup could not be definitely digtiished in post-tsunami survey

"fracture zone



Table S4. Comparison of measurements and obsemgati923 Kamchatka tsunamis

3 Feb 1923 13 April 1923
Observation locality Latitude Longitude Runup (m)type” Runup (M) type’
Bering Island, Commander Islands 55.200 166.010 4
Kamchatka Pacific coast, north to south
Dembi Spit area, east Ust'-Kamchatsk 56.220 162.520 11 1
Kamchatka River 56.250  162.440 broke ice 7 kn
uprivel
damaged 4 km
Tsutsumi fish plant 56.166 162.26%abin on firs 1 inundation** 1
ridge* ext. damag
First River, north central Kamch Bay 56.076  162.075 20 1
. large, 1stR. ti
(1st River to) Shubert(a) Cape 55.717 161.854 Shub. Cape
Coastal plain south of Shubert(a) Cape (area of our field) smaller than t
the north’
Chazhma River, south Kamch Bay 55.066 161.871 ~:.3 knl,
upriver
Semyachik, central Kronotsky Bay 54.117 159.983 6 1
Kolygir Bay, Shipunsky Peninsula 53.420 159.850 8 1
Ostrovnoye, north Avachinsky Bay 53.254  159.569 okegrv 1
Nalychevo R. north Avachinsky Bay 53.155 159.235 oer 1
Khalaktirka, central Avachinsky Bay 52.980 158.830 6k d*
Avachinsky Gulf (interior) 52.970 158.500 observed 1
Japan Pacific coast, north to south
Hanasaki, Hokkaido 43.278 145568 0.23 2 0.07 2
Ayukawa, Miyagi, Japan 38.300 141.500 0.33 2 0.17 2
Kushimoto, Wakayama, Japan 33.467 135.783 0.5 2
Hososhima, Miyazaki, Japan 32.433 131.667 0.2 2
Pacific islands
Hilo, Hawaii, HI, USA 19.733 -155.067 6.1 1 0.3 2
Kahului, Maui, HI, USA 20.895 -156.477 3.5 1
Honolulu, Oahu, HI, USA 21.307 -157.867 09 2 0.2 2
Haleiva, Oahu, HI, USA 21.593 -158.106 3.7 1
Apia, Upolu Is, Samoa -13.827 -171.761  observed2
West coast North America. north to south
Tofino, BC, Canada 49.153 -125.913 0.14 2 0.08 2
San Francisco, CA, USA 37.807 -122.465 0.1 2 0.15 2
Santa Cruz, CA, USA 36.970 -122.020 observed 1
Los Angeles, CA, USA 33.717 -118.267  observed 1
San Diego, CA, USA 32,715 -117.174 0.2 2 0.1 2

Primary sources: for Kamchatka: Zayakin & Luchinit@87; ~Troshin & Diagilev, 1926; "MSergeeva etoalline

remainder: NCEI catalogue
*Type: 1 = runup, elevation above sea le2 = tide gage amplitude

*first beach ridge ~3.5 m above sea level; secohdh-asl (profile in Pinegina et al., 2014)

**inundation may have been via river to lagoonaas between ridges; sediment inundation 1 km
(Pinegina et al., 201

(d*)based on deposits, Pinegina and Bazanova, 2016

ATroshin & Diagilev, 1926; MSergeeva et al. online
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From upper left, counter-clockwis&usev, Fedotov Gusev (2004) (Fig. S1) chose to outline therenti
aftershock area as a rupture zone for the eartlegfeick pink outline), whereas Fedotov et al. (3988 not draw an
outline but interpreted that the earthquake filleghp between the February and April 1923 evertghis
approximated by the transparent pink ellipBéirgmann et al. 2001 Based on their dislocation mod#&tos based on
GPS measurements; rectangle is surface projectitive anodel fault.Birgmann et al. 2005 [background is
instrumentally recorded seismicity]; original figucaption states: “Bold red outlines labeled witlryare the rupture
zones of large historic earthquakes determined &fiershock distributions [Johnson and Satake, [L'9B8wever,
that 1999 reference does not mention or plot tl8¥ ¥onotsky earthquake, and the rupture zonefame Fedotov et
al. 1982, from which Johnson and Satake omit thel Ap23 event and misplot 1917 (to the north d$ timap zone).
Bassett and Watts 2015Ellipse (superimposed trace) is identified as ‘@smic slip/aftershock zone...” of the 1997
Kronotsky earthquake “modified from Biurgmann ef24l05]” Background is residual bathymetry, theipos
features associated with the Emperor Seamount aim@imging on Kronotsky Peninsula (KP)enos and McGuire
2007 Characteristic rupture ellipses for the 1997 Gisky earthquake with major axes of length 0.%ihner dashed
ellipse), 1 Lc (solid black ellipse) and 1.5 Lc {@udashed ellipse) (Lc is characteristic ruptergth) plotted on a
TPGA (trench-parallel gravity anomaly) map; ruptdiectivity (arrow), centroid location (trianglefin black line is
trench axis.Hayes 2017also see https://earthquake.usgs.gov/earthqualessfmge/usp0008btk#finite-fault): from
finite fault modeling: Surface projection of moeél1997 slip distribution superimposed on GEBCOyaetry;
modeling used a hypocenter matching or adjustgtityji from the initial NEIC solution (Lon. = 162dg.; Lat. =
54.8 deg., Dep. = 34.0 km), and a fault plane @efinsing either the rapid W-Phase moment tensondar-real time
solutions), or the gCMT moment tensor (for histaidutions). White line: plate boundary, gray achre aftershock
locations (up to 7 days), sized by magnitude.
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