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Abstract. An early warning system for drought events can
provide valuable information for decision makers dealing
with water resources management and international aid.
However, predicting such extreme events is still a big
challenge. In this study, we compare two approaches for
drought predictions based on forecasted precipitation de-
rived from the Ensemble extended forecast model (ENS) of
the ECMWF, and on forecasted monthly occurrence anoma-
lies of weather regimes (MOAWRs), also derived from the
ECMWF model.

Results show that the MOAWRs approach outperforms the
one based on forecasted precipitation in winter in the north-
eastern parts of the European continent, where more than
65 % of droughts are detected 1 month in advance. The ap-
proach based on forecasted precipitation achieves better per-
formance in predicting drought events in central and east-
ern Europe in both spring and summer, when the local at-
mospheric forcing could be the key driver of the precipita-
tion. Sensitivity tests also reveal the challenges in predicting
small-scale droughts and drought onsets at longer lead times.

Finally, the results show that the ENS model of the
ECMWF successfully represents most of the observed link-
ages between large-scale atmospheric patterns, depicted by
the weather regimes and drought events over Europe.

1 Introduction

Developing a robust early warning system for drought
events is a key challenge for modellers and forecasters.

The timescale of these events (generally from 1 to several
months) requires accurate numerical weather forecasts with
long lead times. Due to the uncertainties of the models, the
chaotic nature of the atmospheric circulation and the errors in
the initial conditions, the reliability of precipitation forecasts
is close to climatology beyond 2-week lead time (Haiden
et al., 2017; Vigaud et al., 2017). In a recent study (Lavaysse
et al., 2015), it has been shown that about 40 % of the mete-
orological droughts, defined by an anomaly of the standard-
ized precipitation index (SPI), can be detected 1 month in ad-
vance by using the forecasted precipitation provided by the
ECMWF Ensemble extended forecast model (ENS). These
forecasts might be improved by using post-processing tech-
niques or predictors that are better simulated by atmospheric
models (Lavers et al., 2016a, b; Ferranti et al., 2018).

The concept of weather regimes (WRs) was first intro-
duced in the early 1950s on the assumption that the atmo-
sphere evolves between a finite number of large-scale cir-
culation states. It is based on recurrent, persistent and/or
quasi stationary states of the atmosphere, generally diag-
nosed with anomalies of geopotential heights at 500 hPa
(Michelangeli et al., 1995; Stephenson et al., 2004). First
and principally studied in wintertime, when they are more
stronger, four main states have been defined, namely the pos-
itive North Atlantic Oscillation phases (NAO+), the negative
NAO (NAO−), the blocking regime and the Atlantic Ridge
regime. They are well known to play an important role in
creating large-scale conditions that either favour or inhibit
precipitation in Europe (Plaut and Simonnet, 2001; Yiou and
Nogaj, 2004), especially in extreme events (Cattiaux et al.,
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2010; Toreti et al., 2010; Guérémy et al., 2012; Boé, 2013;
Yiou and Cattiaux, 2013). These impacts can be observed
in both winter and summer (Pfahl, 2014). In Europe, well-
identifiable spatial patterns of surface temperature and pre-
cipitation are associated with each regime. For instance, the
NAO+ in winter is linked to above-normal temperature and
precipitation over northern Europe and below-normal precip-
itation over southern and central Europe (Wanner et al., 2001;
Hurrell et al., 2013). The opposite results of surface tempera-
ture and precipitation anomalies are generally observed dur-
ing NAO− phases. The WRs can also drive extreme events.
The NAO+ regime favours heavy precipitation in northern
Europe and periods of drought in the Mediterranean area.
The blocking regime determines the occurrence of dry peri-
ods in large parts of southern Scandinavia and central Europe
(Yiou and Nogaj, 2004) and influences the heatwave occur-
rences in Russia and northern Europe (Schaller et al., 2018).
The use of WRs is also interesting, since their occurrence and
variability are connected to SST anomalies (Häkkinen et al.,
2011; Peings and Magnusdottir, 2014; Zampieri et al., 2017)
and thus somehow implicitly takes into account the Atlantic
Ocean influence. The practical interest in classifying large-
scale geopotential anomalies into a few pre-defined patterns
relies on the fact that local weather conditions depend on
large-scale atmospheric flows. If WRs can be better repre-
sented and forecasted by general circulation models (GCMs),
they would provide additional information for local weather
anomalies via statistical downscaling techniques, which de-
rives linkages between large-scale geopotential anomalies
(i.e. the WRs) and local weather phenomena (i.e. precipita-
tion anomalies) for medium-range lead times.

Since geopotential and temperature fields are generally
better forecasted than precipitation in numerical weather pre-
diction systems (Vitart, 2014), and since long-term droughts
are mainly driven by large-scale forcing (Kingston et al.,
2015), the benefit of using WR occurrences as predictors of
meteorological drought is analyzed with regard to the pre-
cipitation forecasts. The paper is organized into six sections.
The data sets and the methods are presented in Sect. 2, and
the different forecast methods are in Sect. 3. The comparison
of predictability scores obtained by using precipitation and
MOAWRs is provided in Sect. 4. The sources of uncertain-
ties are then discussed in Sect. 5 and the main conclusions
are drawn in Sect. 6.

2 Data and methods

2.1 Data sets

The observed daily cumulated precipitation data
are retrieved from the European Climate Assess-
ment & Dataset (ECA & D) and the ENS gridded data
set (E-OBS) version 12, which provides daily station-based
precipitation and temperature data on regular grids (Haylock

et al., 2008). While the full E-OBS resolution is 0.25◦,
here data have been upscaled by averaging to 1◦ due to the
specific focus on large-scale drought with significant socio-
economic impacts. E-OBS data are available from 1950 to
the present.

Atmospheric predictors are identified by using the geopo-
tential height at 500 hPa. The daily geopotential is derived
from the ERA-Interim reanalysis (ERAI, Dee et al., 2011)
with a spatial resolution of 1.125◦ covering the period
from 1979 to the present.

The forecast products (precipitation and 500 hPa geopo-
tential height) are derived from the ENS of the ECMWF
(Molteni et al., 1996). The ENS is the latest version of the
ECMWF Ensemble extended forecast model and is com-
posed of one unperturbed member and 50 perturbed mem-
bers, distinguished by different initial conditions and repre-
sentations of model uncertainties. In addition to these fore-
casts, the ECMWF produces hindcasts that are initialized on
the same date of the ENS for the last 20 years with five mem-
bers only. In 2012, it was extended once a week to a 32-day
lead time and the horizontal resolution varies from Tl639
(32 km) from t+0 to t+10 days to Tl319 (64 km) from t+11
to t+32 days. All of these data sets have been re-gridded onto
a regular grid of 1◦ resolution based on an averaging upscal-
ing method. The rationale of using coarser resolution is (i) to
detect and so focus on larger-scale precipitation deficits and
(ii) to take into account spatial bias in the model that could
detect the right precipitation signal but with a slight spatial
phasing error.

In order to build the baseline (following a normalization
technique) and to have a time series long enough to cal-
culate the scores, 21 years of hindcasts (November 1992
to November 2013) of the forecasts (November 2012 to
November 2014) are used. To be coherent, the data sets of
observed precipitation and the WR calculations (from ERAI)
are restricted to the same period.

2.2 Weather regimes

In order to build the forecasts based on predictors (illustrated
in Fig. S1 in the Supplement), the WR classification (i.e. def-
inition of the WR patterns) is done exclusively using ERAI,
by a K-means method nested within a genetic algorithm to
avoid dependence on the initial conditions and the trap of
the local minima (Toreti et al., 2010). The four meteorolog-
ical seasons are treated independently: winter (December to
February), spring (March to May), summer (June to August)
and autumn (September to November) but to avoid inconsis-
tency when moving from one season to another, each season
is extended by adding the last month of the previous sea-
son. This method of classification has been extensively used
(Michelangeli et al., 1995; Robertson and Ghil, 1999; Santos
et al., 2005), but because in this study the WR classification
needs to fit specific requests (20-year moving period of the
hindcast, the four seasons), it is important to regenerate this
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classification. Nevertheless, the patterns of the geopotential
anomalies (shown in Fig. S2) are strongly similar to those
obtained in aforementioned studies. The choice of using only
the ERAI classification and not ENS is justified by (i) look-
ing at previous studies that have shown the relatively similar
behaviour of ERAI and ENS forecasts (Ferranti et al., 2015)
and (ii) considering that this choice avoids inconsistency (or
the impossibility to derive a coherent classification) due to
the continuous evolution of the ENS model. Four WRs are
identified in winter and spring, while three WRs are detected
in summer and autumn (see Fig. S2). The number of WRs is
estimated by following Toreti et al. (2010) and depends both
on the period (here from 1992 to 2013) and the region (North
Atlantic) studied. This is why the number of summer WRs is
different, e.g. with respect to Cassou et al. (2005).

Then, an assignation procedure is run to identify the clos-
est WR to a given daily geopotential anomaly of ERAI and
a given ENS member. To this aim, the method proposed
by Ferranti et al. (2015) is applied here. Namely, a pattern-
matching algorithm based on the minimum distance from the
previously identified centroids is used to assign each day and
individual forecast member to the closest weather regime.
The climatology of the forecasted WRs is then calculated
by summing the daily classification of each WR for all of
the members and all the days inside a 30-day window. The
same climatology is derived by using ERAI. The monthly
occurrence anomaly of WRs (MOAWRs) is then calculated
with respect to the climatological occurrences based on the
hindcast period (1992–2013) and obtained by using ERAI
and ENS independently.

To potentially increase the signal emerging from the link-
age between MOAWRs and precipitation anomalies, differ-
ent combinations (additions and subtractions of WR occur-
rences) of two WRs are tested. This could be useful when
two WRs have the same or opposite impacts on precipitation.
For example, in the case of two regimes, WRa and WRb,
which are respectively associated with dry and wet condi-
tions over a certain region, the occurrence difference between
the two WRs could be more linked to the drought events over
that region (this example will be discussed later in the doc-
ument). In total, a set of 6 to 12 combinations (see the list
in Table 1) is tested when three or four WRs (depending the
season) are detected respectively.

2.3 Drought metrics

As suggested by the World Meteorological Organization
(Svoboda et al., 2012), the standardized precipitation in-
dex (SPI) is one of the most relevant indicators, providing a
clear and robust characterization of precipitation deficiencies
and it is a good proxy for assessing meteorological droughts.
The SPI calculation is relatively simple and it is performed
independently at each grid point of the domain. This method
is robust and has the advantage of being flexible in time, for
the accumulation period studied, and in space, for the reso-

Table 1. Definition of WRs and WR combinations. WR combi-
nations are defined as either additions or subtractions of monthly
WR frequencies. Asterisks indicate regimes that exist only in win-
ter and spring when four WRs are detected.

WR A B C D

A a a+ b a+ c a+ d∗

B a–b b b+ c b+ d∗

C a–c b–c c c+ d∗

D a–d∗ b–d∗ c–d∗ d∗

lutions used. It also provides an unbiased product, which is
important for comparing observational data sets and model
simulations. In the SPI calculation, a gamma distribution is
first fitted to monthly cumulated precipitation data. Then this
distribution is transformed into a standard normal distribu-
tion (McKee et al., 1993, 1995). The choice of the statistical
distribution has been verified in Lavaysse et al. (2015) and
it was shown that this assumption is valid over a large pro-
portion of Europe. Nevertheless, over the driest regions and
in summer, some grid points (mainly in Spain and southern
Italy) the significant tests are not verified. Both the observed
and modelled daily precipitation values are accumulated over
a period of 30 days (i.e. we use the SPI-1, where 1 refers
to the accumulation period of 1 month). The choice of an-
alyzing relatively short meteorological droughts is based on
two main constraints: (i) a technical one connected to the
limitation of the extended ENS that provides forecasts up to
33 days in the version analyzed here, and (ii) the chaotic na-
ture of the atmosphere that limits the predictability of precip-
itation and geopotential forecasts after several weeks (Vigaud
et al., 2018). This relative short-term drought information is
also relevant for users and decision makers, since it provides
valuable information about the onset, continuation or end of
longer droughts (Svoboda et al., 2012; Stagge et al., 2015).

Based on this approach, both observed and forecasted SPI-
1 values are calculated for the period 1992–2013. Here, a
meteorological drought is defined as having SPI-1 values less
than−1. According to the normal distribution of the SPI, this
threshold corresponds to about 17.5 % of the driest events.
Based on Lavaysse et al. (2015), the most reliable method
for producing a dichotomous forecast of drought from proba-
bilistic forecasts of precipitation, and more specifically from
the extended ENS of the ECMWF, is to predict a drought as
soon as more than 40 % of the ENS members are associated
with a drought forecast (i.e. SPI-1 <−1).

2.4 Validation tools

To assess the forecasts of drought events, traditional scores
for dichotomous products are applied. These scores make use
of the contingency table (Table 2), which shows the types of
agreement of observed and forecasted variables.
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Table 2. Contingency table of dichotomous events illustrating the
four types of classification between observed and forecasted events.

Event observed

Yes No

Event Yes hits false alarms
forecasted No misses correct negative

The percentage of observed events that had been cor-
rectly forecasted are provided by the probability of detec-
tion score (POD), whereas the percentage of events that had
been forecasted but did not occur are indicated by the false
alarm rate (FAR). Finally, to take into account the hits, misses
and false alarms and to neglect the correct negative forecasts
that will boost the scores for rare events, the Gilbert Skill
Score (GSS, Jolliffe and Stephenson, 2003) is used. For rare
events, such as droughts, it is more relevant to use this score
than the Pierce’s skill score, for instance. The GSS indicates
how well the forecasted droughts correspond to the observed
ones. This skill score is compared to the score obtained by
the climatology. It is calculated as follows:

GSS=
(hits− hitsc)

(hits+misses+ false alarms− hitsc)
, (1)

where hitsc =
(hits+misses)(hits+false alarms)

total . Based on these
equations, a perfect forecast achieves a score equal to 1,
while a score equal to 0 is assigned to the climatology (i.e. no
forecast skill). All these scores are calculated independently
for each season.

3 Configuration of the drought forecasts

To forecast droughts using the MOAWRs approach,
three steps are needed (see also Fig. S1): (1) the WR clas-
sification, to determine the main patterns of 500 hPa geopo-
tential anomalies; (2) the daily WR attribution, to determine
which is the closest WR classified previously for a fore-
casted (or reanalyzed) geopotential anomaly for each day and
member, and the calculation of the MOAWRs; (3) the pre-
dictor assignation, to determine which WR, or combination
of WRs, is the best predictor of droughts for each grid point.
These different steps are now detailed.

3.1 WR classification and MOAWRs calculation

The WR classification (step 1 in Fig. S1) is detailed previ-
ously. The patterns of the geopotential height anomalies for
the four seasons are displayed in Fig. S2. The best-known
WRs occur in winter, namely the NAO− (Fig. S2a), the
NAO+ (Fig. S2e), the Atlantic Ridge (Fig. S2i) and the
blocking regime (Fig. S2m). Once the WR classification is
done, the closest WR to the daily geopotential of each ENS

member is attributed to both ERAI and ENS. From daily at-
tribution, the climatology and the anomalies of occurrence
of each WR can be done (illustrated by the step 2 in Fig. S1)
using ERAI or ENS depending on the configuration of the
forecast experiment (see list in Table 3). These two steps al-
low daily attribution of WRs and then the MOAWRs for both
the ERAI and ENS data sets.

3.2 Assignation of predictors

The objective of this step is to identify the best SPI-1-
predictor within the three or four WRs identified for each
season and their 6 to 12 possible combinations (step 3 in
Fig. S1). This is done by using the temporal correlation be-
tween the MOAWRs (deriving from ERAI or ENS depending
the forecast experiment) and the SPI-1 for each grid point and
each MOAWR. This allows us to highlight the large-scale
impacts of the WRs on precipitation (see Fig. S3 and com-
ments). An automatic attribution is then applied based on the
maximum of the absolute values of the correlations. The sign
of the correlation is recorded to keep track of the type of link-
age. An example of linkage over Scandinavia is provided in
the Supplement (see Supplement and Fig. S4).

3.3 Forecast configurations

The potential benefits and limitations of using these predic-
tors are assessed thanks to five different drought-forecasting
approaches. These approaches are differentiated by the
methodologies employed for the three steps listed previously
and are illustrated in Fig. S1 and summarized in Table 3.

The first method of drought forecasting, called a “refer-
ence”, is based on forecasted precipitation (Lavaysse et al.,
2015). The skill scores of this forecasting approach are used
here as a benchmark.

The second method of forecasting, called “idealized” (red
arrows in Fig. S1), uses exclusively the MOAWRs derived
from ERAI and does not take into account the uncertainties
related to the forecasts of WRs. In this method, the assig-
nation of predictors is based on the best correlation between
MOAWRs from observed ERAI and SPI-1. It is interesting to
note that, following this approach, the large majority of SPI-1
in Europe is associated with a combination of WRs (Fig. 1).
The highest absolute values of these correlations show sig-
nificant spatial differences (Fig. 2). Throughout the year,
there are generally higher linkages in northern Europe than in
southern Europe. There is also a strong seasonal difference.
In winter, the mean correlation is about 0.55, whereas it is
about 0.28 in summer. The origin of precipitation, which is
more synoptically driven in winter and more local in summer,
can explain these results.

The third forecasting method, called “operational”, com-
putes MOAWRs derived from the ENS forecasts, but the
WR classification (definition of the different regimes) and the
WR assignation (best WR over each grid point) are still de-
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Table 3. Definition of the five sets of forecasts compared in that study. The differences are based on whether a predictor is used or not, the
use of predictors derived from reanalyze or forecasted and for the assignation procedure, the use of observed or forecasted SPI.

Name WR MOAWR WR for SPI for
classification predictor assignation assignation

Reference No predictor (precipitation forecast) – – –
Idealized ERAI ERAI ERAI Observed

Operational ERAI ENS ERAI Observed
Optimized ERAI ENS ENS Observed

Process ERAI ENS ENS Forecasted (ENS)

Figure 1. Automatic attribution of the best predictors in winter (a),
spring (b), summer (c) and autumn (d) based on the occurrence
anomalies of WRs of ERAI and the observed precipitation (used
for the operational and idealized forecasts). The names of the pre-
dictors are indicated on the colour scale.

rived from ERAI and observed SPI-1 (see Table 3 and green
arrows in Fig. S1). The advantage of this method is a real as-
sessment of the model ability to forecast both the WRs and
the relationship between the SPI and the WRs. As this assig-
nation is constant (i.e. derived from ERAI and observations),
it is also easier to set up operationally and there is no prob-
lem when the version of the operational ENS model changes.
The disadvantage is the non-optimization of the forecast;
i.e. there is no correction for bias in the forecasted WRs.

The fourth forecasting method, called “optimized” (see
Table 3 and blue arrows in Fig. S1), is relatively close to
the previous one but uses a different assignation procedure.
It is defined as the best correlation between the observed
SPI-1 and the forecasted MOAWRs by the ENS as predictor
(instead of those derived from ERAI). This method derives
the best relationships between forecasted MOAWRs and ob-

Figure 2. Absolute values of temporal correlation between SPI-1
and MOAWR derived from ERAI (used for the operational and ide-
alized forecasts) attributed from the 16 combinations in winter (a),
spring (b), summer (c) and autumn (d). Only values with a confi-
dence level larger than 90 % are plotted.

served precipitation and by definition will obtain the best
scores, even if the WRs are not correctly forecasted. This
methodology tends then to optimize the forecasts by cor-
recting some bias in the forecasted MOAWRs. The correla-
tion values for observed SPI with MOAWRs derived from
ENS for winter are provided in the Supplement (Fig. S5)
and depict patterns very similar to those obtained with ERAI
(Fig. S3), illustrating the good representation of the linkages
in ENS.

Finally the fifth forecasting method, called “process” (pur-
ple arrows in Fig. S1 and Table 3), can be used to investigate
the skill of the model in representing observed processes.
Except for the WR classification procedures, which are still
derived from ERAI, this method uses ENS forecasts. The
forecasted MOAWRs are then linked to the forecasted SPI-1
(instead of observed SPI for the other configurations) in the
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Figure 3. POD (a, d, g, j), FAR (b, e, h, k; with reverse colours)
and GSS (c, f, i, l) scores of droughts prediction calculated using
the reference forecast. The scores are calculated for (from top to
bottom) winter (DJF, a–c), spring (MAM, d–f), summer (JJA, g–i)
and autumn (SON, j–l).

assignation procedure. This configuration allows an analysis
of the modelled linkage between MOAWRs and precipita-
tion, that will be compared to the observed ones provided by
the idealized configuration.

4 Results

4.1 Skill scores

The skill scores of the forecasted precipitation, called “refer-
ence”, are used as a benchmark. It is derived from Lavaysse
et al. (2015), where a drought is forecasted when at least
40 % of members forecast SPI <−1. The best achieved per-
formance (for winter in central Europe) shows how slightly
more than 40 % of the observed drought events are correctly
predicted with a 30-day lead time (Fig. 3a, d, g, j) with
about 60 % of false alarms (Fig. 3b, e, h, k). For both POD
and FAR, the spatial variability is small (standard deviation
lower than 0.2), especially during spring and autumn. In win-
ter, high scores can be noticed in Germany, Poland, Spain
and Norway, whereas in summer, drought seems to be more

Figure 4. Anomalies of POD (a, d, g, j), FAR (b, e, h, k) and
GSS∗2 (c, f, i, l) scores of drought prediction using the operational
forecast with regard to the reference forecast. The scores are cal-
culated for (from top to bottom) winter (a–c), spring (d–f), sum-
mer (g–i) and autumn (j–l). Improvement scores using the predic-
tors are indicated in green (inverse scale for FAR). Only differences
with confidence intervals larger than 90 % are plotted. GSS is mul-
tiplied by 2 to use the same scale as the other metrics.

predictable in eastern Europe. When the POD and the FAR
are combined in the integrated GSS (Fig. 3c, f, i, l), higher
seasonal and spatial differences appear. Overall, the score
reaches up to 0.3 in winter, especially in northern Germany
[50◦ N, 10◦ E], while the worst value is reached in spring and
summer, especially in western Europe (France, Belgium).
Due to the impacts of the local forcing on precipitation, the
drought forecasts based on large-scale predictors are better in
continental than in coastal regions (more details in Lavaysse
et al., 2015).

The forecasts using predictors, using the operational fore-
cast, can now be assessed with respect to the reference. In
order to detect the same number of drought events when us-
ing the predictors and the precipitation, the threshold of the
MOAWRs is chosen to be equal to 0.176 (0.824 for negative
correlations). The POD, FAR and GSS anomalies with regard
to the reference forecast (i.e. Fig. 3) for the four seasons are
shown in Fig. 4. This is done using 20 years with a leave-one-
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out technique, which is a cross-validation method for small
sample sizes enabling us to validate results by simply parti-
tioning the series into a training and a test part. The opera-
tional forecast is more spatially variable. As for winter in the
northern part of Europe, this forecast is significantly better in
terms of both POD and GSS, whereas in central Europe the
reference forecast is more reliable. Despite the fact that the
patterns are less homogeneous for the other seasons, some
positive impacts of this operational forecast appear, for ex-
ample, in northern Russia in spring, western Europe in sum-
mer, central Europe during autumn. The same results have
been plotted in the Supplement (Fig. S6) for the optimized
forecasts and do not show significant differences with Fig. 4.

These results are consistent with the intensity of the link-
age measured during the assignation procedure between the
SPI and the WRs (Fig. 2) and highlight the regions where
the large-scale atmospheric patterns associated with the WRs
could better explain strong precipitation deficits when com-
pared to local drivers (e.g. orography, soil moisture and
coastline).

4.2 Intensity and initial conditions

To better understand the potential performance of the ap-
proach, sensitivity tests are conducted. In the previous sec-
tion, the SPI-1 intensity threshold, which defines a drought,
was fixed to −1. The previously used skill scores are derived
here for SPI lower than −1.5 and −2 (∼ 7 % and ∼ 2.5 %
of the most extreme cases). A second sensitivity test is done
on the initial conditions, influencing all the results but also
bringing useful information on drought onset and persis-
tence. Most of the studies on drought focus on 3-month (or
longer) cumulated precipitation that could have more severe
impacts on, for example, agricultural and water resources.
Due to the unpredictable nature of the weather and the lim-
itation of the lead time of the ENS model, the assessment
of drought forecasting is limited to a 1-month lead time in
our study. Nevertheless, the information of the two previous
months (observed SPI-2 with a threshold defined as −1) is
taken into account to measure the impacts of these initial
conditions and the ability to forecast drought persistence and
onset.

In Fig. 5 the GSS scores in winter for the whole domain
shown in the previous figures are synthesized by using box
plots. The results shown in Figs. 3a and 4a are represented
by the black box plots for SPI <−1 in Fig. 5a and b. Over-
all, the predictability decreases with the drought intensity. In
winter, dry initial conditions generate a favourable environ-
ment to better forecast droughts. In other words, the persis-
tence of drought is better predicted than the onset. Finally,
the last main result concerns the improvement of the opera-
tional forecasts. For the SPI lower than −1, all GSS values
shown in Fig. 5 are quite close. But, as also highlighted by
Fig. 4, there is a larger spatial variability with the MOAWRs
approach. For more intense droughts, there is a global and

Figure 5. Box plot of the GSS scores in winter using the refer-
ence forecast (a) and the operational forecast (b). The scores are
calculated over the entire domain and the boxes display the spatial
variability. The scores depend on the SPI intensities (−1, −1.5 and
−2, x axis) and the initial conditions defined by the previous ob-
served SPI-2 conditions (see text for more details). Crosses indicate
the scores but are calculated by merging all the grid cells.

significant improvement by using the operational forecast.
Indeed for drought intensities with SPI lower than −2, the
median of the GSS scores goes up from close to 0 (using the
precipitation-based method) to 0.05 (using the MOAWRs).

The same sensitivity tests are conducted for the other sea-
sons (Figs. S7–S9), and the decrease in predictability with
increasing drought intensity is found for all of them. Never-
theless, the conclusions on the role of the initial conditions
depend on the season. For instance in summer, drought on-
sets are slightly better predicted than drought persistence.
The reason could be the higher temporal variability of the
monthly precipitation deficits in summer than in winter due
to the larger impact of local forcings. Finally, in all the sea-
sons, the use of atmospheric predictors (i.e. operational fore-
cast) leads to a better performance when looking at the most
extreme events (SPI <−2).

5 Sources of uncertainty

To better discuss and understand the results and their uncer-
tainties, additional tests are reported here. The main objective
is to quantify the contribution of the uncertainties in WR pre-
dictions and the linkage between the SPI and the WRs.

5.1 Validation of the WR forecasts

The first question to address is about the quality of the fore-
casts of MOAWRs. The purpose here is not to provide a com-
plete evaluation of the WRs forecasts that have been already
studied (Ferranti et al., 2015; Matsueda and Palmer, 2015),
but to focus on errors that could impact the drought forecasts.

To validate the forecast of the WRs, first the comparison
of the frequency of occurrence of each daily WR is per-
formed (Fig. 6). To do so, the climatology of the total oc-
currence of each WR among all the members and the entire
lead time (5 members× 30-day LT) is calculated to extract
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Figure 6. Example of the frequency distribution of WR occurrences
(in days per 30-day windows) in winter for WR-A (a), WR-B (b),
WR-C (c) and WR-D (d) using ERAI and ENS (red and blue bars,
purple when the two overlap).

the monthly anomalies. The forecasted anomalies are divided
by the number of ENS members to create comparable results
with the data provided by ERAI. The WR-distributions as
given by the forecasts are characterized by a higher degree
of similarity than the ones given by ERAI, with a peak of
occurrence at around 5–8 days in winter (blue bars, Fig. 6).
The same holds for the other seasons (not shown). The lower
spread of the forecasted WR occurrences, associated with re-
duced tails (i.e. reduced occurrences for durations exceeding
20 days), could be explained by the underestimation of the
long-term persistence of regimes. A further comparison of
the MOAWRs from ERAI and ENS (scatter plots in Fig. 7)
suggests that (i) the distribution of forecasted drought occur-
rences could be explained by the overestimation of low oc-
currences using ENS than the reanalysis (i.e. larger number
of forecasted events compared to those derived from ERAI
with durations shorter than 5 days), and (ii) the underestima-
tion of longer duration events (i.e. lower events with dura-
tions longer than 15 days using ENS than ERAI, red dotted
lines in Fig. 7). Despite this behaviour, the correlations ap-
pear significant with a maximum of 0.65 for the WRa (sig-
nificance with 90 % of confidence at 0.58). These significant
scores are obtained in winter, while for the other seasons the
correlations are lower (see Table 4). In summer, they are not
significant for two-thirds of the WRs.

Table 4. Correlation values between the forecasted and observed
MOAWR for each WR and the four seasons. Values indicated in
bold have a significance level above 0.9.

Season WR Correlation Season WR Correlation

Winter A 0.65 Spring A 0.48
B 0.52 B 0.43
C 0.57 C 0.47
D 0.57 D 0.62

Summer A 0.45 Autumn A 0.51
B 0.42 B 0.47
C 0.47 C 0.47

5.2 Strength of MOAWR-precipitation linkage

According to the previous subsection, the WR forecast could
be improved. Thus, it is important to assess the limitation of
the method using predictors and so assess the strength of the
MOAWR and precipitation linkage. To this aim, the idealized
forecasts of MOAWRs, i.e. geopotential anomalies provided
by ERAI without uncertainties, are compared to the forecast
of precipitation discussed and shown in Fig. 3.

The POD scores are strongly improved between seasons
and regions (Fig. 8a, d, g and j). These results are strongly
connected to the correlation values obtained and shown in
Fig. 2 with the same north–south and seasonal variabilities
being observed. However, almost all of the northern part of
Europe shows a better POD with the idealized than reference
forecasts. Up to 70 % of observed drought events are cor-
rectly detected during winter. This percentage falls to about
17.5 % in summer (i.e. the climatological value) in the south-
ern part of the domain. The results in terms of FAR are
more variable depending on both the season and the region.
On average, there is a small decrease in the FAR. However,
the GSS shows a clear and significant improvement in the
drought forecast when using the WR predictors. Compared to
the scores using operational forecasts in Fig. 4, the bigger dif-
ference is more in terms of magnitude than spatial distribu-
tion. For instance, in winter a large improvement is observed
in northern Europe (up to 0.2 for idealized against 0.1 for
operational forecast over Scandinavia), whereas a low score
is obtained in central Europe. Based on this sensitive analy-
sis, the linkage between the SPI-1 <−1 and the MOAWRs
is strong enough to provide significant improvements of the
prediction scores in most of the regions. Nevertheless, this
analysis also highlights the limitations of the methods used
in this study when and where the influence of the WR on
drought is lower (e.g. Germany and Poland in winter, eastern
Europe in summer and southern Europe in autumn).

5.3 Modelled linkage

Some additional tests are also conducted on the predictor
assignation procedures (definition of the best predictor for
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Figure 7. Scatter plots of the occurrence of the four winter WRs provided by ERAI (x axis) and provided by ENS (y axis). The linear
least-square regressions are indicated with red dashed lines and the corresponding correlation on the top right of each panel.

SPI-1 <−1 at each grid point) to see the impacts of using
either ERAI or ENS (the latter could potentially correct bias
of the ENS). This is done using the optimized forecast. Due
to the errors associated with the WR forecasts, the proce-
dures using WRs from ERAI or ENS provide different results
(Fig. 9a compared to Fig. 1a). The assignation patterns done
by using ERAI (Fig. 1a) for the operational and idealized
forecasts have less homogeneous large-scale structures (i.e.
more spatial variability) than the optimized forecast (Fig. 9a),
showing more complex linkages using ERAI than ENS. Nev-
ertheless over continental regions, there are similarities (im-
pact of WRs b, b–a, a, c–d) illustrating the relatively good
representation of the impacts of specific WR on precipita-
tion by ENS. The correlations between the forecasted WRs
and the observed precipitation are then plotted (Fig. 9b). The
correlation values, which can be compared to the correlation
shown in Fig. 2a, are low as a result of the relatively low pre-
dictability of the WRs previously discussed. The values are
also sensitive to the strength of the linkage between WRs and
precipitation (i.e. highest scores in southern Norway and the
northern part of the UK, the lowest scores in central Europe.).

The last analysis is focused on the modelled linkage be-
tween the SPI and the WRs, both provided by the ENS
(i.e. using the process forecast, Fig. 9c and d). The great sim-
ilarities in the maps of assigned WRs between process and
idealized forecasts are remarkable (correlation values greater

than 0.65, Figs. 1a and 2a compared to Fig. 9c and d). This is
especially true over the UK, Ireland, Scandinavia, Spain and
north-western Russia. Despite some differences observed in
southern France and Italy, where the process overestimates
the large-scale forcing on precipitation (i.e. with stronger
correlation with WRs than observed), the patterns obtained
are very similar when comparing the correlation values be-
tween SPI-1 (observed or forecasted) and MOAWRs (from
ERAI or ENS) in Figs. S3, S5 and S10. This highlights the
overall good representation by ENS of the processes linking
large-scale circulation and local precipitation deficits. So the
ENS model succeeds in capturing the impacts of the WR oc-
currences on the precipitation anomalies as shown with ob-
servations and ERAI over a large part of Europe. These re-
sults could suggest limitations in using such predictors, as
the lack of skill score could result from a failure in forecast-
ing the large-scale atmospheric circulation rather than from
a misrepresentation of the physical processes from the large-
scale forcing to local weather.

6 Conclusions

In this study, a drought-forecasting method based on large-
scale atmospheric predictors is proposed in order to improve
the early warning of atmospheric drought events. The method
is based on the monthly occurrence anomalies of weather
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Figure 8. Anomalies of POD (a, d, g, j), FAR (b, e, h, k) and
GSS∗2 (c, f, i, l) of the drought prediction based on the ideal-
ized forecasts with regard to the reference forecast, in winter (a–c),
spring (d–f), summer (g–i) and autumn (j–l). Improvement scores
using the predictors are indicated in green (inverse scale for FAR).
Only differences with confidence intervals larger than 90 % are plot-
ted. GSS is multiplied by 2 to use the same scale as the other met-
rics.

regimes (MOAWRs) within a 30-day lead time. The method-
ology used to select the predictors is based on a three-step
procedure. First, WRs (described by daily 500 hPa geopo-
tential anomalies) are identified by using a genetic K-means
algorithm for each season separately and for both ERAI and
extended ENS forecasts. The climatological occurrences are
calculated for each WR. The identified three/four WRs (de-
pending on the season) are combined (added or subtracted)
with each other to enhance the potential signal of their im-
pacts. Second, the MOAWRs is used as a predictor of mete-
orological droughts at each grid point. The predictor assig-
nation procedure is based on the correlation between the
MOAWRs and the SPI-1. To select the best predictor, the
MOAWR associated with the strongest absolute value of cor-
relation is selected. The last step involves the forecasting
of the SPI-1 lower than −1. Two approaches are derived
and compared. The first one is based on the index devel-
oped by Lavaysse et al. (2015) for drought events and de-
rived from the forecasted precipitation provided by the ENS

Figure 9. Assigned winter WR (a) and associated absolute corre-
lation values (b) for the optimized forecast (i.e. predictors defined
using MOAWRs from ENS and observed SPI-1). Panels (c) and (d)
are the same as (a) and (b) for the process forecast (i.e. predictors
defined using MOAWRs from ENS and forecasted SPI-1).

and called “reference”. This represents a benchmark for the
early warning of drought forecasting. At most, around 40 %
of drought events are detected 1 month in advance with 65 %
of false alarms. The second forecasting approach, called “op-
erational”, is based on MOAWRs. In the north-eastern parts
of the European continent, an improvement of the Gilbert
Skill Score (GSS) is observed using the operational forecast
with regard to the reference forecast. Nevertheless, this is
balanced by other regions where the forecast skills is clearly
lower (central Europe in winter, eastern Europe in summer)
than the reference. The origin of this spatial and temporal
variability in the skill scores is linked to the dynamic of
the atmosphere associated with the precipitation. In winter,
precipitation is much more closely related to large-scale at-
mospheric forcing, mainly captured by the MOAWRs. On
the contrary, in summer, precipitation is more affected by
local forcings that could influence, for instance, the trajec-
tory and the occurrence of convective systems. In this study,
this behaviour is captured by the better correlation between
MOAWRs and precipitation in winter than in summer. The
spatially variable skill scores are mainly controlled by the in-
tensity of the linkage between the MOAWRs and SPI-1. Due
to the distance between the geopotential anomalies to some
target regions, or because of some local effects that could be
predominant to the large-scale forcing, the impacts of these
MOAWRs on precipitation could be low, as observed in win-
ter over central Europe. According to these scores, the most
reliable forecast could result from choosing the best method
for each grid point independently. The influence of the initial
conditions and the intensity of the drought highlight (i) the
losses of predictability with increasing drought intensity and
(ii) the better scores in predicting persistency rather than the
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onset of drought, especially in winter. Also, the benefits of
using the WRs to predict droughts appear to be more im-
portant when the most intense droughts (i.e. SPI <−2) are
forecasted.

This study shows the importance of improving the pre-
diction of the WR occurrences. The methodology applied
here could be compared to more complex methodologies
using clustering of the members to define the most prob-
able scenario or by taking into account the transition be-
tween WRs. Future work should also take into account the
uncertainties in WR prediction, as also suggested by Mag-
nusson (2017); Weisheimer et al. (2017). Recent studies
(Matsueda and Palmer, 2014, 2015; Vigaud et al., 2018) have
shown that WR prediction is still a big challenge for lead
times greater than 15 days. Some improvements could be
also done by using a multi-model ensemble such as the one
recently developed in the framework of the Sub-seasonal to
Seasonal (S2S) Project (Vitart et al., 2016). Finally, the phys-
ical drivers should be analyzed in detail to better understand
why the predictors are more useful when predicting the most
extreme events.

Most of the weather services provide new forecasts up
to several months. For users, it appears essential to scien-
tifically and statistically evaluate the added values of these
forecasts for specific extreme events such as meteorological
droughts. This is the main objective of this study. Neverthe-
less, evaluating the practical usefulness of this operational
forecast is difficult without taking into account the costs for
each case of the contingency table (hits, misses and false
alarms) that strongly vary depending on their applications
(civil protection, water management services, farmers’ deci-
sion supporting systems, etc.). The statement provided in this
study is based on statistical scores independent of these costs.
According to the GSS, there is a significant improvement
of using forecasts in relation to the climatology. Moreover,
the forecasts using predictors generate, in some regions and
some seasons, significant improvements of these forecasts by
using the same score. To evaluate these improvements for
specific users, the costs should be taken into account and this
is a major perspective of this study.
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