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Abstract. Extreme weather events bear a significant im-
pact on coastal human activities and on the related econ-
omy. Forecasting and hindcasting the action of sea storms
on piers, coastal structures and beaches is an important tool
to mitigate their effects. To this end, with particular regard
to low coasts and beaches, we have developed a computa-
tional model chain based partly on open-access models and
partly on an ad-hoc-developed numerical calculator to eval-
uate beach wave run-up levels and flooding. The offshore
wave simulations are carried out with a version of the Wave-
Watch III model, implemented by CCMMMA (Campania
Centre for Marine and Atmospheric Monitoring and Mod-
elling — University of Naples Parthenope), validated with
remote-sensing data. The waves thus computed are in turn
used as initial conditions for the run-up calculations, carried
out with various empirical formulations; the results were fi-
nally validated by a set of specially conceived video-camera-
based experiments on a micro-tidal beach located on the Lig-
urian Sea. Statistical parameters are provided on the agree-
ment between the computed and observed values. It appears
that, while the system is a useful tool to properly simulate
beach flooding during a storm, empirical run-up formulas,
when used in a coastal vulnerability context, have to be care-
fully chosen, applied and managed, particularly on gravel
beaches.

1 Introduction

Real-time forecast and hindcast systems for ocean and
coastal risks are becoming more and more common; the
availability of both global and regional weather and sea state
modelling systems has put the development of warning sys-
tems within reach of local authorities and engineering com-
panies. Such systems, however, are generally aimed at pro-
viding real-time evaluation of damage to coastal infrastruc-
ture or dwellings rather than of risks of beach flooding. As-
sessing and forecasting such hazards is an ever increasing
concern, especially in areas where seaside tourism is an es-
sential part of the economy, as for instance in most Mediter-
ranean countries. Although in recent years a large number of
papers have been published on the validation of offshore nu-
merical models, to the best of our knowledge very few stud-
ies have been published on the development and the applica-
tion of operational models including the effects on beaches;
hence this paper is aimed at validating a whole chain of mod-
els to simulate the action of waves, starting from wind and
offshore wave formation, through wave propagation, down
to the final segment, which involves the analysis of set-up
and run-up on the coast. In particular, a specially conceived
experimental set-up has been prepared for the final stage, i.e.
flooding of the beach. In the following, the state of the art
of each component of the model chain will be very briefly
discussed, while some more detail will be provided on the
wave run-up and beach flooding and on related experimental
techniques.
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The computation of winds and offshore waves is a well-
settled field, in relation to both the research and operational
procedure (Bertotti and Cavaleri, 2009; Cavaleri and Rizzoli,
1981; Mentaschi et al., 2013; Benassai and Ascione, 2006a).
Also, the assimilation of wave measurements is a well-tested
technique (see for instance Bidlot et al., 2002).

The monitoring and forecasting of wind—wave interaction
processes is however particularly critical along coastal areas,
which are highly dynamic, complex systems that respond
in a non-linear manner to external perturbations: for in-
stance, coastal vulnerability has been considered by many re-
searchers (Didenkulova, 2010; Di Paola et al., 2014; Di Luc-
cio et al., 2017), also taking into account sea-level rise (Be-
nassai et al., 2015a) and subsidence (Aucelli et al., 2016).
Measurements are often difficult: satellite data do not reach
the adequate resolution and quality when approaching the
coast (Aulicino et al., 2018; Cotroneo et al., 2016). The
quality of predicted wave data depends on the quality of
driving wind fields (Rusu et al., 2014), which are normally
provided by global forecasting models, satellite altimeters
(Benassai et al., 2015b; Reale et al., 2018) or alternatively
by satellite-based microwave synthetic aperture radar (SAR)
(Johannessen and Bjorgo, 2000). Much work has been done
on the reliability of these data sources and their application
is now common practice (Benassai et al., 2013a, b; Benassai
et al., 2018; Dentale et al., 2018).

We focused our attention on wave run-up prediction; wave
run-up prediction is required in most coastal vulnerability
and risk evaluation projects (Didenkulova and Pelinovsky,
2008; Didenkulova et al., 2010). Wave run-up (Ru) is defined
as “the landward extent of wave uprush measured vertically
from the still water level” (Melby et al., 2012). Although
complex numerical models are required (Dodd, 1998; Hub-
bard and Dodd, 2002) to provide accurate estimates of wave
run-up with given boundary conditions, simplified run-up
formulas are useful to give realistic results on existing cross-
shore profiles. The earliest formulation of run-up height was
provided in the study of Hunt (1959), who calculated run-
up from incident regular waves. He provided the following
equation (here, as in most empirical formulas, Ru includes

the wave set-up):
SLg (1)
Hy >

where £ is the Iribarren number or surf similarity parameter
(Battjes, 1975)
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where T is the wave period.

Holman (1986) measured extreme value statistics of wave
run-up on a shoreline from a single beach and correlated
them with the offshore Iribarren number. Mase (1989) per-
formed an extensive series of laboratory tests for the predic-
tion of run-up elevations of random waves on gentle smooth
and impermeable slopes as a function of the surf similarity
parameter. He included irregular waves and statistical val-
ues of the obtained run-up levels, that is Rump,x (the highest
run-up elevation), Ruj ¢, (the run-up elevation which is ex-
ceeded by 2 %), Rujgg (the run-up elevation which is ex-
ceeded by 10 %), Ruz3 ¢, (the run-up elevation which is ex-
ceeded by 33 %) and Rupean (the average of the total run-up
elevation) (van der Meer et al., 2016). He also introduced two
coefficients which are dependent on the characteristic run-up
level.

Stockdon et al. (2006) extended the work of Holman
(1986) to several beaches covering a wide range of offshore
wave conditions to derive a parametric predictor of the total
run-up height. They considered the run-up level Ru; ¢, to be
a function of the two different contributions of wave set-up
and swash.

Poate et al. (2016) demonstrated that wave run-up on
gravel beaches under energetic wave conditions was signif-
icantly under-predicted by the Stockdon et al. (2006) equa-
tion and proposed a new run-up parametrization for (pure)
gravel beaches. They made clear that on sandy beaches under
extreme waves, run-up conditions become dominated by in-
fragravity waves (Guza and Thornton, 1982; Senechal et al.,
2011) with the incident storm waves breaking and dissipat-
ing their energy further offshore, whereas on gravel beaches
very large waves can impact directly on the beach.

Video recording observations of run-up on a wide range
of storm wave conditions was performed, among others, by
Ruggiero et al. (2004) and Bryan and Coco (2007), who col-
lected vertical run-up elevation time series using the “times-
tack” method (Aagaard and Holm, 1989; Holland and Hol-
man, 1993). Since then, a number of run-up measurements
using remote video imagery of the beaches have been car-
ried out. Further work along this line was carried out by
Stockdon et al. (2007), who calculated wave run-up eleva-
tion and set-up from modelled offshore wave conditions us-
ing SWAN (Sea Wave Measurement Network) and an em-
pirical parametrization (Stockdon et al., 2006) for the eval-
uation of coastal vulnerability and run-up elevation. In the
last few years the USGS National Assessment of Coastal
Change Hazards project has been working in collaboration
with the National Oceanic and Atmospheric Administration
(NOAA)/National Weather Service (NWS) and the National
Centers for Environmental Prediction (NCEP) to produce to-
tal water level and coastal change forecasts (https://coastal.er.
usgs.gov/hurricanes/research/twlviewer/, last access: 1 Jan-
uary 2018). This operational model combines NOAA wave
and water level predictions and a USGS wave run-up model
with beach slope observations to provide regional weather
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Figure 1. Bonassola beach study area with (a) the location of the La Spezia SWAN buoy (red circle) and the main and secondary fetches
(image source: National Geographic); (b) the monitored cross-shore transect with video camera system location (yellow circle) (image
source: http://www.pcn.minambiente.it/mattm/servizio-wms/, last access: 15 June 2018); (c) the beach profile along the transect with the
location of the anthropic structures (black trapezium), mean sea level (MSL) and the mean spring tidal range (MHSW) was extracted by the
official Italian tide archives (http://www.mereografico.it, last access: 4 December 2017).

offices with detailed forecasts of total water levels (Stockdon
et al., 2012; Doran et al., 2015). Following Paprotny et al.
(2014), forecasts of wave run-up on two beaches of the Polish
Baltic Sea coast were tested to evaluate flooding, by chain-
ing the WAM wave model with run-up empirical formulas
during SatBattyk-Shores Operating System.

In this paper wave run-up levels were computed with the
various different formulations described above. Since no lo-
cal measurements from buoys were available (Montella et al.,
2008), a version of the WaveWatch III (WW3) model was
used, as implemented by the Campania Centre for Marine
and Atmospheric Monitoring and Modelling (CCMMMA)
— University of Naples Parthenope, by making full use of
a high-spatial-resolution weather-ocean forecasting system
with a high-performance computing (HPC) system for sim-
ulation and open environmental data dissemination (Mon-
tella et al., 2007). This deep-water numerical model (Ascione
et al., 2006) was coupled with a wave propagation model in
shallow water, which provided the run-up evaluation on the
beach. This model chain was tested on a micro-tidal beach lo-
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cated on the Ligurian Sea in order to assess the reliability of
the wave modelling system, already verified in offshore con-
ditions by means of in situ and remote-sensing techniques
(Carratelli et al., 2007; Reale et al., 2014; Benassai and As-
cione, 2006b).

This paper is organized as follows: the field data and the
numerical models are reported in Sects. 2 and 3 and the re-
sults and validation are given in Sect. 4. Lastly, our discus-
sion and the conclusions are reported in Sects. 5 and 6, re-
spectively.

2 Study area and wave climate

The experiments presented in this paper were carried out on
the Bonassola beach (La Spezia, Italy), which is approxi-
mately 410 m long and is located on the eastern coast of Lig-
uria. The coastline is oriented south-east to north-west and it
is exposed to waves coming from the south-west (215-245°),
while it is protected from the south-east waves. Bonassola

Nat. Hazards Earth Syst. Sci., 18, 2841-2857, 2018
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Figure 2. Significant wave heights and wave directions recorded from the SWAN buoy of La Spezia 1989-2009. Red lines mark the sectors
of the waves’ origin: 195-260° N (the main fetch) and 135-195° N (the secondary fetch).

beach can be classified as a mixed gravel-sand (MSG) beach
due to its sediment characteristics and its morphology (Jen-
nings and Shulmeister, 2002). The range of mean sediment
grain size in the swash zone is 0.76 to 62.65mm (0.38 to
—5.96¢). The mean beach slope is approximately 8.3 % from
the shoreline to 10 m in water depth and becomes 5.5 % be-
tween 10 and 30 m (Fig. 1c). The offshore beach is made up
of a mixture of mean and coarse sand. The data of the grain
size and the slope of the beach were taken from a geomor-
phological survey conducted by the University of Genoa in
2012 and reported in Balduzzi et al. (2014).

The offshore wave climate was estimated by using
the data recorded by the Italian RON (Italian National
Wavemeter System) buoy located offshore of La Spezia
(43°55'41.99” N, 09°49'36.01” E) from 1989 to 2009. The
main fetch sector is comprised between 195 and 260° N
while the secondary fetch is limited between 135 and 195° N
(in the following Sp). The main transverse sector was then
subdivided into two sub-sectors, 195-225° N (§,) and 225—
260° N (83), in which two different wave conditions were ob-
served: the maximum significant wave height (Hy) is lower
than 5.5 m between 195 and 225° N and higher than 5.5m
between 225 and 260° N (Fig. 2).

A representative sample of statistically independent ex-
treme wave events N was selected on the basis of the peak-
over-threshold method (Goda, 1989). The 48 h maxima based
on over-threshold H* time series have been sorted in order
to find the best fit between the data and the Gumbel (Fisher—
Tippet type I) cumulative probability distribution function.

PH)y=e* "' "/, 4

where A is the location parameter and B is the scale parame-
ter. A rank index m, ranging from 1 to N, was associated with
the order of the array and the sample rate of non-exceedance
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F(Hs < H*) was calculated as

F(H) < B* =1 — ™04 (5)
’  N+0.12

and it is assumed coincident with the non-exceedance proba-

bility.

Vm = —In[—InF(Hy < H*)] (6)

Figure 3 shows the rate between Hy < H™* and the relative re-
duced variable for waves coming from each directional sec-
tor.

The linear regression line y = ax + b is given as

Hy = Ay, + B, (7N

where A (slope of the regression line) and B (line intercept)
coefficients are linked with the probability distribution func-
tion. The significant wave height H; with return period 7; can
be determined by the following expressions:

H, = Ay, + B, ®)

where the relative reduced variable is

yr=—1n|:—1n(l—%)i| 9

and the sample intensity A is defined by the ratio between the
number of extreme events and the number of years of obser-
vation. Table 1 gives the offshore wave height H; obtained
for each directional sector as a function of the relative return
period T;; it is found that the maximum H; > 5.0 m is to be
found in sector S3 (the western directions).

In order to test the performance of the system, we thus
considered a western storm event with a return period of less
than 1 year, i.e. with significant wave heights that can occur
several times a year.

www.nat-hazards-earth-syst-sci.net/18/2841/2018/
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Figure 3. Matching between the recorded extreme wave heights and the reduced variable for the Gumbel distribution function for waves
coming from (a) 135-195° N, (b) 195-225° N and (c) 225-260° N. The dataset is relative to the records of the La Spezia wave buoy in the

period 1989-2009.

Table 1. Design waves, in terms of H; associated with different
return periods (7; equal to 1, 5, 10, 20, 50 and 100 years), obtained
from the La Spezia buoy (1989-2009) for each directional sector
(Sl, S2 and S3).

Ty (yr)  Sector  Hy (m) r ‘ Ty (yr)  Sector  Hy (m) Vr
S1 2.84 4.46 S1 3.88 7.46
1 S 3.72 420 | 20 S 6.00 7.21
S3 5.59 4.57 S3 8.23 7.57
M 3.40 6.08 M 4.20 8.38
5 S 4.95 5.82 | 50 S 6.70 8.12
S3 7.01 6.19 S3 9.03 8.49
S1 3.64 6.77 S1 4.44 9.07
10 S 5.74 6.51 | 100 S 7.22 8.82
S3 7.62 6.88 S3 94 9.18

3 Methods
3.1 Wave numerical simulations

The weather—sea forecasting tool (Fig. 4) was implemented
by CCMMMA using an HPC infrastructure to manage and
run a modelling system based on the open-source numeri-
cal models Weather Research and Forecasting (WRF) (Ska-
marock et al., 2001) and WaveWatch III (WW3) (Tolman,
2009) organized in a workflow. The operational system is
based on complex data acquisition, processing, simulation,
post-processing and inter-comparison dataflow, provided by
the FACE-IT workflow engine (Pham et al., 2012), which
is available open source and as a cloud service. This in-
tegrated data processing and simulation framework enables
(i) data ingestion from geospatial archives; (ii) data regrid-
ding, aggregation and other processing prior to simulation;
(iii) making use of high-performance and cloud computing;
and (iv) post-processing to produce aggregated yields and
ensemble variables needed for statistics and model testing.
The main workflow tool is the WRF numerical model, which
computes the 10 m wind fields and other atmospheric forcing
needed to drive the WW3 offshore wave model, which in turn
yields the initial and boundary conditions for the shallow-
water wave simulation of wave transformation and run-up.

www.nat-hazards-earth-syst-sci.net/18/2841/2018/

Wave simulations were carried out using the WW3 model
version 3.14, a third-generation wave model developed at
NOAA/NCEP. The physics packages used in the our imple-
mentation are as follows.

— We used the linear input parametrization of Cavaleri and
Rizzoli (1981) with a filter for low-frequency energy as
introduced by Tolman (1992). The source term package
of Tolman and Chalikov (1996) has been implemented
with the stability correction.

— We used the discrete interaction approximation (DIA)
(Hasselmann and Hasselmann, 1985) for non-linear
wave—wave interactions.

— We used the ULTIMATE QUICKEST propagation
scheme (Leonard, 1979) with the averaging technique
for the “garden sprinkler” alleviation Tolman (2002).

— We used the JONSWAP bottom friction formulation
(Hasselmann et al., 1973) with no bottom scattering and
Battjes and Janssen (1978) shallow-water depth break-
ing with a Miche-style limiter.

In order to produce the numerical simulations presented in
this paper, we configured the WW3 model with two one-way
nested computational domains.

— Coarse domain d01 covers almost the whole Mediter-
ranean Sea by a grid of 608 x 203 points spaced
at a 0.09° resolution (longmin =9.65°W, longmax =
44.98° E; latyin = 29.78° N, latmax = 47.96° N). dO1 is
thus as a closed domain forced only by the weather con-
ditions provided by the WREF offline coupled data; no
wave boundary conditions are therefore to be provided
for this domain.

— Fine domain d02 covers the seas around the Ital-
ian peninsula at a grid of 486 x 353 points spaced
by a 0.03° resolution (longmi, =6.33°E, longnax =
20.88° E; latpin = 36.42° N, latyax = 46.98° N). In the
used WW3 model configuration, dO2 is coupled online
with the dO1 domain.

Nat. Hazards Earth Syst. Sci., 18, 2841-2857, 2018
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The outputs from the model include gridded fields with
the associated significant wave height (H), wave direction
(Dirpp), mean period (T,) and spectral information. The
WW3 grid points close to the coast were used as a “virtual
buoy” (VB), providing the data needed to compute the wave
transformation down to the coast, with the final goal of sim-
ulating the run-up parameter on the beaches.

3.2 Wave run-up calculator

The last software component of the coupled model chain re-
ported in Fig. 4c is the wave run-up calculator on the beach.
We used a one-dimensional approach to simulate the beach
run-up with a Java software designed to be highly modular as
a part of the operational forecasting system. The wave con-
dition in the VB (Hs, Ty, and Diry,y) and the beach slope B
or B¢ derived from a cross-shore beach profile (for example
the one shown in Fig. 1) represent the inputs to resolve the
run-up empirical equations.

Dealing with random waves, Ru, ¢, is defined as the wave
run-up level, measured vertically from the still-water line,
which is exceed by x % of the number of incident waves
(van der Meer et al., 2016).

Holman (1986) proposed an empirical formula to obtain
Ruj; ¢, based on the Iribarren number & constrained with surf
zone slope angle:

Ruyq,

=0.83£:4-0.2. (10)

In detail, Hy is the deep-water significant wave height, which
can be related to the value at the VB through the ratio of
the respective wave celerity Co = Lo/Tm to Cyg = Lyp/Tm
(Shore Protection Manual, 1984):
Cvs

Hy= Hy—. 11

0 s Co (1)
For the VB the wavelength is equal to Ly = (27)/k, in
which k is the wave number obtained by the Hunt approxima-
tion of the standard dispersion relation (Fenton and McKee,

1990):
o2
(kd)2:(@)2+ (Td) — (12)
1+Z?,ozldn(57d)

8
where d,, are six constant values given by Fenton and McKee
(1990), and o is the wave frequency.
Mase (1989), on the basis of laboratory tests, obtained the
characteristic run-up level Ruy ¢, as a function of two empir-
ical coefficients a and b.

Rux %
Hp

Mase (1989) suggest a = 1.86 and b = 0.71 for Ruz ¢, a =
2.32 and b =0.77 for Rupax, a =1.70 and b =0.71 for

—atb (13)
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Ruip9,a =1.38 and b = 0.70 for Rusz3 ¢, and a = 0.88 and
b =0.69 to obtain Rumean.

Stockdon et al. (2006) considered the run-up Rus ¢, to be a
function of two separate terms to consider the different con-

tributions of the wave set-up and swash (the latter term on
the left-hand side)

Ruzg, = 1.1 (0.35tan Br(HoLo)">

5 (14)

 [HoLo (0563 an B2 + 0.004)]0'5)
where Bt is the average slope over a region =20 around (1),
and o is the standard deviation of the water level elevation
n(t). In random waves, H is substituted by the spectral wave
height Hpo = 4(m0)0‘5, defined as the incident significant
wave height in shallow water, where m is the zeroth spectral
moment.
Poate et al. (2016) proposed the following equation,
specifically developed for gravel beaches:

Rus g, = Ctan B9 T Hs, (15)

where C is a constant fixed to 0.49 (Poate et al., 2016).

The mean beach slope 8 and the foreshore beach slope fr,
used in the run-up equations are calculated taking into ac-
count the examined cross-shore beach profile. Equation (14)
has been used by a number of researchers to compute coastal
inundation and consequently coastal vulnerability and risk
(Di Paola et al., 2014; Benassai et al., 2015a). Melby et al.
(2012) compared the skill of some different run-up models
through some statistical measures and introduced a new sta-
tistical skill measure, described in Sect. 3.3.2, which was
used to compare the different formulations for an extensive
dataset. In the following, we compared the different run-up
equations through the deviation from the observed run-up
levels evaluated with video camera records. Among the dif-
ferent empirical formulas used to calculate the wave run-up
parameters, Egs. (10), (13), (14) and (15) have been used to
obtain run-up time series. In particular, the Holman (1986),
Mase (1989), Stockdon et al. (2006) and Poate et al. (2016)
formulas have been used for the 2% wave run-up levels,
while only the Mase (1989) equation has been used to cal-
culate the 10 %, 33 %, mean and max run-up levels.

3.3 Waves and beach run-up observations
3.3.1 Altimeter and video monitoring

Satellite altimeter data provide a large spatial coverage over
the entire region of the central and northern Tyrrhenian Sea,
which cannot be accomplished by in situ observations at
fixed stations. The offshore part of the model system was
therefore validated by making use of remotely sensed data,
obtained from the dataset of the Ocean Surface Topography

www.nat-hazards-earth-syst-sci.net/18/2841/2018/
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Figure 4. Model chain from the atmospheric model WRF (a) to the offshore wave model WW3 (b) and the run-up calculator (c). The block
diagram shows evidence of the input—output components of the model coupling data flux.

Mission (OSTM/Jason-2), launched on 20 June 2008. Fig-
ure 5 shows the considered track of the OSTM/Jason?2 satel-
lite. Geophysical Data Record (GDR) provides Ku-based sig-
nificant wave height data with a spatial resolution of 11.2 km
(along track) x 5.1 km (across track).

The beach run-up simulations, carried out with the various
equations reported above, were validated by means of a video
monitoring system placed in the middle of Bonassola beach
(Fig. 6a, b, c, d). Video recordings of run-up were made using
three video cameras, installed at an elevation of about 13 m
above mean sea level (m.s.l.), which have allowed complete
coverage of the beach since 19 November 2015. The light in-
tensity of each pixel in the cross-shore transects was digitized
by using the geometric transformation between ground and
image coordinates. Vertical run-up elevation time series were
extracted from video recordings using the timestack method
(Aagaard and Holm, 1989; Holland and Holman, 1997). This
methodology, giving rise to the signal reported in Fig. 6e, is
described in the extensive literature on coastal video moni-
toring (Takewaka and Nakamura, 2001; Ojeda et al., 2008;
Zhang and Zhang, 2008). According to Vousdoukas et al.
(2012b), the run-up excursion was identified by using the
threshold method supplied by Otsu (1975), which is able to
identify the wet—dry boundary by pixel colour. The elevation
of detected horizontal position (red line in Fig. 6e) was calcu-
lated using average slope profile obtained from topographic
surveys conducted on Bonassola beach. The run-up position
at each video sample time (1 Hz) was obtained with Beach-
keeper plus (Brignone et al., 2012), a software based on the
MATLAB® algorithm used to analyse the images without
any a priori information of the acquisition system. Run-up re-
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Figure 5. Map showing the WRF and WW3 models’ spatial do-
mains including the Italian peninsula overlapped with the location

of the video camera system (red marker) and the used OSTM/Jason-
2 satellite dataset (green line).

sults have been validated through geo-rectification of camera
images, which was performed by using nine ground control
points (GCPs). The x—y coordinates of GCPs were acquired
in UTM32-WGS84 using differential GPS, with 0.15m ac-
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Time

Figure 6. A time sequence (a), (b), (¢), (d) of the Bonassola beach sea storm recorded by camera from 08:00 to 09:00 UTC on 10 Febru-
ary 2016; (e) timestack obtained by analyzing the video camera acquisitions in the time interval from 08:00 to 09:00 UTC relative to 10 Febru-

ary 2016, highlighting with a red line the detected run-up value.

curacy at the horizontal and vertical positions. The cross-
shore resolution of the processed timestack images is 0.2 m,
equal to the minimum pixel footprint along the monitored
transect, in accordance with Vousdoukas et al. (2012a) and
Huisman et al. (2011). The best results have been processed
with 5 pixel line analysis, reducing backwash and filtration—
extra-filtration detection, using the timestack method.

3.3.2 Comparison statistics

The quality of the results provided by the offshore wave
model and by the run-up simulations was evaluated by com-
parison with wave altimeter records and video camera run-
up observations. Deviation of simulated parameters from ob-
served data was estimated through some of the following sta-
tistical error indicators proposed by Mentaschi et al. (2013)
(S; indicates a simulated variable, O; indicates an observed
variable and N is the number of considered observations):

normalized bias (BI)

N
(S — O
Bl = —z’—lfv’ ’), (16)
Zi:l Oi
— root-mean-square error (RMSE)
N 2
(S — O
RMSE = Z:’—l(—l’)’ 17
N
— normalized root-mean-square error (NRMSE)
N 2
(S — O
NRMSE = Zl_l([\/—ZZZ)’ (18)
2.i=10;
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— normalized scatter index (SI)

SN IS —8) — (0 — O
>0}
— linear correlation coefficient (R)

_cov(S;, 0;)
" var(O;j)var(S;)’

SI=

; 19)

(20)

The results are summarized in the summary performance
score (SPS) index, based on the RMSE, BI and SI perfor-
mance, normalized between 0 and 1 (as suggested by Melby
etal.,, 2012).

— NRMSE performance (NRMSEp)

NRMSEp =1 — NRMSE (21)
— BI performance (Blp)

Blp =1 —[BI| (22)
— SI performance (SIp)

SIp=1-SI (23)
— Summary performance score (SPS)

SPS — NRMSEp —;— BIp + SIp 24)

4 Experimental results

In this section some experimental results are presented and
discussed to show the capability and accuracy of a wind—
wave modelling chain in estimating run-up levels on the
beach studied.
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Figure 7. Ligurian Sea significant wave height (colour maps) and direction (vector fields) in three moments of sea storm in February 2016.
The maps are relative to the WW3 model simulation on 10 February 2016 at (a) 00:00 UTM, (b) 06:00 UTM and (¢) 12:00 UTM. Wave

height isolines are at 0.5 m intervals.

4.1 Offshore wave validation with altimeter data

The consistency of the WW3 model was validated taking full
benefit of the altimeter data from the OSTM/Jason2 mission,
relative to the passage of the satellite during the period from
9 February 2016 at 04:58:44 to 05:00:43 UTC. Figure 7a, b,
¢ depict the simulated WW3 H maps on 10 February 2016

www.nat-hazards-earth-syst-sci.net/18/2841/2018/

at 00:00, 06:00 and 12:00 UTC, with relative zoom, respec-
tively, while Fig. 8 shows the matching between the time
history of the measured and modelled offshore Hy along the
track.

The results of the wind—wave modelling system were in-
terpolated in both space and time to collocate with the al-

Nat. Hazards Earth Syst. Sci., 18, 2841-2857, 2018
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Figure 9. Ru) ¢,/ Hs as a function of the Iribarren number £ for the different equations with reference to the wave conditions of the Febru-
ary 2016 storm (Hs = 2.5 m) and, only for Poate et al. (2016), the same values calculated in more energetic conditions (Hs = 5.0 m, dotted

line).

timeter data. Firstly, hourly WW3 H; outputs were spatially
interpolated (bilinear interpolation) from the grid points to
the locations of the altimeter measurements. Interpolations
were then carried out in time to fit the satellite pass (linear
time interpolation between the previous and following field
values). The observed Hy is shown as a blue line in Fig. 8a,
while the simulated Hj is reported as a red line. In general,
the model fits the measurements quite well, but sometimes it
deviates from the observations. For example, the first high-
wave event between 41.5 and 42° N is underestimated by the
model, while the second high-wave event between 43.5 and
44° N is slightly overestimated.

It can also be observed that the simulated Hj trace along
the satellite track is much smoother than the observations,
due to the fact that the WW3 model is incapable of resolv-

Nat. Hazards Earth Syst. Sci., 18, 2841-2857, 2018

ing the small scales seen in the altimeter observations (Reale
et al., 2013). The statistics of the comparison give an R value
of 0.838, a BI of 0.192, a SI of 0.202 and a RMSE value
of 0.455 m. The satisfactory agreement is shown by a RMSE
lower than 0.46 m and by a correlation coefficient higher than
0.83. In fact, Fig. 8 shows a good match between simula-
tions and observations; however non-negligible differences
in terms of H can be noted, which can be partially explained
taking into account the different spatial gridding resolution
scale of modelled (WW3) and remotely sensed (Jason-2)
wave estimation products.

4.2 Analysis of the existing wave run-up formulas

In Fig. 9 the run-up Rus¢, normalized with H has been
reported as a function of the Iribarren number for the dif-
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ferent equations considered, in a range of the surf similar-
ity parameter corresponding to dissipative and intermediate
beaches (¢ < 1.0). The values of B¢ (used in Holman, 1986,
and Stockdon et al., 2006, equations) have been obtained
as a multiple N (fixed to 2.25 for convenience) of 8 (used
in Mase, 1989, and Poate et al., 2016, equations). All the
equations provide an increase in run-up levels as beaches be-
come more reflective (increase in £). In particular, the Hol-
man (1986) and Stockdon et al. (2006) equations exhibit a
linear increase as a function of &, while the Mase (1989) and
Poate et al. (2016) equations exhibit a non-linear one.

With regard to the relative run-up levels, the Holman
(1986) and Mase (1989) equations always represent a higher
bound for Ruj ¢,, while the Stockdon et al. (2006) equation is
a lower bound, at the least for & > 0.65.

The Poate et al. (2016) equation is sensitive to Hg: for
intermediate storms like the one experienced (Hs = 2.5m)
it provides low Ruj¢, values, representing a lower bound
for & > 0.65; for severe storms (Hs = 5.0 m) it gives higher
Ruy ¢, values compared to the other formulas, providing an
upper bound for the run-up (dotted line).

4.3 Wave run-up simulations and validation with the
video-monitoring system

In this subsection, wave run-up numerical simulations ob-
tained with the model chain are described with respect to the
storm between 9 and 11 February 2016. A preliminary off-
shore wave simulation was performed on a virtual buoy lo-
cated offshore of Bonassola beach. The relative Hs and Ty,
time history is shown in Fig. 10a, b, respectively. The storm
exhibited a maximum H; higher than 3.0 m (with a relative
T of about 7 s) on 10 February 2016 at 03:00 UTC, followed
by a decrease in Hg (with a relative increase in Ty,) in the fol-
lowing hours, with values between 2.0 and 3.0 m, in accor-
dance with the regional wave field maps in Fig. 7.

The experimental analysis has been conducted on an aver-
age profile, which is provided by beach survey. Since bathy-
metric and topographic data are subjected to change dur-
ing storm events, surveys could be repeated after each event
to evaluate profile evolution. According to Balduzzi et al.
(2014), Bonassola beach is subject to cross-shore sediment
movements beyond depth closure and to beach rotation dur-
ing swell from SE. Therefore, the investigated profile has
been selected for a central area in order to avoid excessive
coastline changes.

The outcome of run-up assessment showed that the flood-
ing level depends on wave peak period. Despite that wave
height is almost unchanged, wave peak period increases by
1.7 s, observed wave run-up increases by 0.5m and Rujgp¢
increases from 3.05 to 3.62 m, as reported in Fig. 11.

The run-up formulas described in Sect. 3.2 were evaluated
considering the wave conditions of the February 2016 storm
event and the cross-shore transect reported in Fig. 1c. The
simulation results have been compared with the observed
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Figure 10. Simulated significant wave height (Hs, a) and mean wave period (Tm, b) relative to the 9—11 February 2016 sea storm at the
virtual buoy near Bonassola beach. The simulations are carried out using the WW3 model configured with an hourly output time step.
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Figure 11. Wave run-up levels collected (black line) using pixel timestacks derived from video camera data at Bonassola on 10 February 2016
from 08:00 to 16:00 UTC; Ruy( ¢, trend (red line) as obtained by the timestack analysis at 1 h intervals during the investigated time period.

wave run-up elevation time series recorded by a beach cam-
era system on 10 February 2016 from 08:00 to 16:00 UTC.
Run-up video records (Fig. 11) were made using the central
camera of the video monitoring system described in Sect. 3.3.

The comparison among the different Ru; ¢, formulas, re-
ported in Fig. 12, shows that the Ruj ¢, formulas almost al-
ways underestimate the levels. In detail, the Holman (1986)
results are the highest, followed by Mase (1989), Stockdon
et al. (2006) and Poate et al. (2016), in this order. This is
consistent with the behaviour of the different formulas evi-
denced in Fig. 9 for £ around 0.65 and is confirmed by the
RMSE values of 0.41, 0.70, 0.95 and 1.04, respectively, and
by the SPS values in decreasing order, 0.92, 0.87, 0.83 and
0.82, respectively (see Fig. 13 and Table 3). The compari-
son between the hourly mean of the observed and simulated

Nat. Hazards Earth Syst. Sci., 18, 2841-2857, 2018

Ru, ¢, obtained using the Mase (1989) equations, reported in
Fig. 14, shows more uniform values of the numerical simu-
lations in the 8 h of analysis, due to the lower time resolution
of the WW3 model.

5 Discussion

In this section, the results of the present study will be dis-
cussed, with particular concern for the validation of the off-
shore and inshore simulations and the operational capabil-
ity of the modelling chain. The WW3 simulation provided
the offshore wave conditions during the examined sea storm,
covering the spatial area showed in Fig. 5 (d02 domain). The
simulated H values, sampled along the green track in Fig. 5,

www.nat-hazards-earth-syst-sci.net/18/2841/2018/
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Table 3. Statistical error parameters obtained from the comparison between observed and simulated wave run-up levels.

R BI SI RMSE NRMSE NRMSEp Blp SIp SPS
Holman (1986) Ru; ¢, 0.867 —0.075 0.062  0.410 0.097 0903 0925 0938 0972
Mase (1989) Rumean 0424 —-0.274 0.157 0.723 0.309 0.691 0.726 0.843 0.753
Mase (1989) Ru33 ¢, 0.607 0.059 0.112  0.318 0.126 0.874 0.941 0.888 0.901
Mase (1989) Ruyg ¢ 0.576  —0.047 0.039 0.209 0.061 0939 0953 0961 0.951
Mase (1989) Ru; ¢, 0.794 —0.154 0.067 0.704 0.167 0.833 0.846 0933 0.871
Mase (1989) Rumax 0.763 —0.025 0.051 0.255 0.057 0943 0975 0949 0.956
Stockdon et al. (2006) Ruy¢, 0.871 —0.217  0.063 0.949 0.225 0.225 0.783 0.775 0.832
Poate et al. (2006) Ru; ¢, 0.845 —0.239 0.063 1.039 0.246 0.754 0.761 0973 0.817
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Figure 12. Hourly comparison (10 February 2016 from 08:00 to 16:00 UTC) between observed and simulated Ruj ¢,. The run-up level
simulations are carried out using the empirical formulas introduced by Holman (1986), Mase (1989), Stockdon et al. (2006) and Poate et

al. (2016).

were compared with the altimeter value (OSTM/Jason 2
satellite) through a spatial and temporal interpolation, which
introduced some systematic errors; nevertheless, the valida-
tion results of the offshore wave simulations with respect to
the altimeter data showed a satisfactory agreement with a
bias of 0.192 and a standard deviation (SD) lower than 0.6 m.
These results slightly overpredicted the measured values, in
agreement with the ones of Wahle et al. (2017), who com-
pared SARAL/AItiKa altimeter data with the WAM (WAve
Model) simulations.

Conversely, the comparison between the simulated and ob-
served Ruy ¢, levels on the beach exhibits a general under-
estimation of the run-up formulas. These discrepancies may
be partly attributed to the limited camera resolution in time
stack mode, equal to 0.2 pixel, and to a differential GPS ac-
curacy of 0.15 m. Moreover, additional inaccuracies can be
linked to the time shift between the model chain output step
(1h) and video recording (1s), which produces smoother
simulated run-up results, as already evidenced in Fig. 14.

www.nat-hazards-earth-syst-sci.net/18/2841/2018/

The best matching between simulations and observations
is given by the Holman (1986) equation, followed by the
equations of Mase (1989), Stockdon et al. (2006) and Poate
et al. (2016) in this order. This result agrees well with the be-
haviour of the formulas evidenced in Fig. 9 in the Iribarren
range experienced. In particular, this trend is consistent with
the behaviour of the Holman (1986) equation, which gives
the highest Ruj ¢, values irrespective of &, and with the be-
haviour of the Poate et al. (2016) equation, which, for the
low & values experienced, gives a lower bound for Ru; ¢, for
moderate H.

The experimental values, in the & range considered, are
closer to Holman (1986), Mase (1989), Stockdon et al.
(2006) and Poate et al. (2016) in this order, in accordance
with their RMSE values, which are 0.41, 0.70, 0.95 and 1.04,
respectively (see Fig. 13 and Table 3). This is also in agree-
ment with SPS values given in Table 3 and evidences that
the Stockdon et al. (2006) equation represents a lower bound
limit for Ruj ¢, in the & range lower than 0.65. This is con-
sistent with the considerations of Poate et al. (2016), who

Nat. Hazards Earth Syst. Sci., 18, 2841-2857, 2018
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Figure 13. Bar diagram of the statistical parameters R (correlation index), BI (bias), SI (scatter index), RMSE (root-mean-square error) and
SPS (summary performance score), obtained comparing the run-up video camera observations with the same parameter calculated using the
empirical formulas introduced by Holmann (1986), Mase (1989), Stockdon et al. (2006) and Poate et al. (2016).
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Figure 14. Hourly comparison among different Ru, ¢, values (Rumean, Ru33 ¢, Rujgg, Rur ¢ and Rupgx) calculated with Mase (1989)
equations and observations. The run-up data are relative to the 10 February 2016 sea storm from 08:00 to 16:00 UTC.

noted an underestimation of the Stockdon et al. (2006) equa-
tion, which affected the same Poate et al. (2016) equation
for moderate wave conditions. Nevertheless, in more ener-
getic conditions, the Poate et al. (2016) equation represents
an upper bound for run-up, at least in the range £ > 0.65, as
reported in Fig. 9.

6 Conclusions and future directions

This paper has presented the implementation and the results
of a numerical model system aimed at forecasting and/or as-
sessing beach vulnerability starting from input data provided
by NOAA GFS global wind and computing the wave run-up
over the beach through a chain of offline coupled models.
The model chain has been validated with a complex set of
experiments carried out on a beach in northern Italy, aiming
at comparing the numerical simulations in both offshore and
inshore conditions.

The offshore comparison evidenced that the configured
wind and wave forecast system provides a satisfactory agree-
ment with the observations, in spite of the limitation due to
the relatively low time and space resolution.

The beach run-up comparison evidenced that the Holman
(1986) equation appears to be a reliable formula in moderate
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wave conditions, while Poate et al. (2016) demonstrated that
their equation was the best matching one in severe wave con-
ditions, at least in dissipative beaches. So there is not a uni-
versal run-up equation valid for the whole range of sediment
grain beach size and wave conditions: this means that con-
siderable work has still to be done in order to find a general
run-up formula for an extended range of wave parameters
and beach grain size and slopes. Nevertheless, the compar-
ison between the simulated and observed results shows that
the wave run-up simulations obtained by the modelling chain
are useful for an alert system, with a proper choice of the run-
up equation based on the wave and beach characteristics.

Further improvements of the system will be represented by
the enhancement of the model chain resolution thanks to the
progress in cloud computing (Montella et al., 2015) as well
as to the approach based on GPGPU (general-purpose com-
puting on graphics processing units) (Di Lauro et al., 2012;
Montella et al., 2018; Marcellino et al., 2017).

Data availability. Numerical meteo-marine simulations are acces-
sible from the University of Naples Parthenope (http://data.meteo.
uniparthenope.it/opendap/hyrax/opendap/, last access: 29 Octo-
ber 2018).
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