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Abstract. Stochastic rainfall downscaling methods usually
do not take into account orographic effects or local precipi-
tation features at spatial scales finer than those resolved by
the large-scale input field. For this reason they may be less
reliable in areas with complex topography or with sub-grid
surface heterogeneities. Here we test a simple method to
introduce realistic fine-scale precipitation patterns into the
downscaled fields, with the objective of producing down-
scaled data more suitable for climatological and hydrolog-
ical applications as well as for extreme event studies. The
proposed method relies on the availability of a reference
fine-scale precipitation climatology from which corrective
weights for the downscaled fields are derived. We demon-
strate the method by applying it to the Rainfall Filtered Au-
toregressive Model (RainFARM) stochastic rainfall down-
scaling algorithm.

The modified RainFARM method is tested focusing on
an area of complex topography encompassing the Swiss
Alps, first, in a “perfect-model experiment” in which high-
resolution (4 km) simulations performed with the Weather
Research and Forecasting (WRF) regional model are aggre-
gated to a coarser resolution (64 km) and then downscaled
back to 4 km and compared with the original data. Second,
the modified RainFARM is applied to the E-OBS gridded
precipitation data (0.25◦ spatial resolution) over Switzerland,
where high-quality gridded precipitation climatologies and
accurate in situ observations are available for comparison
with the downscaled data for the period 1981–2010.

The results of the perfect-model experiment confirm a
clear improvement in the description of the precipitation dis-
tribution when the RainFARM stochastic downscaling is ap-
plied, either with or without the implemented orographic ad-
justment. When we separately analyze grid points with pre-

cipitation climatology higher or lower than the median calcu-
lated over the neighboring grid points, we find that the prob-
ability density function (PDF) of the real precipitation is bet-
ter reproduced using the modified RainFARM rather than the
standard RainFARM method. In fact, the modified method
successfully assigns more precipitation to areas where pre-
cipitation is on average more abundant according to a refer-
ence long-term climatology.

The results of the E-OBS downscaling show that the mod-
ified RainFARM introduces improvements in the representa-
tion of precipitation amplitudes. While for low-precipitation
areas the downscaled and the observed PDFs are in good
agreement, for high-precipitation areas residual differences
persist, mainly related to known E-OBS deficiencies in prop-
erly representing the correct range of precipitation values in
the Alpine region. The downscaling method discussed is not
intended to correct the bias which may be present in the
coarse-scale data, so possible biases should be adjusted be-
fore applying the downscaling procedure.

1 Introduction

Assessing the impacts of climate change on extreme precip-
itation events and hydrometeorological hazards requires re-
liable precipitation data at fine spatial and temporal resolu-
tion. A wide range of downscaling methods have been de-
veloped to obtain fine-scale precipitation fields from coarse-
scale data (see Maraun et al., 2010, for a review): in addi-
tion to physically based dynamical downscaling approaches,
in which high-resolution regional climate models are nested
in global datasets, an effective approach is provided by sta-
tistical and stochastic downscaling. While statistical down-

Published by Copernicus Publications on behalf of the European Geosciences Union.



2826 S. Terzago et al.: Stochastic precipitation downscaling in complex orography

scaling is based on mapping large-scale predictors for pre-
cipitation at small scales to produce the expected small-scale
rainfall field (e.g., Maraun et al., 2010; Chiew et al., 2010),
stochastic rainfall downscaling, a type of weather generator,
uses information directly from the large-scale precipitation
to generate an ensemble of possible stochastic realizations of
precipitation fields with a realistic spatial and temporal cor-
relation structure and preserving the large-scale properties of
the original field (see e.g., Ferraris et al., 2003).

Stochastic approaches are attractive owing to their com-
putational efficiency, which allows us to perform ensemble
simulations to evaluate the uncertainties in the small-scale
precipitation fields, and owing to their flexibility, as most of
them can be applied to a range of temporal scales (Bordoy
and Burlando, 2014). Several stochastic downscaling meth-
ods have been proposed for precipitation, some of them de-
vised for generating time series at single stations or at a set
of stations (Vrac and Naveau, 2007; Mehrotra and Sharma,
2006; Charles et al., 1999; Wilks, 1999, 1998). Here we fo-
cus on full-field generators, which have the characteristic of
simulating fields of precipitation, thus providing continuous
spatial information usable as input to distributed hydrologi-
cal models. Detailed discussions on these models are offered
by Bordoy and Burlando (2014) and Ferraris et al. (2003).
Full-field weather generators are generally based upon sim-
ple autoregressive models, so-called meta-Gaussian models
(Rebora et al., 2006), or point process models simulating in-
dividual rain cells (Rodriguez-Iturbe et al., 1988, 1987), or
spatiotemporal implementation of multifractal cascade mod-
els (Lovejoy and Schertzer, 2006; Deidda, 2000, 1999; Love-
joy and Mandelbrot, 1985).

Among the meta-Gaussian models, an example is provided
by the Rainfall Filtered Autoregressive Model (RainFARM)
procedure, a stochastic rainfall downscaling method based on
the extrapolation of the coarse-scale Fourier power spectrum
to small scales. This method was originally developed for
spatiotemporal downscaling of rainfall predictions on mete-
orological timescales (Rebora et al., 2006) and then extended
to climatic timescales (D’Onofrio et al., 2014). An advantage
of stochastic downscaling methods like RainFARM is that
they have few free parameters, they do not require further
fields in addition to the original precipitation to downscale,
and the small-scale correlation structure is estimated from
the large-scale field. This makes such methods also directly
applicable to model outputs in areas where further fine-scale
information is not available. Still, the main limitation of most
stochastic downscaling methods is that they do not take into
account orographic effects at scales smaller than those re-
solved by the original precipitation field to downscale. Oro-
graphic precipitation mechanisms, such as orographic lifting,
play an important role in determining patterns of small-scale
precipitation in areas with complex orography (Roe, 2005;
Smith, 2006). Thus, when the fine-scale distribution of pre-
cipitation in the downscaled fields is not conditioned on orog-
raphy, the long-term climatology at individual grid points

may differ significantly from observations. This may make
such downscaling methods not suitable for applications in
which the small-scale hydrological balance is of importance,
such as studies involving changes in snow cover or water re-
sources in small mountain basins.

The addition of an orographic component to rainfall down-
scaling models over land has been investigated, among oth-
ers, by Harris et al. (1996), Jothityangkoon et al. (2000),
Purdy et al. (2001), Pathirana and Herath (2002), and Badas
et al. (2005, 2006). In particular Harris et al. (1996) and
Purdy et al. (2001) were among the first studies using a
cascade-based approach to analyze the multiscale statisti-
cal properties of orographic rainfall. Badas et al. (2005,
2006) studied the scaling behavior of orographic rainfall us-
ing a high-temporal-resolution rain gauge network in Sar-
dinia, Italy, and developed a modified cascade-based rainfall
downscaling model conditioned on local average precipita-
tion and on terrain elevation. These methods require detailed
calibration for each study area and the availability of an ex-
tensive dataset of local measurements at high temporal fre-
quencies, detailed data which may not be readily available
for several regions. Nonetheless, for many areas, informa-
tion on the spatial distribution of precipitation, at least as
a long-term climatological average, may be available from
different sources, such as gridded reconstructions based on
rain gauge observations (e.g., the EURO4M dataset for the
greater Alpine region, http://www.euro4m.eu/datasets.html,
last access: 1 October 2018) or from dynamical downscaling
simulations with regional climate models (RCMs). In partic-
ular non-hydrostatic RCMs, when applied at very fine scales
(1 to 5 km resolution), can capture the main physical mecha-
nisms for orographic precipitation and may lead to a realistic
spatial distribution of precipitation amounts on average, also
over complex topography, albeit often with significant biases
in amplitude (Kotlarski et al., 2014; Viterbo et al., 2016).

In this paper we present a very simple approach, described
and tested for the specific case of the RainFARM method,
which allows the integration into a stochastic downscaling
method of information on the fine-scale spatial distribution
of precipitation, available from high-resolution gridded ob-
servations or from dynamical downscaling. This information
is used to locally modulate the distribution of precipitation
inside each large-scale grid element of the field to downscale
or in the neighborhood of each point. The precipitation am-
plitudes on the fine grid are first determined by the stochas-
tic downscaling procedure, then the downscaled precipitation
is modulated using the realistic pattern derived from a fine-
scale reference precipitation climatology. This last step, con-
sisting in the application of correction factors (or weights),
allows us to take into account the heterogeneity at the fine
scales, including topographic effects. Finally, the overall pre-
cipitation amounts at the resolution of the precipitation fields
to downscale are adjusted to ensure the conservation of the
total precipitation at the large scale, a requirement already
present in the standard RainFARM procedure.
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We demonstrate the application of the method in two
cases. First, in a perfect-model experiment, in which a high-
resolution precipitation dataset is first upscaled by aggre-
gating it to a coarser resolution and then downscaled with
RainFARM to its initial resolution to check the agreement
with the original high-resolution field. To this end, a 30-year-
long simulation with the Weather Research and Forecasting
(WRF) model over Europe (Pieri et al., 2015) is used, pro-
viding the reference fine-scale (4 km) precipitation dataset,
which is first aggregated to derive the coarse-scale field to
be downscaled and then used for validating the downscaled
field. Second, we demonstrate the method in a more realistic
setup, by applying it to the E-OBS observational dataset (ver-
sion 17; Haylock et al., 2008) at about 25 km resolution and
by validating the statistics of the downscaled precipitation
fields against surface observations from a dense network of
rain gauge stations in Switzerland. Since a high-quality pre-
cipitation climatology to be used for calculating correction
factors is not always available for many regions of the world,
we test the impact of different reference climatologies on the
downscaled fields, considering three different datasets with
different degrees of accuracy.

The paper is organized as follows: Sect. 2 describes the
datasets used in this study; Sect. 3 presents the modifications
included in RainFARM to better describe the precipitation
at fine scales; Sect. 4 shows the application and the evalua-
tion of the method, first in a “perfect-model experiment” and
then in a more realistic case in which E-OBS precipitation is
downscaled and the results are compared to surface station
measurements; Sects. 5 and 6 provide a discussion of the re-
sults and the main conclusions of the paper.

2 Datasets

In order to present and validate the method, we employ dif-
ferent precipitation datasets, described briefly in the follow-
ing.

2.1 WRF simulation outputs

The perfect-model experiment, described further on in
Sect. 4.1, is performed using precipitation data from a very
high-resolution climate simulation with the regional climate
Weather Research and Forecasting (WRF v3.4.1) model, de-
scribed in Pieri et al. (2015). WRF was forced in the pe-
riod 1979–2008 with boundary conditions from the ERA-
Interim reanalysis (Dee et al., 2011) and run over the Eu-
ropean domain with a double nesting, with a resolution for
the inner domain of about 0.037◦ (∼ 4 km in the meridional
direction). This dataset has been validated through compari-
son with a range of observation-based and reanalysis datasets
(Pieri et al., 2015). In agreement with the general behav-
ior of several regional (as well as global) climate models,
which are known to exhibit wet biases over mountainous ar-

eas especially in winter (e.g., Kotlarski et al., 2014; Palazzi
et al., 2015), this WRF simulation also overestimates pre-
cipitation and localized precipitation extremes over the Alps
(Pieri et al., 2015).

To perform a perfect-model experiment we aggregate
WRF precipitation data originally available at ∼ 4 km reso-
lution to a coarser resolution of 64 km by box averaging. The
upscaled field is then downscaled back to 4 km with Rain-
FARM and finally its statistics are compared with those of
the original 4 km WRF precipitation. By construction, the re-
sults obtained with this approach are not affected by possible
biases in the considered datasets; i.e., the total average pre-
cipitation flux is the same in the large-scale fields and in the
validation dataset.

2.2 E-OBS

A more realistic application is provided by a comparison
between precipitation downscaled from the European daily
observation-based gridded dataset E-OBS (version 17; Hay-
lock et al., 2008) and station data. E-OBS provides daily pre-
cipitation over land areas from 25 to 75◦ N in latitude and
40◦W to 75◦ E in longitude, based on the interpolation of in
situ station data. For the present study we analyze E-OBS
precipitation data at 0.25◦ lat–long resolution corresponding
to about 25 km grid size in the meridional direction. Being
based on the interpolation of in situ stations, E-OBS has po-
tential inaccuracies coming from the interpolation algorithms
that are employed and from sampling error related to the ca-
pability of estimating reliable grid point values from the near-
est few available stations. This type of uncertainty is largest
in areas with sparse and uneven station coverage, in particu-
lar in high-elevation regions where the station distribution is
biased towards the lower elevations. It is also worth stress-
ing that, in general, rain gauges tend to underestimate total
precipitation in mountain areas since they do not properly
account for snowfall, which represents an important contri-
bution in high-elevation regions especially in the cold season.

We use the E-OBS gridded dataset as a sample large-scale
precipitation field to be downscaled with RainFARM. The E-
OBS data downscaled at 1 km resolution are then compared
with MeteoSwiss station data (described in the following)
to check the performances of RainFARM and for validation
purposes. It is worth noting that in this, as well as in other,
“real-case” experiments, average precipitation in the fields
to downscale (E-OBS in this case) is generally expected to
differ from that of the validation dataset and this is a bias
that our downscaling method does not address. This source of
uncertainty should be considered when evaluating the down-
scaling performances.
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2.3 WorldClim

WorldClim 1.4 (Hijmans et al., 2005) is used here as an ex-
ample of globally available precipitation climatology that
could also be used in regions where no high-quality lo-
cal gridded data are available. WorldClim consists in a set
of global gridded climatologies based on observations with
a nominal spatial resolution of about 1 km× 1 km. It is a
popular choice for ecosystem studies (Bedia et al., 2013;
Warren and Seifert, 2011; Peterson and Nakazawa, 2008;
Townsend Peterson et al., 2007; Waltari et al., 2007). World-
Clim provides 30-year monthly averages of the minimum,
mean, and maximum temperature and of precipitation, as
well as of other bioclimatic variables, for a reference histori-
cal period (1960–1990, labeled as current climate) and for a
future period (2050–2080) for four Representative Concen-
tration Pathways (RCPs). Monthly climatologies were ob-
tained from various data sources through spline interpola-
tion methods, which use the latitude, longitude, and eleva-
tion as independent variables. Assessment of uncertainties in
the gridded products were made, highlighting that the most
uncertain estimates correspond to mountainous and other
poorly sampled areas. In fact, Hijmans et al. (2005) com-
pared WorldClim data to two high-resolution datasets in the
US and found significant differences, particularly in high-
elevation regions.

2.4 MeteoSwiss station and gridded data

To validate the RainFARM downscaling algorithm we
consider precipitation observations registered by 160 au-
tomatic stations of the MeteoSwiss network. These data
are preprocessed by MeteoSwiss, which performs temporal
aggregation, gap filling, and quality control to correct
wrong or implausible measurement values according to
agreed protocols (https://www.meteoswiss.admin.ch/home/
measurement-and-forecasting-systems/datenmanagement/
data-preparation.html, last access: 1 October 2018). We
focus our analysis on the period 1981–2010 and retain only
the stations providing at least 80 % of daily data over this
period, leading to a reduced set of 59 stations, shown in
Fig. 1.

We also employ the MeteoSwiss climatology RnormM
(Begert et al., 2013) to calculate the corrective weights for
the RainFARM downscaling. RnormM provides the aver-
age monthly accumulated precipitation over the standard pe-
riod 1981–2010, calculated from the data of all automatic and
manual stations in Switzerland, achieving high accuracy and
detailed spatial resolution. RnormM provides precipitation
with nominal spatial resolution of 2.2 km in WGS-84 long–
lat coordinates, while the effective resolution, i.e., the av-
erage distance between individual weather stations, is 15–
20 km. The accuracy of the RnormM analysis depends on
the accuracy of the underlying measuring stations and on the
ability of the interpolation method that is employed.

3 The RainFARM stochastic downscaling method and
its modification

3.1 RainFARM

The RainFARM procedure is described in detail in Rebora
et al. (2006) and D’Onofrio et al. (2014), and in the present
paper we refer to the spatial-only downscaling method de-
scribed in the latter. The RainFARM method downscales
a large-scale spatiotemporal precipitation field P(X, Y , t),
which is considered reliable at scales larger than a reliability
scale Lo (which often may coincide with the spatial resolu-
tion of the field). Here and in the following we use uppercase
coordinates (X, Y ) and lowercase coordinates (x, y) to indi-
cate that a field is defined on a coarse or fine grid, respec-
tively.

From the large-scale field to downscale, the method gen-
erates a fine-scale field r̃(x, y, t) at a desired fine-scale res-
olution by extrapolation of its large-scale power spectrum to
the unresolved smaller scales, using the same spectral slope
in a log–log plot as the large-scale field, choosing random
Fourier phases at small scales and finally using an inverse
Fourier transform to return to physical space. Since this pro-
cedure by itself would create intermediate fields g(x, y, t)
with an unrealistic, almost Gaussian amplitude distribution,
a final nonlinear (exponential) transformation is applied to
the resulting field in physical space: r̃(x, y, t)= exp(γg).
The parameter γ represents an additional free parameter of
the procedure, but, as discussed in D’Onofrio et al. (2014),
γ = 1 is commonly used when there is no adequate informa-
tion to tune it.

In the final step of the procedure, r̃(x, y, t) is further ad-
justed to guarantee that when upscaled (aggregated) at the
large reliability scale, it reproduces exactly the original field
to downscale P(X, Y , t):

r(x,y, t)=
r̃(x,y, t)〈P(x,y, t)〉Lo

〈̃r(x,y, t)〉Lo

, (1)

where the operator 〈·〉Lo indicates aggregation (averaging) at
scale Lo using simple averaging over boxes of side Lo, fol-
lowed by interpolation using nearest neighbors to the fine-
scale grid (x, y).

In this work we additionally apply a smoothing operator S
to both numerator and denominator of Eq. (1), averaging the
box-averaged fields a(x, y) over a moving Gaussian window
with size σ = Lo/2:

S[a(x,y)]Lo =

∫
�

K(x− x′,y− y′)a(x′,y′)dx′dy′, (2)

where � is the entire domain of interest and K(x− x′,
y− y′)= exp{−[(x− x′)2+ (y− y′)2]/σ 2

} is a kernel rep-
resenting an isotropic distribution of Gaussian weights. The
resulting transformation in this case is
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Figure 1. (a) Orography of the study area including the Swiss Alps, according to a 500 m resolution digital elevation model. Automatic
meteorological stations of the MeteoSwiss network providing at least 80 % of valid daily total precipitation data over the period 1981–2010
are labeled with gray diamonds. (b) Distribution of the elevations of the MeteoSwiss stations grouped in 500 m elevation bins.

r(x,y, t)=
r̃(x,y, t)S

[
〈P(x,y, t)〉Lo

]
Lo

S
[
〈̃r(x,y, t)〉Lo

]
Lo

. (3)

Using this improved approach allows us to conserve average
precipitation at scale Lo, avoiding box-shaped artifacts in the
resulting fields. We verified that all qualitative results dis-
cussed in this paper do not change whether the final smooth-
ing step is applied or not.

3.2 Reproducing fine-scale precipitation climatology in
RainFARM

We assume that a reference precipitation climatology c(x, y)
at fine spatial scales is available. This could be obtained from
long-term time averages of gridded observational precipita-
tion datasets, radar or satellite observations, or from numer-
ical simulations with high-resolution models. This reference
climatology is used only to derive local weights used to mod-

ify the spatial distribution of precipitation, but the absolute
value of precipitation itself is not taken into account, so that
possible large-scale biases in the reference climatology are
not introduced in the downscaling chain and do not affect the
results.

The spatial pattern of precipitation is translated into a map
of weights that is used to correct the spatial pattern of the
downscaled precipitation fields as follows:

w(x,y)= c(x,y)/S[c(x,y)]Lo . (4)

That is, we divide each value of c(x, y) by its local smooth
average at scale Lo. When the spatial average of c(x, y) is 0
(as may happen in arid areas), the weights are all set to 1. The
resulting weight field reflects the distribution in space, inside
each cell of size Lo, of the climatological precipitation in the
reference dataset. Notice that this provides a map of weights
with both positive and negative values and that, on average,
precipitation at scale Lo is conserved using this approach.

www.nat-hazards-earth-syst-sci.net/18/2825/2018/ Nat. Hazards Earth Syst. Sci., 18, 2825–2840, 2018
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In general, if the climatology needs to be reproduced
at a monthly time-scale, this method can be applied sepa-
rately for each month, computing monthly weights wi(x, y)
from Eq. (4), where ci(x, y) is the long-term monthly aver-
age of the reference precipitation dataset for month i, with
i = 1, . . ., 12.

The weights are then applied to the fine-scale field pro-
duced by the RainFARM procedure:

r̃(x,y, t)→ r̃(x,y, t) ·w(x,y), (5)

generating a new field in which precipitation is reduced
or intensified according to the weights obtained from the
long-term climatology. As a last step, the final amplitude
adjustment to conserve average precipitation at scale Lo,
i.e., Eq. (3), is again applied to r̃(x, y, t).

The resulting fine-scale field r(x, y, t) still coincides ex-
actly with the large-scale field P(X, Y , t) when both are ag-
gregated at the confidence scale Lo, but its long-term time-
averaged climatology will reflect the small-scale spatial dis-
tribution of the reference dataset c(x, y). Notice that the
weights in Eq. (4) only use the local distribution of precipi-
tation so they are not sensitive to possible large-scale biases
in the precipitation climatology.

4 Results

4.1 Application of RainFARM in a perfect-model
experiment

We demonstrate the method using daily precipitation data
from long-term simulations (1980–2008) performed with the
WRF model over the European domain, at 4 km spatial res-
olution, forced with ERA-Interim reanalysis data (Dee et al.,
2011). We focus on the Alpine region, choosing an area en-
compassing northwestern Italy and Switzerland (see Fig. 2a).
The area comprises 128×128 grid elements of the WRF pre-
cipitation field, p(x, y, t).

The dataset p(x, y, t) is used for the perfect-model exper-
iment

i. to create the coarse-scale field P(X, Y , t) to be down-
scaled, obtained by aggregating the fine-scale field at
scale Lo = 64 km, corresponding to 16× 16 fine-scale
grid points, using a box-averaging aggregation.

ii. to calculate the reference fine-scale climatology, which
is necessary for the modified RainFARM algorithm to
estimate the weights.

iii. to validate the fine-scale fields produced by the down-
scaling method.

In our example we consider separately monthly climatolo-
gies in order to show a general case in which the variability
in precipitation at seasonal and subseasonal scales is non-
negligible.

The coarse-scale field, P(X, Y , t), resulting from the ag-
gregation of p(x, y, t), has 8×8 spatial grid elements. After
applying RainFARM to P(X, Y , t), the fine-scale output r(x,
y, t) should reproduce, as close as possible, the statistical
properties of the original field p(x, y, t). To this end, we tune
the value of the parameter γ , described in Sect. 3.1, so that
the amplitude distributions of the downscaled fields r(x, y, t)
include that of the original field p(x, y, t) (shown in Fig. 3a).
A suitable value for the γ parameter is found to be γ = 0.75.
The spatial spectral slope for the RainFARM procedure is es-
timated separately for each month of the year from the orig-
inal coarse precipitation data P(X, Y , t), starting at wave
number k = 2, corresponding to a change of slope in the spa-
tial power spectra of precipitation in the WRF dataset.

Figure 2a shows the long-term time average (1980–2008)
of the WRF 4 km resolution precipitation dataset p(x, y, t).
The field presents small-scale details that reflect the under-
lying topography, and several features can be easily identi-
fied, such as the Apennine Mountains in the Italian regions
of Liguria and Tuscany (lower corner) or features connected
to individual river basins in the Alps. From the small-scale
field p(x, y, t) we calculate the monthly climatologies, used
as a reference to derive the corresponding fine-scale maps of
weights, according to Eq. (4).

Figure 2b shows the long-term time average of the coarse
64 km spatial resolution dataset to be downscaled, P(X, Y ,
t), obtained by box-averaging aggregation of the fine-scale
WRF data p(x, y, t). The RainFARM downscaling pro-
cedure estimates the large-scale spectral slopes, month by
month, directly from the large-scale field P(X, Y , t).

Figure 2c shows the long-term average of the fine-scale
fields obtained using the standard RainFARM procedure and
using a smooth moving Gaussian window with an averag-
ing operator of size σ = Lo/2 (Eq. 2). Since RainFARM
alone does not take into account orography at scales smaller
than the reliability scale Lo, the climatology of the down-
scaled field matches the reference climatology only if coarse-
scale averages of the downscaled climatology are considered.
Inside each grid element of size Lo, the RainFARM field
presents a distribution that has no correspondence with the
actual reference precipitation climatology. Actually, the fine-
scale distribution introduced by RainFARM in each large-
scale grid element of size Lo is statistically almost homoge-
neous, as reflected in the smooth distributions found in the
long-term average (Fig. 2c). Indeed if a box-averaging oper-
ator had been used (Eq. 1 instead of Eq. 3), the resulting cli-
matology of the RainFARM downscaled field would be very
similar to Fig. 2b.

Figure 2d shows the same as Fig. 2c but using the mod-
ified RainFARM algorithm, i.e., applying the weights wi(x,
y) computed from the WRF monthly climatologies. An ex-
ample of a weights map is provided in Fig. 2e, which refers
to the month of June. In this case the weights correspond to
correction factors ranging between 0.4 and 2.3, but similar
ranges are found for the other months. Compared to Fig. 2c,
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Figure 2. The “perfect-model” experiment. Average daily precipitation climatology (1980–2008) derived from (a) high-resolution WRF
daily fields at 4 km, here considered to be the“truth”; (b) WRF daily fields aggregated at 64 km, i.e., the fields, P(X, Y , t), to be downscaled;
(c) P(X, Y , t) downscaled at 4 km using the standard RainFARM method; (d) P(X, Y , t) downscaled at 4 km using the modified RainFARM
method; (e) an example of a map of weights obtained in this case for the month of June; (f, g) anomalies of the downscaled climatologies
in (c) and (d) with respect to the reference precipitation field (a).

in Fig. 2d individual orographic features are now clearly
recognizable and there is a significantly improved corre-
spondence with the reference climatology. The improvement
gained by the modified RainFARM procedure is better high-
lighted in Fig. 2f and g, which report the anomalies of the
climatologies obtained with the different downscaling proce-
dures (Fig. 2c and d) compared to the reference climatology
(Fig. 2a). These figures show that the modified RainFARM
algorithm allows us to remarkably reduce the bias with re-
spect to the reference climatology in both the valleys and the
mountain ridges. Furthermore, when we compare the clima-
tologies of the standard RainFARM downscaled fields with
the reference, we find a pattern correlation of 0.79 and a

root-mean-square error (RMSE) of 0.86 mm day−1, while the
modified method improves these to a correlation of 0.98 and
a RMSE of 0.27 mm day−1.

We proceed investigating the extent to which the two Rain-
FARM methods correct the amplitude distributions of the
coarse-scale daily precipitation with respect to the refer-
ence fine-scale data. Figure 3 shows the PDFs of the WRF
daily precipitation before and after application of the down-
scaling methods. The PDFs are calculated including all the
grid points of the previously described precipitation datasets,
i.e., 8× 8×N grid points in the coarse-scale dataset and
128×128×N grid points in both the downscaled and the val-
idation datasets, N being the number of (daily) time steps in
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Figure 3. The “perfect-model” experiment: (a) probability density function (PDF) of WRF daily precipitation at coarse resolution (64 km,
black) of the downscaled WRF precipitation (from 64 to 4 km) obtained using the standard (gray) and modified (light blue) RainFARM
methods compared to the original fine-resolution (4 km) WRF precipitation (blue). Gray and light-blue bands and lines represent the spread
of the ensemble and the fifth and 95th percentile ranges, respectively, calculated from 80 realizations of the stochastic downscaled field;
(b) same as (a) but separating high- and low-precipitation grid points as specified in the text; (c) ratio between the PDF of WRF downscaled
precipitation and the PDF of the reference, for low- and high-precipitation grid points, with the standard and the modified RainFARM
methods.

the period 1980–2008. For each downscaling method (stan-
dard and modified RainFARM) we generate an ensemble of
80 stochastic realizations of the downscaled rainfall fields
in order to provide an estimate of the uncertainty associated

with the small-scale precipitation. The different realizations
are characterized by the same spectral slope and different
sets of random Fourier phases. In Fig. 3a we report as light
blue and gray the spread of the PDF ensembles and as thick
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light blue and gray lines the fifth and 95th percentiles of the
range of the PDFs obtained with the modified and the stan-
dard RainFARM, respectively.

The coarse-scale precipitation fields provide precipitation
values mainly below 100–120 mm day−1 and, in any case,
they never exceed 150 mm day−1. However, the range of
precipitation values simulated at high resolution (∼ 4 km)
by WRF extends up to 400 mm day−1. The aggregation has
clearly smoothed out the precipitation extremes, which ap-
pear insufficiently represented in the coarse-scale dataset.
Both RainFARM downscaling methods reintroduce high-
precipitation values in the range of 150–400 mm day−1 with
a probability of occurrence that is comparable to that seen
in the original WRF dataset. The PDF of the real reference
precipitation is included in the range of PDFs obtained via
stochastic downscaling: this result confirms the strength of
the RainFARM method as a way to effectively represent the
upper tails of the precipitation distribution, also when the
new modified procedure described in this work is used. In
fact, using the modified RainFARM procedure we obtain a
PDF distribution similar to in the case of the standard Rain-
FARM, just slightly shifted towards higher precipitation val-
ues. The modified procedure, while better reproducing the
long-term climatology of precipitation at each point, does not
affect the overall capability of the RainFARM method of re-
producing extreme precipitation values.

In Fig. 3a all grid points in the study area have been con-
sidered together. Since the modified RainFARM procedure
leads to an overall better representation of the downscaled
precipitation climatology (Fig. 2d and g), it is interesting to
analyze more in detail the effects of the downscaling pro-
cedure when we separately consider grid points character-
ized by long-term average precipitation, which is higher and
lower with respect to the median over the neighboring grid
points. To this end, in each large-scale box of size Lo we sep-
arate grid points into two groups with the same numerosity,
using the local median of the long-term climatology (Fig. 2a)
as a threshold. Grid points with average precipitation cli-
matology above or equal to the local median are classified
as “high-precipitation” grid points, while those with aver-
age precipitation below the threshold are labeled as “low-
precipitation” grid points. For each of the two groups we cal-
culate the PDF of the downscaled daily precipitation and we
compare it to the PDF of the original 4 km WRF data in the
same group. This exercise is performed using both the stan-
dard and the modified RainFARM outputs.

Figure 3b shows the results when the standard (left) and
the modified (right) RainFARM methods are applied. When
using the standard RainFARM the PDFs of the high- and
low-precipitation grid points are not clearly separated from
each other, and for given precipitation ranges the reference
PDF lies outside the range of variability in the PDFs of the
downscaled data. Instead, the modified RainFARM is able
to capture the reference rainfall PDF, better separating the
high- from the low-precipitation grid points, and the refer-

ence PDFs are included in the range of PDFs of the down-
scaled datasets.

In order to better compare the performance of the modified
versus the standard RainFARM, we show the ratio between
the PDFs of the downscaled datasets with respect to the PDF
of the reference data: the closer the ratio is to 1, the better
the model performance is. The results are reported in Fig. 3c
in which low- and high-precipitation grid points are shown
in the left and right panels, respectively. Also in this case
we use the full 80-member ensemble, and the bands in the
plot represent the range of variability in the ensemble. The
standard RainFARM shows good skill in representing very
rare events with precipitation above 200 mm day−1 in low-
precipitation grid points. Apart from this, the standard Rain-
FARM overestimates the frequency of precipitation below
200 mm day−1 in low-precipitation grid points and underes-
timates the frequency of precipitation below 300 mm day−1

in high-precipitation grid points. These results show that the
standard RainFARM method is, by construction, not sensi-
tive to the differences between low- and high-precipitation
grid points at the fine scale, so precipitation is generally
overestimated in low-precipitation grid points and underes-
timated in high-precipitation grid points (Fig. 3b).

This problem is corrected when the modified RainFARM
is used. The modified RainFARM provides precipitation dis-
tributions that are closer to the real one, for almost the
full range of precipitation values, for both low- and high-
precipitation grid points. The only exception is for very rare
events with daily precipitation above 300 mm day−1, occur-
ring in high-precipitation grid points only, where the standard
RainFARM already showed a good agreement: the frequency
of these events is now overestimated with respect to the refer-
ence. Apart from this feature, the modified RainFARM out-
performs the standard method and allows redistribution of
coarse-scale precipitation among the corresponding small-
scale grid points in a more realistic way based only on their
average climatology.

4.2 A more realistic test case

In this section we demonstrate an application in which the
large-scale precipitation field, the reference climatology, and
the verification data are not derived from the same high-
resolution dataset but from different sources. We downscale
the E-OBS dataset, one of the most extensively used grid-
ded observational precipitation datasets over Europe, and we
compare downscaled data directly with daily station mea-
surements from MeteoSwiss. The domain of study is again
the Swiss Alps, for which a high-quality dataset from sur-
face stations is available (Fig. 1). The reference precipitation
climatology used to derive the corrective weights is the Me-
teoSwiss RnormM monthly climatology (see Sect. 2.4), pos-
sibly the best available gridded product for the study region.
Notice that the MeteoSwiss station data used for verification
are included among the stations used to construct this grid-
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ded climatology, so the climatology is not independent, but
we discuss in Sect. 4.3 the impact of different precipitation
climatologies.

Also, in this case we estimate spectral slopes at a monthly
scale from the coarse E-OBS fields, starting from wave num-
ber k = 2. A comparison between the downscaled E-OBS
precipitation and MeteoSwiss observations suggested choos-
ing γ = 1.35 in this case.

We analyze the PDFs of the E-OBS original dataset at
25 km, including only grid points containing at least one sur-
face station. If one grid point includes more than one sta-
tion the E-OBS time series is repeated in order to have the
same number of time series from the surface stations and
from E-OBS. As a second step, we separate points charac-
terized by “high” and “low” long-term average precipitation.
To this end we use the station data and we calculate the long-
term average daily precipitation climatology at each station.
The stations are then split into two groups based on the me-
dian of the distribution of the precipitation climatologies, so
that low-precipitation stations have below-median long-term
daily precipitation climatologies and high-precipitation sta-
tions have above-median long-term daily precipitation cli-
matologies. The corresponding E-OBS grid points contain-
ing the stations are grouped based on the classification of the
station which they contain. Notice that this separation is dif-
ferent from that carried out in the previous section for the
perfect-model case in which each grid point was compared
with its immediate neighbors since in this case our reference
dataset is an ensemble of sparse stations instead of a contin-
uous gridded field. Instead of selecting grid points with high
or low precipitation compared only to their neighbors, we se-
lect stations with high- or low-precipitation compared to all
available stations.

Figure 4a shows the PDFs of E-OBS at its original resolu-
tion, of E-OBS downscaled with the standard and the mod-
ified RainFARM methods (80 realizations for each experi-
ment) and the PDF of the observations from the 59 stations.
The displayed results refer to the case with no distinction be-
tween low- and high-precipitation grid points, so all the grid
points are considered part of the same sample. In this case the
two RainFARM methods provide very similar results, with
almost no difference in the fifth and the 95th percentiles of
the two PDF distributions. Both downscaling methods intro-
duce variability at small spatial scales, increasing the prob-
ability of precipitation events above 100 mm day−1 with re-
spect to the original coarse-scale data. The PDF of the orig-
inal E-OBS data lies around the lower fifth percentile of the
PDF distribution of the downscaled data. The downscaling
clearly improves the agreement with observations and allows
us to fully capture the observed PDF.

To further investigate this result we separate high- and
low-precipitation grid points as previously explained and we
evaluate (i) the ratio between the PDF of E-OBS data and
that of observations in order to better characterize the E-OBS
dataset and (ii) the ratio between the PDF of each downscal-

ing realization (80 realizations for each of the two ensem-
bles) and the observed PDF in order to characterize the per-
formances of the two downscaling methods (Fig. 4b and c).
The closer the PDF ratio to 1, the better the agreement with
the observations. Please note that the displayed precipitation
range corresponds to the full observed precipitation range by
construction.

When considering low-precipitation grid points (Fig. 4b),
E-OBS at the original spatial resolution shows a clear ten-
dency to overestimate the frequency of precipitation events
from a few millimeters per day up to about 80 mm day−1.
Above this precipitation threshold the events become rare,
with no events above 150 mm day−1. The small-scale fields
obtained with the standard RainFARM downscaling method
inherit the overestimation errors in the range between a few
millimeters per day and about 80 mm day−1. The standard
method acts mainly on the tails of the distribution by am-
plifying the frequency of heavy precipitation events. Their
frequency becomes remarkably higher with respect to obser-
vations above 100 mm day−1. If the modified RainFARM al-
gorithm is applied, the PDF ratios get closer to 1 throughout
the range, showing a clear improvement in the representation
of the precipitation distribution with respect to the standard
RainFARM method.

When considering high-precipitation grid points (Fig. 4c),
E-OBS at the original spatial resolution shows impor-
tant deficiencies and limited capability to reproduce the
observed PDF. The agreement between the E-OBS PDF
and the observed PDF drops for values higher than about
20 mm day−1 and gets close to zero in the range between 100
and 300 mm day−1. Such inadequacy found for the E-OBS
dataset is expected to also be reflected to some extent in the
downscaled data. In fact, we find that, with respect to E-OBS
at its original spatial resolution, both downscaling methods
correctly increase the frequency of high-precipitation events
and they contribute to reducing the discrepancy with respect
to the reference dataset. In short, both downscaling methods
improve the description of the tail of the precipitation distri-
bution but the discrepancy between the original coarse-scale
dataset and the observations is too large to be entirely can-
celed out by the downscaling method only.

To further investigate and better characterize the perfor-
mances of the downscaling methods, we compare the skills
of the standard and of the modified RainFARM in different
seasons. Figure 4d–g report the results for low-precipitation
stations. The overestimation of the observed PDF from E-
OBS at its original resolution (0.25◦) at low-precipitation sta-
tions (see Fig. 4b) occurs mainly in winter and, to a lesser
extent, in spring and autumn. When considering the down-
scaled E-OBS precipitation, a clear difference emerges be-
tween the standard and the modified RainFARM methods.
The standard RainFARM reproduces and amplifies the E-
OBS overestimation, showing large discrepancies with re-
spect to the observed PDF, especially for precipitation above
50 mm day−1 (winter and spring). The modified RainFARM,
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Figure 4. (a) The “real-case” experiment. Probability density function (PDF) of E-OBS daily precipitation at the original resolution of 0.25◦

(black), E-OBS precipitation downscaled using the standard (gray) and the modified (light blue) RainFARM with the MeteoSwiss weights,
and the observations from 59 stations in Switzerland (dark blue). Gray and light-blue bands and lines represent the spread of the ensemble and
the fifth and 95th percentile ranges, respectively, calculated from 80 realizations of the stochastic downscaled field. (b, c) The ratio between
the PDFs of (i) E-OBS at its original resolution (black squares), (ii) 80 E-OBS downscaling realizations with the standard (gray) and the
modified (colors) RainFARM, and the PDF of the observations, for low-precipitation (b) and high-precipitation (c) grid points. (d–g) Same
as (b) but for different seasons (DJF, MAM, JJA, SON) and for low-precipitation grid points.
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instead, reduces the original E-OBS overestimation, lead-
ing to a closer agreement with observations. In spring and
autumn, in particular, the observed PDFs are reproduced
very well. In summer, E-OBS at its original resolution is
able to correctly reproduce the observed PDF up to about
70 mm day−1. In this case, a clear improvement of the mod-
ified RainFARM with respect to the standard RainFARM is
registered only for precipitation events above 50 mm day−1.
Below this threshold the modified RainFARM still gives PDF
ratios close to 1.

For high-precipitation stations (not shown), the perfor-
mances of the standard and the modified RainFARM meth-
ods are similar to each other and they show little variabil-
ity across different seasons. In fact, for all seasons, the per-
formances of both downscaling methods reflect the behavior
found at an annual timescale (Fig. 4c).

4.3 Sensitivity of the method to the reference
precipitation climatology

The results described in the previous section have been ob-
tained employing a high-quality reference precipitation cli-
matology for the calculation of the corrective weights. The
availability of such a high-quality dataset is quite rare in
mountain regions, allowed here by the fact that the Alps
are among the most instrumented mountain regions of the
world. Such high-quality data could be unavailable for other
regions in the world. For this reason we explore the sensi-
tivity of the modified RainFARM algorithm to the accuracy
of the reference precipitation climatology and we show pos-
sible alternatives if a high-quality gridded precipitation cli-
matology is not available. In these cases, one possibility is
to use, for example, a high-resolution global precipitation
gridded climatology such as WorldClim, already described
in Sect. 2.3, which nominally provides monthly climatolo-
gies at 1 km resolution, based on more than 47 000 stations
distributed around the globe. Clearly, the distribution of the
stations is uneven and reflects the level of economic devel-
opment and the population density of a country, as well as
the national data access policies, so the uncertainty in areas
with low station density can be remarkable (Hijmans et al.,
2005). Even in a station-dense area such as the Swiss Alps
the station database used for WorldClim v1.4 counts only
22 stations (Hijmans et al., 2010), so it is sparser than that
used to compile the regional-scale MeteoSwiss RnormM cli-
matology (Begert et al., 2013), and consequently likely char-
acterized by lower accuracy. Apart from WorldClim, a sec-
ond possible option in absence of a trusted, high-resolution
gridded precipitation climatology over the domain of interest
could be to use a reference climatology derived from very
high-resolution regional climate model simulations. To ad-
dress this possibility in the following test, we use the WRF
climatology at 4 km resolution already exploited in the per-
fect case experiment, this time applied only to derive the
weights for the correction in Eq. (5).

0 50 100 150

0
2

4
6

8

Sensitivity to weights

Precipitation [mm day   ]

PD
F 

ra
tio

 (d
ow

ns
ca

le
d/

re
f) 

[ ]

RainFARM mod. − weights Meteoswiss
RainFARM mod. − weights Worldclim
RainFARM mod. − weights WRF
RainFARM standard
EOBS 0.25°

-1

Figure 5. Sensitivity of the modified RainFARM downscaling
method to different weights, derived from MeteoSwiss (light green),
WorldClim (dark green), and WRF (cyan) climatologies for low-
precipitation grid points. The performances of the standard Rain-
FARM method (gray) are shown for comparison. The bands show
the range of variability in the PDF ratios between each of the
80 downscaling realizations and the PDF of observations, while
black squares represent the ratio between the PDF of E-OBS at its
original spatial resolution and the PDF of observations.

Figure 5 compares the results of the downscaling per-
formed using weights derived from three different climatolo-
gies, i.e., MeteoSwiss, WorldClim, and WRF 4 km resolu-
tion climate simulations. For each of the three experiments
we use ensembles of 80 realizations. Keeping in mind the
issues of E-OBS (see Sect. 4.2) regarding its limited ca-
pability of describing the observed precipitation range for
high-precipitation grid points and the consequent difficulties
in disentangling the limitations of E-OBS from the limita-
tions of the downscaling method, here we focus the analysis
on the low-precipitation grid points that are not affected by
these problems. While, not surprisingly, the MeteoSwiss cli-
matology provides the best results, the WorldClim and the
WRF climatologies also improve the agreement with the ob-
served PDF, leading to significantly better results than using
the original RainFARM method. Up to about 60 mm day−1

all three methods provide PDFs that stay very close to the
observed PDF, while at higher values the ensembles of PDFs
of the downscaled fields tend to overestimate the verifica-
tion PDF. It is important to notice that at very high precipi-
tation levels (around 150 mm day−1) all the three ensembles
obtained with the different climatologies tend to again con-
tain the verification PDF.

Both the WRF and the WorldClim climatologies tend to
slightly overestimate the observed PDF compared to the use
of the MeteoSwiss climatology, particularly at higher precip-
itation levels, with the WRF climatology performing slightly
better than the WorldClim climatology. The limitations of the
WRF climatology might be due to well-known difficulties
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of regional models in accurately reproducing precipitation
over topography, with significant biases, also dependent on
the specific parameterizations used, as also discussed in Pieri
et al. (2015). The performance of the WorldClim climatology
is probably affected by its sparser station density compared
to the MeteoSwiss dataset.

5 Discussion

A simple modification to take into account precipitation vari-
ability at scales of the order of 1 km into stochastic precip-
itation downscaling methods has been proposed, applied to
RainFARM, and tested in the Swiss Alps in two different
cases. First, in the perfect-model framework, high-resolution
WRF simulations (0.037◦, ∼ 4 km) have been upscaled to
64 km resolution in such a way that the amount of precipi-
tation in a grid point at the coarse scale is, on average, the
same as the precipitation fallen in the corresponding 16×16
grid points in the original fine-scale field. The downscal-
ing procedure applied to this coarse-scale dataset shows a
very good agreement with the true precipitation data in terms
of their amplitude distribution. When separately analyzing
grid points with low- and high-precipitation climatology (low
and high with respect to the median of the fine-scale daily
average precipitation climatology in each coarse-scale grid
point), the added value of the new RainFARM version over
the standard RainFARM is evident. The new version allows
reproduction of the distribution of precipitation in low- and
high-precipitation grid points with very high accuracy, re-
markably better than the standard RainFARM.

Second, we have considered a more realistic application in
which E-OBS gridded precipitation data are downscaled over
Switzerland at about 1 km spatial resolution and then com-
pared to in situ observations from the MeteoSwiss network.
In this case a preliminary evaluation of the E-OBS dataset has
revealed important discrepancies compared to the observa-
tions, especially in high-precipitation grid points. In fact, in
high-precipitation grid points the frequency of precipitation
events is increasingly underestimated from a few millimeters
per day up to 100 mm day−1, and events with precipitation
above about 140 mm day−1 are simply not represented. In
this context, both downscaling methods remarkably improve
the agreement with the observations, also reproducing ex-
treme precipitation values, so that downscaled precipitation
values cover the full observed precipitation range. Although
the downscaling does not fully compensate for the original E-
OBS underestimation in high-precipitation grid points, both
the standard and the modified RainFARM remarkably im-
prove the agreement with the observations. In particular, in
low-precipitation grid points, only the modified downscaling
method allows the reconstruction of the observed PDF. The
modified RainFARM outperforms the standard RainFARM
method by leading to a better agreement of the amplitude
distributions compared to observations.

The two experiments discussed in this paper, in a perfect-
model and a realistic case framework provide complemen-
tary information regarding the skills of the presented down-
scaling method, and they clearly show what we can ex-
pect (or not) when it is used in practical applications. In
the perfect-model experiment there is exact conservation of
the water flux between the coarse-scale dataset to down-
scale and the validation dataset, as the former has been de-
rived by aggregation of the latter. This implies that the er-
ror associated with the validation dataset is zero and the de-
gree of agreement between the downscaled and the valida-
tion data is an exact measure of the skills of the downscal-
ing method. This experiment shows the very good perfor-
mance of the modified RainFARM in adjusting the PDF of
the downscaled data in such a way that they are not distin-
guishable from the reference PDF. Conversely, in the real-
case experiment, the flux conservation between the coarse-
scale and validation datasets is not to be expected owing
to their very different nature and characteristics. In fact,
E-OBS (version 17) is a 25 km resolution dataset gener-
ated by interpolating measurements from a subset of all the
Swiss surface stations, precisely 36 stations active in the
considered period 1981–2010, with elevation ranging be-
tween 200 and 2500 m a.s.l. (source E-OBS documentation,
http://www.ecad.eu/, last access: 28 August 2018). On the
contrary, the validation dataset consists of 59 stations rep-
resentative of elevations up to 3302 m a.s.l., 50 % of these
stations lying above 600 m, with 25 % in the range of 600–
1600 m, 10 % in the range of 1600–2000 m, 10 % in the range
of 2000–2500 m, and 5 % above 2500 m. Clearly, the reduced
number of underlying stations in E-OBS, together with the
stations biased toward low elevations, contribute to uncer-
tainties and discrepancies with respect to the station data, es-
pecially in areas prone to high precipitation (Fig. 4c).

Among the other sources of errors affecting the down-
scaled fields in the real-case experiments, the fine-scale cli-
matology used to derive the correction factors (weights) has
to be considered. In our case the MeteoSwiss RnormM cli-
matology is probably affected by sources of uncertainty sim-
ilar to the E-OBS dataset, but to a smaller extent owing to
the higher density of stations included and their better alti-
tude representativeness. In detail, RnormM is also derived
by interpolation of data from surface stations whose average
distance is 15–20 km. The interpolation tends to smooth out
peaks and troughs in a surface, so we can expect that the
interpolation product provides lower precipitation extremes
than the original point measurements. As a consequence,
the resulting RnormM climatology, as well as the maps of
weights, are smoothed out with respect to the single surface
station climatology, with evident impacts on the agreement
between the downscaled fields and the validation (surface
station) reference.

Despite the fact that experiments in real cases are gen-
erally characterized by errors and/or biases in the coarse-
scale datasets to downscale, in the climatology used to derive
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the weights, and in the validation datasets, we show that the
RainFARM downscaling method is still effective in improv-
ing the agreement between the amplitude distributions of the
observed precipitation and of the downscaled fields.

The modified RainFARM algorithm has been shown to
also provide robust results in absence of an accurate regional
fine-scale precipitation climatology tailored to the area of
study. In fact, a fine-scale global monthly precipitation prod-
uct such as WorldClim (at nominally 1 km spatial resolution,
but obtained from a limited number of measurement stations)
provides sufficient information for the weight calculation so
that the outputs of the downscaling are close to those derived
in the optimal case using the regional and more accurate Me-
teoSwiss climatology. Alternatively, we have also shown that
using a climatology from a high-resolution regional climate
model simulation to derive weights also provides good re-
sults. This suggests that the modified RainFARM method
could also be applied in regions of the globe where only
limited climatological information is available, such as that
provided by the WorldClim dataset or by a regional climate
model simulation. Since RainFARM does not require provid-
ing or tuning additional parameters it could then be applied
directly to the coarse-scale dataset to be downscaled.

In the simple method that we presented, downscaled pre-
cipitation data in each grid point and for each month have
been corrected by a constant factor each time precipitation
occurs. This is of course an approximation that only modi-
fies the amplitude of precipitation events at that point and not
their frequency. The same climatological average precipita-
tion at a point could be obtained modifying either the event
frequencies or their intensities. Nonetheless, we have seen
that the RainFARM method allows reconstruction of plausi-
ble fine-scale precipitation values with a frequency of occur-
rence in agreement with observations, when statistics over
30 years are considered. This makes the new RainFARM ap-
proach suitable for downscaling climate model data when
we need to describe the statistics of precipitation over long
(climatic) timescales, and we are not interested in temporal
correlations with the observed fields at finer temporal scales.
Further work should be carried out to assess if the new Rain-
FARM algorithm provides added value when the temporal
correlation between the downscaled data and the observa-
tions is of importance.

The proposed method has been developed and tested in a
mountain environment but it could also be used, in principle,
in other areas of the globe. In such an extended framework,
the more general added value brought by the new RainFARM
algorithm is the reproduction of an observed precipitation
pattern, no matter if it originates from topography or other
surface heterogeneities. When the reference fine-scale pre-
cipitation climatology is almost constant over a portion of the
domain, or zero as for example in very arid or desert areas in
dry months, the resulting weights are all 1 and the modified
RainFARM method provides results identical to those of the
standard RainFARM method.

6 Conclusions

Stochastic precipitation downscaling methods generally do
not take into account local precipitation patterns at spatial
scales below those explicitly resolved in the coarse-scale
dataset. We propose a simple technique that can be applied to
stochastic precipitation downscaling methods to improve the
representation of the fine-scale daily precipitation in complex
and spatially heterogeneous regions, such as mountain areas.
The application of this method requires exclusively fine-scale
information on the precipitation climatology from an exter-
nal reference dataset.

This technique, here applied to the RainFARM stochastic
downscaling algorithm, adjusts the fine-scale daily precipi-
tation values calculated by the standard RainFARM method
by using monthly sub-grid weights derived by a reference
monthly fine-scale climatology before imposing the conser-
vation of the average water flux at the coarse grid scale be-
tween the coarse-scale dataset and the downscaled dataset.
In our perfect-model experiment, compared to the standard
RainFARM, the modified RainFARM allowed reduction of
the root-mean-square error on the long-term precipitation cli-
matology from 0.86 to 0.27 mm day−1, thus introducing clear
improvements in the downscaling performance. The modi-
fied RainFARM has been shown to assign precipitation val-
ues to the small-scale grid in such a way that when grid points
with low or high average climatological precipitation are
considered separately, the distributions (PDFs) of the down-
scaled precipitation are closer to the PDFs of the correspond-
ing reference dataset. Given its ability to reconstruct the over-
all precipitation distribution, the modified RainFARM down-
scaling method can be employed in a number of applications,
including the analysis of extreme events and their statistics
and of hydrometeorological hazards.

Like the standard RainFARM, the new RainFARM down-
scaling method is not intended to correct the biases affect-
ing the coarse-scale dataset. Prior to applying the downscal-
ing, it is recommended to evaluate the degree of agreement
between the coarse-scale and possible verification datasets.
If the coarse-scale dataset presents clear deficiencies or its
long-term climatology is substantially different from the
observed climatology, bias adjustment of the coarse-scale
dataset could be applied before downscaling.

The proposed method can be useful in particular for down-
scaling climate model data and for any application for which
a correlation over fine temporal scales between the down-
scaled and the observed data is not required. Further work
should aim to investigate if this method employing fixed cor-
rection factors also improves the downscaling performance
when the spatial structures of precipitation have to be repro-
duced at fine (daily or sub-daily) temporal scales such as ap-
plications of downscaling at weather timescales.

In absence of a high-quality fine-scale observed precipita-
tion climatology at regional scales, global datasets, such as
WorldClim or a high-resolution regional climate simulation,
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could also be successfully employed and they provided good
performance in our study area.

In conclusion, in spite of its simplicity, the proposed
method is found to introduce realistic small-scale variability
in the downscaled precipitation fields using only a fine-scale
monthly precipitation climatology, and it could be applied
in different regions of the world, not only mountain areas, to
provide a more realistic representation of the distribution and
the climatology of precipitation.

Code and data availability. RainFARM is distributed as an
open-source library and a command line interface, writ-
ten in the Julia language, freely available at the link:
https://github.com/jhardenberg/RainFARM.jl (RainFARM,
2018). All the datasets used in this study are publicly ac-
cessible and were downloaded from the following web sites:
WRF: http://nextdataproject.hpc.cineca.it/thredds/catalog/
NextData/eurocdx/h1e4/catalog.html (WRF, 2015); E-OBS:
http://www.ecad.eu (E-OBS, 2018); RnormM monthly precip-
itation climatology: https://www.meteoswiss.admin.ch/home/
climate/swiss-climate-in-detail/raeumliche-klimaanalysen.html
(RnorM, 2016); MeteoSwiss daily precipitation from
the surface stations, accessible upon registration: https:
//gate.meteoswiss.ch/idaweb/login.do (MeteoSwiss, 2016); World-
Clim monthly precipitation climatology: http://www.worldclim.org
(WorldClim, 2015).
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