
Nat. Hazards Earth Syst. Sci., 18, 2561–2602, 2018
https://doi.org/10.5194/nhess-18-2561-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Tree-based mesh-refinement GPU-accelerated tsunami
simulator for real-time operation
Marlon Arce Acuña1 and Takayuki Aoki2
1Department of Nuclear Engineering, Tokyo Institute of Technology, 2-12-1-i7-3, Ookayama, Meguro, Tokyo, Japan
2Global Scientific Information and Computing Center, Tokyo Institute of Technology,
2-12-1-i7-3, Ookayama, Meguro, Tokyo, Japan

Correspondence: Marlon Arce Acuña (marlon.arce@sim.gsic.titech.ac.jp)

Received: 20 October 2017 – Discussion started: 10 November 2017
Revised: 16 July 2018 – Accepted: 13 August 2018 – Published: 21 September 2018

Abstract. This paper presents a fast and accurate tsunami
real-time operational model to compute across ocean-wide
simulations completely on GPU (graphics processing unit).
The spherical shallow water equations are solved using the
method of characteristics and upwind cubic interpolation to
provide high accuracy and stability. A customized, user inter-
active, tree-based mesh-refinement method is implemented
based on distance from the coast and focal areas to gen-
erate a memory-efficient domain with resolutions of up to
50 m. Three specialized and optimized GPU kernels (Wet,
Wall and Inundation) are developed to compute the domain
block mesh. Multi-GPU is used to further speed up the com-
putation, and a weighted Hilbert space-filling curve is used
to produce a balanced workload. Hindcasting of the 2004 In-
donesian tsunami is presented to validate and compare the
agreement of the arrival times and main peaks at several
gauges. Inundation maps are also produced for Kamala and
Hambantota to validate the accuracy of our model. Test runs
on three Tesla P100 cards on Tsubame 3.0 could fully simu-
late 10 h in just under 10 min wall-clock time.

1 Introduction

The turn of the 21st century showed us, as never before,
the reality of the terrible and devastating damage and death
that tsunamis can cause. In 2004, a massive earthquake off
Sumatra Island of magnitude Mw = 9.0 on the Richter scale
triggered a tsunami with deadly consequences. According
to the World Health Organization, the death toll for these
events exceeds 200 000 (WHO, 2014) in several countries

spread along the Indian Ocean. Not much later in 2011,
a tsunami triggered by a Mw = 9.0 earthquake on the east
coast of Japan in the Tohoku region produced yet another
disaster. Over 15 000 people died from these events, with
massive destruction of port and city infrastructure, housing,
and telecommunications. Additionally, the subsequent nu-
clear crisis was due to the tsunami-induced damage of several
reactors in the Fukushima nuclear power plant (Motoki and
Toshihiro, 2012).

These events highlight the importance of developing ac-
curate and fast tsunami-forecasting models. For several
decades, efforts have been made to develop such models.
These can be classified into two main groups: depth-average
(i) hydrostatic and (ii) non-hydrostatic long wave equations.
Hydrostatic models for the shallow water equations (SWEs)
started by solving their linear form based on finite difference
methods (FDMs), following the work of Hansen (1956) and
Fischer (1959) in the 1950s. The TUNAMI (Tohoku Uni-
versity’s Numerical Analysis Model for Investigation) (Ima-
mura et al., 1995) came from these initial steps but solved
the shallow water equations in a nonlinear form instead, for-
mulated them in a flux-conservative way for mass conserva-
tion and also introduced a discharge computation (Imamura,
1996) for the elevation near the shoreline. In a very similar
manner, the ALASKA-tectonic (GI’-T) and Landslide mod-
els (GI’-L) were introduced, which solved the nonlinear shal-
low water and used leapfrog FDM (Nicolsky et al., 2011)
similar to TUNAMI. Later came MOST (Method of Splitting
Tsunami) (Titov and Synolakis, 1995), an extensively used
model for tsunami simulation that tried to incorporate the ef-
fect of dispersion during simulations (Burwell et al., 2007).

Published by Copernicus Publications on behalf of the European Geosciences Union.



2562 M. Arce Acuña and T. Aoki: Tree-based mesh-refinement GPU-accelerated tsunami simulator

It was original because it introduced a function to add points
in the shoreline to improve tracking. Recently, MOST has
been ported for GPU computing (Vazhenin et al., 2013). A
more recent model is GeoClaw, which implements a unique
approach to deal with the issue of transferring fluid kinemat-
ics throughout nested grids by refining specified cells during
simulation to improve resolution in those areas (Berger and
LeVeque, 1998). More recent models incorporate a real-time
application such as RIFT (Real-Time Inundation Forecast-
ing of Tsunamis) (Wang et al., 2012). Like several of the
previous models, a leapfrog scheme is also used for these
real-time models, and a linear SWE is solved in certain ar-
eas for lighter computation. COMCOT (Cornell Multi-grid
Coupled Tsunami Model) from Cornell University is another
example using this approach (Liu, 1998). EasyWave is an-
other model (Babeyko, 2017) which employs linear approx-
imations to improve speed and employs a leapfrog scheme
as its numerical scheme. The latest version of EasyWave in-
troduced GPU to accelerate parts of the existing CPU code.
More recently, GPU-based models have been developed, like
NAMI DANCE (Zaytsev et al., 2006) in its latest version.
Additionally, a better known GPU model, Tsunami-HySEA
(Macías et al., 2017), has been extensively tested and is cur-
rently used by the Centro di Allerta Tsunami (CAT) in Italy.

In order to include the effect of pressure, since the 1990s,
some models have taken the direction of solving non-
hydrostatic models using the depth-integrated Boussinesq
equations (BEs) instead of the SWEs for tsunami propa-
gation. Initial efforts considered them to be weak nonlin-
ear models (Peregrine, 1967); however, models for nonlinear
equations were also developed not long after (for instance,
Nwogu, 1993; Lynett et al., 2002). Solving the Boussinesq
equation is, in general, more computationally demanding
than solving the SWEs and in order to reduce the computa-
tional time, some techniques have been implemented, such as
using parallel clusters or introducing nested grids. An exam-
ple of this is FUNWAVE-TVD (Shi et al., 2012), which is an
extended version of FUNWAVE, a run-up and propagation
model based on fully nonlinear and dispersive Boussinesq
equations (Wei et al., 1995). FUNWAVE introduced a nested-
grid method, and its later version was fully parallelized us-
ing MPI-FORTRAN. A well-known non-hydrostatic model
which also implements two-way grid nesting is NEOWAVE
(Non-hydrostatic Evolution of Ocean WAVE; Yamazaki et
al., 2011). Another one of these models is BOSZ (Roeber
and Cheung, 2012), which combines the dispersive effect
from the BEs with the shock-capturing ability of the non-
linear SWEs. BOSZ is mainly used for nearshore simulation,
since it is based on Cartesian coordinates and not suited for
large areas. Additionally, it does not implement nested grids.

Recently, efforts to solve the modeling equations in three
dimensions have been made as well. Although these mod-
els tend to capture difficult coastlines very well and can in-
clude multiple fluids or even materials, the computation cost
is still so great that it makes it only possible to apply them

effectively in small areas and it is not viable for transoceanic
propagations. Some examples are SELFEs (semi-implicit
Eulerian–Lagrangian finite elements; Zhang and Baptista,
2008; Abadie et al., 2010, 2012; Horrillo et al., 2013).

In this work, we present a new approach for a tsunami op-
erational model that retains a high degree of the complexities
of the physics involved and delivers a fast and accurate sim-
ulation. This speed also enables real-time operation: a user
can start forecasting simultaneously as a tsunami event oc-
curs. Results are generated faster than real time. The main
goal is to accomplish a wide-area, ocean-size computation
in short time while using resources efficiently. Our model,
referred to hereinafter as TRITON-G (Tsunami Refinement
and Inundation Real-Time Operational Numerical Model for
GPU), implements a full-GPU computing approach for the
whole tsunami model, composed of generation, propagation
and inundation. Specialized kernels are developed for each
part of the tsunami computation, and multi-GPU is used
for further acceleration. Load balance is obtained using a
weighted Hilbert space-filling curve. TRITON-G solves the
nonlinear spherical shallow water equations across the en-
tire domain to preserve the complexity of the propagation
and the effects near the coastline. The method of character-
istics with directional splitting and a third-order interpola-
tion semi-Lagrangian numerical scheme is used to solve the
governing equations. This allows for high accuracy and min-
imizes effects of numerical dispersion and diffusion while
also giving the ability to choose a larger time step compared
to using a Runge–Kutta scheme and at the same time per-
mits a light stencil suitable for fast computation. We imple-
ment a tree-based block refinement to generate a computa-
tional mesh that is flexible, light and can track complex coast-
lines. Customized refinements by distance and focal area
were developed, which permitting an efficient use of mem-
ory and computational resources. In a collaborative project
with RIMES (Regional Integrated Multi-Hazard Early Warn-
ing System, 2017), we utilize their existing databases for
bathymetry and fault sources where available and success-
fully deployed TRITON-G as their tsunami forecast opera-
tional model.

This article is organized as follows. A review of the gov-
erning equations is given in Sect. 2. The numerical method
and boundaries are explained in Sect. 3. In Sect. 4, a de-
scription of tree-based refinement and its customization is
given. The topography and bathymetry used are also de-
scribed. GPU and parallel computing are covered in Sect. 5.
In Sect. 6, we present comparison results with a known
benchmark inundation problem. In Sect. 7, we present sev-
eral numerical results including TRITON-G validation with
existing tsunami propagation data and run-up measurements.
Section 8 presents the conclusions of this study. Results
from several standard inundation benchmark problems are
included in the “Appendix”.

Nat. Hazards Earth Syst. Sci., 18, 2561–2602, 2018 www.nat-hazards-earth-syst-sci.net/18/2561/2018/



M. Arce Acuña and T. Aoki: Tree-based mesh-refinement GPU-accelerated tsunami simulator 2563

2 Governing equations

The spherical nonlinear shallow water equations (SSWEs)
are used to compute the tsunami propagation. In small, spe-
cific areas where inundation needs to be computed, the Carte-
sian coordinate version of the SWEs are solved instead (see
Toro 2010). The SSWE (Williamson et al., 1992; Swarz-
trauber et al., 1997) can be written as

∂h

∂t
+

1
a cosθ

∂

∂λ
(hu)+

1
a

∂

∂θ
(hv)−

hv

a
tanθ = 0,

∂hu

∂t
+

1
a cosθ

∂

∂λ

(
hu2
+
g

2
h2
)
+

1
a

∂huv

∂θ
−
hv

a
tanθ

−

(
f +

u

a
tanθ

)
hv+

gh

a cosθ
∂z

∂λ
+ τλ = 0,

∂hv

∂t
+

1
a cosθ

∂hvu

∂λ
+

1
a

∂

∂θ

(
hv2
+
g

2
h2
)
−
hv2

a
tanθ

+

(
f +

u

a
tanθ

)
hu+

gh

a

∂z

∂θ
+ τθ = 0, (1)

where λ stands for the longitude coordinate, θ for the latitude
coordinate, h is the water depth, hu and hv are the momen-
tum in longitude and latitude, respectively, with correspond-
ing velocities u and v, g is gravity, a is the radius of the Earth,
z is the bathymetry (submarine topography), f is the Coriolis
force defined as f = 2�sinθ with � being the rotation rate
of the Earth and τ is the bottom friction term. The bottom
friction is determined using the Manning formula:

τλ =
gn2

h7/3 hu
√
(hu)2+ (hv)2,

τθ =
gn2

h7/3 hv
√
(hu)2+ (hv)2, (2)

where n is the Manning’s roughness coefficient. The de-
fault value used for n is 0.025 across all domains except
for specific areas where more detailed values in the coast-
line are given in a database. The parameters used in this
work are a = 6.37122×106 [m],�= 7.292×10−5 [s−1] and
g = 9.81 [m s−2].

3 Numerical methods and boundary conditions

3.1 Methods of characteristics for SSWEs

The SSWEs are solved using the method of characteris-
tics (MOC). A method developed in the 1960s, explained in
detail by Rusanov (1963). MOC is applied to reduce hyper-
bolic partial differential equations, such as the SSWEs, to a
family of ordinary differential equations. A traditional ap-
proach when using MOC is to introduce a dimensional split-
ting (Nakamura et al., 2001) in the 2-dimensional equations
to create a smaller stencil and lighter computation. A numer-
ical scheme is regarded as well-balanced, or satisfying the
C-property (Bermúdez and Vázquez, 1994) if it preserves

steady states at rest, for instance, the undisturbed surface
of lake. When the fluid is at rest, i.e., u(x, t)= 0 then the
constant water height H defined as H(x, t)= h(x, t)+ z(x)
represents a steady state that should hold in time and not pro-
duce spurious oscillations (LeVeque, 1998). In order to make
the model well-balanced, the SSWEs are solved for H dur-
ing the simulation to guarantee this steady state. The origi-
nal variable h is simply obtained back from the expression
h=H − z.

In order to apply the method of characteristics, first the
SSWEs Eq. (1) are rewritten in vector form as

∂U

∂t
+A

∂U

∂λ
+B

∂U

∂θ
+ S = 0 (3)

with

U =

 h

hu

hv


A=

1
a cosθ

 0 1 0
02
− u2 2u 0

−uv v u


B =

1
a

 0 0 1
−uv v u

02
− v2 0 2v



S =


−hv tanθ

a

−

(
f +

u

a
tanθ

)
hv−

huv

a
tanθ +

gh

a cosθ
∂z

∂λ(
f +

u

a
tanθ

)
hu−

hv2

a
tanθ +

gh

a

∂z

∂θ

 ,

where 0 ≡
√
gh. Using the directional splitting technique on

Eq. (1), three equations are produced: an equation for each
coordinate (longitude λ and latitude θ ) and a third for the
source term S. The latter equation simply represents an or-
dinary partial differential equation for the source term while,
Eqs. (4) and (10) for the coordinates are in advection form.
These last two equations are written in diagonal form in or-
der to find the Riemann invariants and characteristics curves;
a detailed description of this procedure can be found in Ogata
and Takashi (2004) or Stoker (1992). The equation for the
longitude coordinate λ given by

∂U

∂t
+A

∂U

∂λ
= 0 (4)

has eigenvalues 3 given by

3λ± =
1

a cosθ
(u+0), 3λ3 =

1
a cosθ

u, (5)

which inserted in the diagonal form of Eq. (4) leads to

D±

Dt

(
0±

u

2

)
= 0, (6)

www.nat-hazards-earth-syst-sci.net/18/2561/2018/ Nat. Hazards Earth Syst. Sci., 18, 2561–2602, 2018



2564 M. Arce Acuña and T. Aoki: Tree-based mesh-refinement GPU-accelerated tsunami simulator

where D/Dt represents the material derivative. Equation (6)
means that the solution at a given grid point i is determined
from two characteristic curves along C+ and C− (Fig. 1).
The result at a time n+ 1 can be found by adding and sub-
tracting the expressions in Eq. (6) respectively to obtain

0n+1
i =

1
2

{
0++0−+

1
2

(
u+− u−

)}
(7)

un+1
i =

1
2

{
u++ u−+ 2

(
0++0−

)}
, (8)

where 0± and u± are the values at a time n, at positions
which might not necessarily lie on a grid point. An interpo-
lation is applied in order to determine these values, and with
them solve Eqs. (7) and (8).

Following a similar procedure as Yabe and Aoki (1991),
Yabe et al. (2001) and Utsumi et al. (1997), we utilize a
cubic-polynomial approximation on the grid profile to find
the interpolated values. The polynomial is defined as

F(λ)= aλ3
+ bλ2

+ cλ+ d (9)

with

u1t > 0



a =
fi+1− 3fi + 3fi−1− fi−2

61λ3

b =
fi+1− 2fi + fi−1

21λ2

c =
2fi+1+ 3fi − 6fi−1+ fi−2

61λ
d = fi

u1t ≤ 0



a =
fi+2− 3fi+1+ 3fi − fi−1

61λ3

b =
fi+1− 2fi + fi−1

21λ2

c =
−fi+2+ 6fi+1− 3fi − 2fi−1

61λ
d = fi

.

A similar analysis can be made for the latitude equation θ ob-
tained from the splitting method, given by

∂U

∂t
+B

∂U

∂θ
= 0 (10)

with analogous results for the eigenvalues and curves

3θ± =
1
a
(v+0), 3θ3 =

1
a
v, (11)

D±

Dt

(
0±

v

2

)
= 0. (12)

From which similar expressions as Eqs. (7) and (8) can be
found in order to estimate the values for h and hv.

The equations for the coordinates are solved using the
fractional step method. Following this method, the source
term given by

∂U

∂t
+ S = 0 (13)

Figure 1. Space–time diagram showing the characteristic
curves C± where black points represent the grid points, white
points represent the values 0± and u± at time n to be interpolated
to find 0n+1 and un+1.

is added to the solution obtained for Eqs. (4) and (10) . For
the source term, central finite differences are used to solve the
bathymetry term while the remaining values (cosine, tangent
terms) can be solved analytically at each grid point since the
variables are known straightforwardly.

In order to validate the implementation of the numerical
methods for the SSWEs, we used the benchmark described in
Kirby et al. (2013), where an initial Gaussian wave is prop-
agated on an idealized sphere with water depth h= 3000 m.
Results after 5000 s show good agreement with the results re-
ported which confirms the accurate propagation of the wave
on the sphere and the effects of the curvature and Coriolis
force.

3.2 Run-up calculation

The Cartesian SWEs are solved in specific areas of just a few
kilometers where inundation has to be calculated. For this
case we use a finite volume implementation (Bradford, 2002;
LeVeque and George, 2014) briefly described here. The sur-
face gradient method (SGM) (Zhou et al., 2001) is utilized
to solve the SWEs. This method uses the data at cell centers
to determine the fluxes. In general, depth gradient methods
cannot accurately determine the water depth value at cell in-
terface, since effects of the bed slope or small variations in
the free surface cannot be determined accurately. These in-
accuracies are spread during the computation, resulting in an
incorrect simulation of the inundation. In order to overcome
this, the SGM uses a constant water level H . Figure 2 de-
picts the stencil for the water-depth reconstruction. By using
the constant H as the total water depth at the cell interface
(i+ 0.5) instead, the water depth be can determined accu-
rately. In order to reconstruct the water depth, the following
expression is used:

hL,Ri+0.5 =max
(
HL,Ri+0.5− zi+0.5,0

)
, (14)

where z is given by

zi+0.5 = (zi + zi+1)
/

2 . (15)

Nat. Hazards Earth Syst. Sci., 18, 2561–2602, 2018 www.nat-hazards-earth-syst-sci.net/18/2561/2018/



M. Arce Acuña and T. Aoki: Tree-based mesh-refinement GPU-accelerated tsunami simulator 2565

Figure 2. Reconstructed water depth hL,R for inundation (LeVeque
and George, 2014).

A MUSCL scheme (Yamamoto and Daiguji, 1993) is used
to find the flux value, while local Lax–Friedrichs (LeVeque,
2002) is used to solve the bed slope source term. For the
time integration, a third-order TVD Runge–Kutta scheme
was used. This method is nonconservative; however, in tests
the difference on mass conservation has shown to be al-
most negligible. Lastly, the bottom friction is computed using
Manning’s formula.

This run-up implementation assumes a thin film of water
on land defined as ε. This parameter, set much smaller com-
pared to the wave height, allows the computation of the wave
inundation over land while keeping it stable. If the water
height is less than ε (i.e., h < ε) then the height value is fixed
as ε and the momentum is set as rest (i.e., hu= hv= 0) on
that grid point. This implementation has proven to be robust
and stable under different benchmarks and simulations (Vin-
cent et al., 2001). This numerical-method implementation to-
gether with a slope limiter produces a monotone scheme that
preserves water positivity.

The one-dimensional dam break benchmark (Stoker,
1992) was used to compare the results with its analytical so-
lution and good agreement was found. The shock wave was
successfully captured for different initial water heights.

The parabolic bowl problem proposed by Thacker (1981)
was also used to compare the accuracy of the inundation. The
bottom bathymetry is given by

z(r)=−D0

(
1−

r2

L2

)
, (16)

while the water height at a time t can be found from the ana-
lytical solution

H(r, t)=D0

 (
1−A2) 1

2

1−Acosωt
− 1−

r2

L2
1−A2

(1−Acosωt)


r = (x−Lx/2)2+

(
y−Ly/2

)2
ω =

√
8gD0/L2

A=
(D0+ η)

2
−D2

0

(D0+ η)
2
+D2

0
. (17)

We use these parameters Lx = Ly = 8000, L= 2500, D0 =

1 and η = 0.5. Two grid sizes were used for testing, 80× 80
and 160× 160 cells. Figure 3 shows the oscillating water in
the bowl at different times. As it can be seen, the inundation
method is able to capture the analytical solution of the water
height well as it evolves in time on the different grid sizes.
Measurements on this tests showed a third-order reduction
of the error as the value ε was decreased.

3.3 Tsunami source model

TRITON-G focuses on propagation and inundation while re-
lying on external parameters for the generation stage. In or-
der to start a simulation, the initial condition is provided
directly by RIMES using their preferred fault theory and
model. In the generation process, a good initial source model
is essential in order to obtain an accurate simulation. How-
ever, due to the complex nature of the source dynamics dur-
ing an earthquake and the difficulty to track it in real time
(as it happens), it is currently beyond our grasp to obtain
these parameters precisely and instantly. For these reasons
we opted for a coseismic deformation. This deformation is
calculated from the theory of displacement fields proposed
by Smylie and Mansinha (1971). Their objective was to pro-
vide a closed analytical expression that “facilitates the inter-
pretation of near-fault measurements”. The expressions pro-
vided, valid at depth and surface, consist solely on algebraic
and trigonometric functions that can be readily evaluated nu-
merically based on a few source parameters like dip, strike,
slip and length. These values are obtained from RIMES’
databases online or loaded from a file. The original source
generation code, provided by RIMES, was written for CPU
and ported by us to GPU for this study.

3.4 Boundary conditions

Two kind of boundary conditions are used: open and closed.
Open boundary set conditions to allow waves from within the
model to leave the domain through an edge without affecting
the interior solution. Closed boundaries, which keep the fluid
inbound in the domain, physically prevent water flow across
the edges. A wall boundary condition creates a total physical
reflection when a wave hits a dry point.

In Eq. (1) the term cosθ in the denominators produces
a singularity at the poles of the spherical coordinate sys-
tem. When working on a complete sphere, special techniques
and treatments are required to compute values over the poles
without divergence. In this study, the domain chosen repre-
sents a portion of the Earth centered in the Indian Ocean and
does not extend near the poles in any circumstance which
permits us to avoid this pole singularity.

The boundaries for the computational domain are set as
open boundary condition at the south and east edges, and

www.nat-hazards-earth-syst-sci.net/18/2561/2018/ Nat. Hazards Earth Syst. Sci., 18, 2561–2602, 2018



2566 M. Arce Acuña and T. Aoki: Tree-based mesh-refinement GPU-accelerated tsunami simulator

Figure 3. Parabolic bowl problem cross section with ε = 10−4 on (a). Water depth error for parabolic bowl problem on (b).

closed boundary condition at the north and west edges. All
coastlines have wall boundary conditions except for the spe-
cial cases where particular regions set as inundation are de-
fined. In those cases a complete run-up is computed using
the methods described in previous sections. Since the inun-
dation method is relatively computationally intensive, using
two kinds of boundaries for the coasts permits us to focus
computational resources just in areas of interest.

The boundary between spherical and Cartesian coordi-
nates that occur in specific areas where inundation is com-
puted has no special treatment since the area covering the
inundation consists, by design, of just a few kilometers
(Fig. 5a). This makes the difference between meshes almost
negligible and does not noticeably affect the result.

4 Tree-based mesh refinement and bathymetry

An efficient use of resources, memory and computation re-
quires a mesh that covers areas of interest with high reso-
lution only where desired but leaves the rest of the domain
coarser. The concept of this approach is similar to that of the
adaptive mesh refinement, initially introduced by Berger and
Oliger (1984) and Berger and Colella (1989) in the 1980s
as a method to solve partial differential equations (PDEs) on
an automatically changing hierarchal grid, solving for a set
accuracy on certain areas of the interest instead of unneces-
sarily overly refining the entire domain.

To generate the mesh for the domain, we use a customized
tree-based mesh refinement without the need of remeshing
during simulation since the geometrical features remain un-
changed. We briefly explain the process of tree-based refine-
ment (Yerry and Shephard, 1991). Figure 4 illustrates this
procedure using a moon-shaped green point as the area of
interest. At each level, the domain and its tree structure,
called quadtree, is presented. Initially just a quadrant and
its quadtree root exist. Each quadrant represents a block of

Figure 4. Tree-Based block refinement with quadtree structure and
Hilbert space-filling curve for five levels.

domain points. At level 2, one refinement has occurred and
the original quadrant (father) is replaced by four new ones
(children). By containing the same number of points as their
parent quadrant, these children allow for greater resolution.
Each child is represented as a leaf of the tree’s root. Level 3
shows the refinement of two of the level 2 quadrants and are
represented as two new leaves deeper on the quadtree. Fo-
cusing around the point of interest, levels 4 and 5 show the
subsequent refinement of two quadrants of their respective
previous levels. As it can be seen, each refined quadrant is
replaced by four new ones, and these extend deeper into the
tree. This process can continue recursively until reaching a
desired goal, usually based on resolution or minimal error.
Using this block refinement allows for greater resolution only

Nat. Hazards Earth Syst. Sci., 18, 2561–2602, 2018 www.nat-hazards-earth-syst-sci.net/18/2561/2018/



M. Arce Acuña and T. Aoki: Tree-based mesh-refinement GPU-accelerated tsunami simulator 2567

around the points of interest while the quadtree data structure
associated with it keeps track of the blocks’ connectivity.

The difference in spatial resolution between two adjacent
levels is called the refinement ratio. For nested grids, this
ratio is any positive integer. However using large integers
tends to introduce inaccuracies in the computation. The ex-
istence of an abrupt change from one level to the next re-
quires a special boundary treatment, especially when com-
plex bathymetry or topography is involved. For tree-based
refinement, this ratio is fixed as1xl/1xl+1 = 2, where l rep-
resents the block level and 1x the grid resolution. This con-
stant and small ratio creates a smooth wave transition be-
tween levels.

4.1 Customized mesh generation

The domain used for this work represents a large portion
of the Indian Ocean (Fig. 5), which initially consists of a
uniform mesh of 56× 30 blocks, each made up of 65× 65
node-centered cells. Using the tree-based refinement, spe-
cialized customizations are developed to adapt it to our spe-
cific needs. In general, mesh-refinement methods utilize an
error estimation as the rule to determine if a block should be
refined; however, in this implementation the refinement de-
pends on a target grid resolution combined with two factors:
the block’s distance from the coastline and the presence of a
focal area.

Since the refinement rule’s first factor depends on the dis-
tance of the block to the shoreline, the objective is to recur-
sively refine blocks close to the coast until reaching a tar-
get high-resolution threshold, while blocks far in the ocean
remain with a coarser resolution. This process involves two
steps: determining the block’s distance from the coast and
checking if its distance is within refinement.

Accurately estimating the geo-distance between two
points can be a complex task since the surface of the Earth
is not a perfect sphere. However, for our refining purposes, a
rough estimate is enough to determine the distances between
the shoreline and the blocks. This is achieved by creating a
signed distance function based on the level-set method. A de-
tailed explanation of this procedure can be found in Fedkiw
and Osher (2003). The distance function’s zero level is repre-
sented by the cells along the shoreline (z= 0). Positive dis-
tances represent cells on land while negative distances rep-
resent cells on the ocean. Using these distance values, each
block is tested for refinement. Blocks with one cell or more
within a certain distance from the coast, called refinement
stripes, are flagged for refinement until they reach the fine-
target resolution. The width of the refinement stripe is prob-
lem dependent and is input by the user based on their needs.

For this study the initial resolution at ground level 1 is
2 arcmin (an arcminute being 1/60 of a degree, at Earth’s
equator equivalent to 1852 m) and the target finest resolution
is 0.03125 arcmin (approximately 50 m), generating a total
of seven levels. This block refinement process can accurately

trace complex coastlines and focus high resolution only in
the shores. A downside is the considerably large number of
total blocks generated, over 230 000 in initial tests, which
represents over 100 GB of memory storage.

In order to reduce the memory footprint, we used the fact
that only certain regions need high resolution, which inspired
us to use a second refinement factor named focal areas (FAs).
This second factor is an additional constraint which consists
of locating a convex polygonal area on the domain, which
serves as a refinement delimiter. It is possible to locate more
than one at a time, and since this is an additional constraint
to the first refinement step, only blocks flagged for refine-
ment at the first step need to be tested again. On this sec-
ond test, a block is tested if it is inside or outside a focal
area. If a block is completely outside the focal area, then
it is unflagged for refinement. Only blocks partially or to-
tally inside the focal area are refined. The process of deter-
mining if a block lies inside or outside a focal area is based
on collision detection theory using the separating axis theo-
rem (SAT). This is a well-known theorem applied to physical
simulations (Szauer, 2017) and consists of a relatively light
algorithm for 2-D, which allows us to test large number of
blocks rapidly. A description of the SAT can be consulted in
Moller et al. (1999) or Gottschalk et al. (1996). Since the fo-
cal area is an additional constraint, it can be toggled active
after any chosen level. A specific number of levels can be re-
fined without this constraint while the following are affected
and delimited. Additionally, all dry blocks at Level 7 (high-
est resolution) that are inside a FA are considered inundation
areas. This implies that run-up is computed on the coastlines
instead of using a reflective boundary.

The last step in the mesh generation consists of the re-
moval of land dry-blocks. Considering that tsunami inunda-
tions, with few exceptions, generally extend tens to hundreds
of meters inland, it becomes clear that blocks located deep in-
land are unnecessary for the computation. For this reason all
blocks whose cells’ distances are larger than a land–distance
threshold are considered land dry-blocks and deleted from
the domain.

The complete result of the customized refinement in the
Indian Ocean domain is shown in Fig. 5. The four focal ar-
eas used are located in Mozambique, Comoros, Seychelles
and Sri Lanka. The focal area constraints start after level 3.
This value is chosen to coincide with GEBCO’s (The Gen-
eral Bathymetric Chart of the Oceans) 30 arcsec bathymetry,
using the highest available accuracy for the coasts without
needing to interpolate. The final result shows the refinement
at higher levels limited to within the focal areas. All dry
blocks exceeding the land–distance threshold of 10 km were
removed from the mesh. This drastically reduced the number
of blocks generated to 7849, while the memory needed to
store them became less than 15 GB. This customized refine-
ment procedure proved to be fast and efficient, taking just
around a minute to produce the results. The meshes gener-

www.nat-hazards-earth-syst-sci.net/18/2561/2018/ Nat. Hazards Earth Syst. Sci., 18, 2561–2602, 2018



2568 M. Arce Acuña and T. Aoki: Tree-based mesh-refinement GPU-accelerated tsunami simulator

Figure 5. (b) Mesh refinement for Indian Ocean domain with four focal areas (FAs): Mozambique, Comoros, Seychelles and Sri Lanka.
(a) Zoom on the Seychelles (right panel) and Sri Lanka (left panel) regions. FAs are highlighted in green.

ated by TRITON-G can be either computed in real time or
loaded from a repository at the beginning of the simulation.

4.2 Halo exchange

Blocks must exchange results with their neighbors after each
time step for the next iteration. For this purpose they share
a boundary layer in their adjoining sides. This layer, or halo,
extends over the neighbor’s grid and updates in one of three
kinds of operations: copying, coarsening or interpolating.

If two neighbor blocks have the same level, then the halo
is readily updated by exchanging values directly without any
further computation; this represents a copying swap. If the
neighbors are at different levels (l and l+ 1) then additional
computation is required before the halo exchange. If the
block’s neighbor is one level up, then values for the halo are

averaged down from the block with higher accuracy before
swapping. This has a cascade effect of passing down better
accuracy to blocks with lower resolution. The last case, in-
terpolating, occurs when the block’s neighbor is one level
down. For this, the values for the halo are interpolated from
the neighbor block using a third-order polynomial interpo-
lation, similarly as in Eq. (9). The portion of the boundary
stencil used for interpolation is shown in Fig. 6.

The new values for the halo for the north (N ) and east (E)
edges can be found from

f
N,E
P 1 =

1
4

(
fj + 4fj+1− fj+2

)
f

N,E
P 2 =

1
4

(
−fj + 6fj+1− fj+2

)
(18)

Nat. Hazards Earth Syst. Sci., 18, 2561–2602, 2018 www.nat-hazards-earth-syst-sci.net/18/2561/2018/



M. Arce Acuña and T. Aoki: Tree-based mesh-refinement GPU-accelerated tsunami simulator 2569

Figure 6. Halo interpolation stencil for the four edges: (a) west, south and (b) east, north.

since they are analogous orientations. For the south (S) and
west (W ) edges, similar expressions are used

f
S,W
P1 =

1
4

(
−fj−2+ 4fj+1+ fj

)
,

f
S,W
P2 =

1
4

(
−fj + 6fj+1− fj+2

)
. (19)

In order to avoid spurious waves that might be generated
from interpolating the water height value h, constant water
levelH is used instead, and the original variable is recovered
by using the relation h=H − z.

4.3 Topography and bathymetry

The data used in this study for bathymetry and topogra-
phy comes from different sources. Initially, The General
Bathymetric Chart of the Oceans (Oceans (GEBCO), 2017)
database is used on the entire domain. GEBCO is freely
available in 30 arcsec spatial resolution. When coarser reso-
lution is needed, values are averaged from this database. On
the contrary, if finer resolution is needed, a third-order inter-
polation is implemented to generate the new values. Where
available, databases with more precise measurements are
used to replace the original GEBCO database. For the focal
areas in Mozambique, Comoros, Seychelles and Sri Lanka,
RIMES’ proprietary databases generated from field measure-
ments were provided to us to estimate the inundation more
accurately.

5 GPU computing

The introduction of C-language extension CUDA (NVIDIA,
2017a) by NVIDIA® represented a disruption in the tradi-
tional way simulations were done. The availability to pro-
gram general purpose GPU cards permitted researchers to
no longer exclusively perform calculations on CPU. Due to
the intrinsic parallelism of graphics, GPUs evolved to de-
liver hundreds and thousands of processors more in a card
than CPUs. The main reason behind the exceptional perfor-

mance of GPUs lies in the specialized design for compute-
intensive, highly parallel computation, with transistors ded-
icated exclusively to processing as opposed to flow control
and data caching. The latest NVIDIA Tesla cards P100, with
Pascal architecture, have a peak performance of 9.3 Teraflops
on single precision and 4.7 Teraflops on double precision
(NVIDIA, 2017b). We take advantage of this technology to
develop a full-GPU implementation to deliver fast forecast-
ing results.

5.1 SSWE GPU kernels

CUDA provides kernels as a way to define functions that are
executed in parallel on GPU. Each kernel launch is organized
in a grid of blocks of CUDA threads. The clear analogy be-
tween CUDA blocks and mesh blocks provided a guide to
organize the grid for GPU execution. The SSWEs are com-
puted exclusively on GPU by processing the mesh blocks
created during the domain refinement step and are stored in a
structure of arrays on GPU global memory. Each mesh block
has a size of (65+4)×(65+4), where the “4” corresponds to
the total size of the halo. CUDA threads can be organized in
any three-dimensional block configuration as needed for the
problem. Since GPUs process threads in warps of 32, using
multiples of this number is desirable to avoid performance
penalties.

The kernel grid configuration for the SSWE is described
briefly and shown in Fig. 7. CUDA threads are organized
in two-dimensional blocks of size 64× 4. The 64 threads in
the x dimension cover the length of a mesh block requiring
only one CUDA block. For the grid’s y dimension, 16 CUDA
blocks are set with four threads each, for a total of 16×4= 64
threads, covering the height of the mesh block. With this con-
figuration, one CUDA block computes a portion equal in size
of the mesh block and the 16 CUDA blocks cover the en-
tire mesh block. Additionally, one CUDA thread computes
one mesh block cell. The specific calculation of each thread
varies depending on the block type (wet, dry); however, the
configuration remains the same. In both cases, threads com-
pute the governing equations described in Sect. 3.1. The main

www.nat-hazards-earth-syst-sci.net/18/2561/2018/ Nat. Hazards Earth Syst. Sci., 18, 2561–2602, 2018



2570 M. Arce Acuña and T. Aoki: Tree-based mesh-refinement GPU-accelerated tsunami simulator

difference occurs in the case of a dry block; in this case,
cells that represent land or coastline compute a reflective wall
boundary.

To process all the mesh blocks, this two-dimensional
CUDA block configuration is extended along the z direction
as many times as mesh blocks exist. The computation of the
65th cells is done separately with a specialized kernel based
on the SSWE kernel.

In the case of Cartesian SWE kernel, the grid chosen for
this kernel is different than that of the kernel for SSWE. In
this case, a mesh block is subdivided and covered by CUDA
blocks of 16×16 threads. The excess of threads at the edges
is not computed using a conditional limiting the grid size.

The source fault code was ported to GPU from the original
C version. Due to the exclusively arithmetic operations and
lack of a stencil memory access involved, a 20 t imes speed
up was achieved, reducing the computation of the initial con-
dition to just a few seconds.

Several kernel optimizations were applied in order to ac-
celerate the model’s time to solution. This includes using the
latest CUDA version to take advantage of the latest com-
piler updates. To avoid branch divergence as much as possi-
ble parts of the numerical method were rewritten to eliminate
conditionals. Precomputing terms that do not change in time
like trigonometric terms depending on the longitude θ , stor-
ing them on arrays and reusing them during the simulation.
Using built-in functions to compute complicated exponen-
tials like those in the Manning formula. Although the opti-
mizations provided speed up, no sacrifice was incurred on
precision. All GPU computations are performed on double
precision.

5.1.1 Halo update on GPU

Update of the halo region of each mesh block after each time
step with the latest values from neighbor blocks represents
three different kinds of exchanges: copying, coarsening or in-
terpolating. These operations are performed entirely on GPU.
Kernels designed for each kind of exchange were created. In
order to efficiently process the block edges, three lists are
generated containing the list of halos that require each op-
eration. This way the kernels can be launched concurrently,
and each focus on a different task minimizing the need for
conditional divergences.

5.1.2 Specialized kernel types

By analyzing the domain’s bathymetry, it is easy to notice
that some mesh blocks contain only wet points while others
are a combination of dry and wet points. This idea is used to
replicate the SSWE kernel in two variations.

The first SSWE kernel, named Wet, is used to compute the
free propagation of the wave on wet-only blocks. The second
SSWE kernel, named Dry, is used to compute the wave prop-
agation with coastline boundaries in wet–dry mixed blocks.

The main difference in the code between them is the addi-
tional treatment for the wall boundaries at coastlines in the
case of the Dry kernel. A third kind of kernel (Inundation),
specializes in computing the run-up on dry blocks inside fo-
cal areas.

The result of the kernel assignment is illustrated in Fig. 8,
where blocks flagged as wet are shaded in red, dry blocks
are shaded in green and inundation blocks in blue. As ex-
pected dry blocks tend to extend where coastlines lie while
wet blocks are spread out in the open ocean. When inside a
focal area, dry-type blocks at level 7 are reflagged as inun-
dation type. An example of this can be seen in the left image
of Fig. 8 for the Sri Lanka FA, with inundation blocks in
blue. Whereas a single kernel would be too complicated and
inefficient to compute the entire domain, splitting down the
computation in specialized kernels for each type of block not
only provides a simpler way to process the blocks through
lists, but also gives the ability to fine tune them independently
for higher performance.

5.2 Space-filling curve and multi-GPU

In order to implement multi-GPU for further acceleration,
first an appropriate domain partition must be chosen to guar-
antee an even workload among cards. Since a uniform mesh
is not being used, this partition is nontrivial. Although block
connectivity is kept using a quadtree structure, this does not
provide information about the blocks ordering. For this pur-
pose we use the space-filling curve (SFC) (Sagan, 1994) as a
way to trace the blocks’ ordering on the domain.

SFC is a curve that fills up multi-dimensional spaces and
maps them into one dimension. It has many properties de-
sirable for domain partition; it is self-similar and it visits all
blocks exactly once. We use the Hilbert curve in this work
since it tends to preserve locality, which keeps neighbors to-
gether and does not produce large jumps in the linearization
like other curves tend to, such as the Morton curve. Figure 4
shows the Hilbert curve generation as a red line overlying the
quadrants. It starts as a bracket on the first four quadrants,
and with each spatial refinement, the bracket gets replicated
subject to rotations and reflections to guarantee the charac-
teristic of the curve. The result of generating a Hilbert SFC
for the Indian Ocean domain is shown in Fig. 9. By using
this curve as a reference, it is possible to establish the block
ordering to partition the domain on even portions. The result
of splitting the domain for eight GPUs is shown in Fig. 10,
where each portion is represented by a different color. In
this case, seven GPUs have a total of 981 blocks each, and
the eighth GPU has a total of 982 blocks, making it a well-
balanced partition. Different tests using one to four GPUs
also achieved balanced partitions.

Introducing multi-GPU also introduces the need of a
buffer communication between cards. In the current CUDA
GPU memory model, global memory cannot be accessed be-
tween different cards. This exchange is achieved by prepar-

Nat. Hazards Earth Syst. Sci., 18, 2561–2602, 2018 www.nat-hazards-earth-syst-sci.net/18/2561/2018/



M. Arce Acuña and T. Aoki: Tree-based mesh-refinement GPU-accelerated tsunami simulator 2571

Figure 7. Mesh-block computation using CUDA kernels. Each CUDA block is made of 64× 4 threads and computes a portion of the mesh
block. One CUDA thread computes one mesh block cell.

Figure 8. Mesh blocks colored by kernel type: Wet, Wall and Inundation. (a) Zoom over Sri Lanka FA to highlight the inundation kernels
shaded in blue. (b) Kernel type distribution on the entire Indian Domain.

ing buffers on GPU memory, downloading to CPU memory,
using MPI to exchange the messages and uploading the re-
ceived buffer to GPU memory.

In order to handle the communication structures and to
produce buffers that do not represent a large communication
overhead, we construct buffers following the user datagram
protocol (UDP; Reed, 1980) design, a concept traditionally
used in network and cellular data communication. In this
way, it is possible to eliminate the need for communication
look-up tables while at the same time making the buffer ex-
change smooth and simplified. As depicted in Fig. 11, the
first step consists of collecting all the halos to be transferred

in a single buffer on GPU memory. This buffer is designed
like in UDP, with a header in front of every chunk of data.
This header contains three bits of simple information: the
destination block, the destination edge and the total size of
its data. By including a simple 3-data header before the sent
values, it is possible to organize the buffer in any way that
packing and unpacking occurs smoothly and seamlessly.

By using this method, no extra memory is needed to store
communication tables or exchange them between proces-
sors. A single-buffer transfer between processes drastically
reduces the communication time as opposed to transferring
each halo individually.

www.nat-hazards-earth-syst-sci.net/18/2561/2018/ Nat. Hazards Earth Syst. Sci., 18, 2561–2602, 2018



2572 M. Arce Acuña and T. Aoki: Tree-based mesh-refinement GPU-accelerated tsunami simulator

Figure 9. Hilbert space-filling curve for Indian Ocean domain with
four FAs.

5.3 Variables and rendering output

The full workflow of TRITON-G is depicted in Fig. 12,
where the GPU flow is composed of two parts: (1) the main
simulation, which includes computing the fault source, wave
propagation and inundation, and (2) the output compute and
storage.

For post-processing analysis purposes, output for the wave
maximum height, maximum inundation, arrival time, flux
and gauges is created. These are computed during simula-
tion and stored on GPU memory, then flushed to CPU when
required by the user. A full-domain rendering at a regular fre-
quency is also produced during simulation, while for the FAs,
wave values at a much higher frequency are stored. These
values are used for rendering at post-processing to avoid un-
necessary output overhead.

TRITON-G generates SILO format files (Lawrence Liv-
ermore National Laboratory, 2017) filled with values from
all blocks to generate the rendering images. Even though the
image generation for the entire domain is not very frequent,
the process of generating a SILO file for such a large mesh
represented a considerable overhead of around 15 % to 20 %
of the total runtime. In order to minimize this unwanted ef-
fect, we took advantage of the piping mechanism. Pipe is a
system call that creates a communication between two pro-
cesses that run independently. In this way, a parent program
can launch a child program, and both run completely differ-
ent tasks at the same time without interrupting each other.
Using this concept, first a utility to create the SILO files for
the entire domain was created as a stand-alone application.
During execution, TRITON-G calls this subprogram when
a SILO file has to be written, running both simultaneously.
Data between them are shared through the CPU shared mem-
ory. Figure 13 shows the advantage of implementing Pipe
asynchronous output. Unlike traditional asynchronous out-
put that relays on a large computational time to hide output,
this Pipe method provides the ability to hide the output pro-
cessing behind several computational time steps. The result
is an almost total elimination of the output overhead. Mea-

surements showed that the output process after optimization
represented just 1 % to 2 % of the total time, practically re-
moving the overhead.

The size of the output produced during simulation depends
on user input parameters. For a 10 h simulation with an out-
put frequency of 4 min for the entire domain, and 5 s for four
FAs, the required memory storage is around 65 GB.

5.3.1 Subcycling implementation

A subcycling technique was introduced in order to increase
the computational time step and further speed the computa-
tion up. Subcycling consists of setting a larger than the min-
imum time step as a global time step 1t , and making blocks
with a smaller local time step cycle in substeps (ns) to match
the global1t . The time step1t is calculated in each level us-
ing the Courant–Friedrichs–Lewy condition (CFL) (Courant
et al., 1967). Initially the CFL number is set to 0.8 for this
work.

A graphical illustration of the subcycling implementation
is shown in Fig. 14. Blocks with the same number of subcy-
cles (levels L1–L4) are grouped in a single list. A block at
level 5 (L5) has a time step of 1t/2, which implies that it
requires two cycles to match the global 1t .

While in theory the larger time step increases speed, a po-
tential downside is that too many blocks subcycling can cre-
ate a large workload overhead, resulting in a slowdown of
the whole computation. To avoid this, a global 1t of 1.6 s
is chosen to subcycle only blocks with levels over level 4.
The reason being, is that around 80 % of the total number of
mesh blocks are level 3 and subcycling them would repre-
sent too large an overhead and would defeat the purpose of
applying this technique. Table 1 gathers the CFL numbers per
level after implementing the subcycling. The second column
shows the maximum 1t allowed in each level using the ini-
tial CFL= 0.8. The third column shows the resulting number
of subcycles per level (ns) and the fourth column shows the
new CFL values obtained for each level. In all cases the new
CFL values remain below 1 to guarantee stability.

In general after a large 1t step, corresponding boundary
conditions are interpolated in time to update the substeps.
However, this procedure introduces an additional compu-
tational overhead. To pursue the fastest modeling possible,
TRITON-G rescinds the boundary generation and instead
uses the available boundary values at time n. Based on the
benchmark and hindcast comparison, this decision proved to
be acceptable based on the good agreement and accuracy of
the results.

Introducing this subcycling technique varies the GPU load
initially created since a single block might be computed more
than once. In order to guarantee load balance, two weights
are applied to the space-filling curve. The first weight takes
into account the different type of block, and the second the
number of subcycles. Each block gets attributed a weight dur-
ing the SFC generation equal to the number of subcycles it

Nat. Hazards Earth Syst. Sci., 18, 2561–2602, 2018 www.nat-hazards-earth-syst-sci.net/18/2561/2018/



M. Arce Acuña and T. Aoki: Tree-based mesh-refinement GPU-accelerated tsunami simulator 2573

Figure 10. Indian Ocean domain partition for load balance for eight GPUs. Each color represents a different GPU.

Figure 11. Multi-GPU communication. GPU buffer data collected
and packed for a single communication.

requires. This approach for the domain partition allows us to
create a fair work rebalance on the GPUs. The effect of im-
plementing the weighted load balance can be seen in Fig. 15,
where GPU execution times per time step are presented, with
and without load balance. Implementation of the subcycling
technique showed a speedup of around 15 % in the total wall-
clock runtime.

5.3.2 Runtime performance

Several tests to estimate the performance of TRITON-
G were done. Results ran on the supercomputer Tsub-
ame 3.0 (Tsubame, 2017) are presented, with Intel Xeon
E5-2680 2.4 GHz×2, RAM 256 GB, NVIDIA Tesla P100

Table 1. CFL values used after introducing subcycling (S.C. CFL)
for each of the seven levels. The second column shows the max-
imum 1t per level using CFL= 0.8 and the third column shows
the number of subcycles (ns) required in each level when using
1t = 1.6.

Level Max 1t ns S.C.
(CFL= 0.8) (1t = 1.6) CFL

L1 10.71 1 0.12
L2 5.13 1 0.25
L3 2.37 1 0.54
L4 1.65 1 0.78
L5 0.95 2 0.68
L6 0.55 4 0.59
L7 0.26 8 0.39

(16 GB)×4/node, CUDA 8.0, gcc 4.8.5, Openmpi 2.1.1 and
Omni-Path HFI 100 Gpbs network.

As comparison, results on a second machine are also pre-
sented using four Tesla K80 (12 GB×2) cards in a node
(eight GPUs in total). GPUs are connected through PCI-
Express 3.0, Intel Xeon CPU E5-2640 @ 2.6 GHz, RAM
128 GB, CUDA 8.0, gcc 4.7.7 and Openmpi 1.8.6. These per-
formance tests serve to show very good portability of our pro-
gram on different hardware, older and much newer, without
requiring changes or producing problems.

The breakdown of the main parts of the simulation using
three GPUs is shown in Fig. 16, where Inund stands for in-
undation kernel, Wall stands for the Wall kernel, Wet for the
Wet kernel and X and Y for the direction of the computation
equivalent to longitude and latitude respectively. The pro-
cess of updating the halos, presented in the graph as Bnd,

www.nat-hazards-earth-syst-sci.net/18/2561/2018/ Nat. Hazards Earth Syst. Sci., 18, 2561–2602, 2018



2574 M. Arce Acuña and T. Aoki: Tree-based mesh-refinement GPU-accelerated tsunami simulator

Figure 12. TRITON-G computational flow; mem: memory.

Figure 13. Output overlap and optimization using Pipe.

Figure 14. Illustration of the subcycling process for each level.

represents only 9 % of the total running time. It can be seen
that the Wet and Wall kernels have similar performance de-
spite the fact that the wall includes additional treatment for

Table 2. Kernel performance for one GPU in GFLOPS

Kernel GFLOPS

WallX 549.57
WallY 549.56
WetX 706.98
WetY 712.51
Inund 87.12

the coast boundaries. Since this treatment consists of many
conditionals and they were replaced during optimization, it
is understandable that the performance is similar. The slice
Others includes several values; most importantly communi-
cations which represents around 1.5 %–2.0 % of the total run-
ning time. Performance of the main kernels on one GPU in
floating point operations per second (FLOPS) is gathered in
Table 2.

Results for runtimes using Tesla P100 cards and Tesla K80
cards are presented in Fig. 17 for one to four and eight GPUs.
For this test, 10 h were simulated on the mesh initially gen-
erated for the Indian Ocean domain (Fig. 5). All runtimes
measurements include output time.

A comparison between both GPU cards shows a speed up
of almost four times from the older K80 cards to the lat-
est P100 on Tsubame 3.0. In our collaboration project with
RIMES an objective to complete this test under 15 min was
set, which could be fulfilled by using three to eight GPUs in
this configuration. Runtime for three GPU with K80 cards
was 39.96 and 12.1 min with P100 cards.

A saturation is noticeable in Fig. 17 as the number of
GPUs are increased. A possible reason for this phenomenon
is related to the increase of buffer preparation, packing–
unpacking and the communication exchange. Using the same
domain size for all cases is another possible reason. Hav-
ing fewer blocks on each GPU generates lower occupancy
which might degrade performance. However, having met this
study’s time-to-solution objective of less than 15 min, no fur-
ther optimization was deemed necessary.

By measuring the time required for the first wave to ar-
rive in the focal areas, it was found that for Sri Lanka, using

Nat. Hazards Earth Syst. Sci., 18, 2561–2602, 2018 www.nat-hazards-earth-syst-sci.net/18/2561/2018/



M. Arce Acuña and T. Aoki: Tree-based mesh-refinement GPU-accelerated tsunami simulator 2575

Figure 15. GPU execution time with and without load balance.

Figure 16. Computing breakdown shown in percentage.

four GPUs for just 2 min wall-clock time is required to gener-
ate the results of the inundation. The real tsunami wave took
approximately 2 h to propagate from the initial source to Sri
Lanka, obtaining simulation results faster than real time. This
gives authorities sufficient time to make decisions regarding
evacuations.

6 Tsunami inundation benchmark comparison

In order to compare the numerical results of TRITON-G
with existing benchmarks and test its ability to estimate in-
undation, we present the results obtained using the main
benchmark tests proposed in the National Tsunami Haz-
ard Mitigation Program workshop (NTHMP, 2012). Results
from other models participating in the workshop can be con-
sulted in that reference. In this section, the comparison of the

Figure 17. Wall-clock comparison of 10 h simulation on Tesla K80
and Tesla P100.

benchmark “1993 Hokkaido–Nansei–Oki (Okushiri) field”
is shown. Further comparison results with benchmark prob-
lems 4, 6 and 7 (abbreviated as BP4, BP6, BP7) can be found
in the “Appendix”.

A detailed description of the benchmarks can be found
in NTHMP (2012) and the data needed for them can
be found in the repository https://github.com/rjleveque/
nthmp-benchmark-problems (last access: 13 September
2018). For completeness we give a brief explanation of the
benchmark and the tasks it involves.

6.1 Benchmark problem no. 9: Okushiri Island
tsunami – field

This benchmark problem (BP9) is based on the data collected
from the Mw = 7.8 Hokkaido–Nansei–Oki tsunami around
Okushiri Island in Japan in 1993. The goal is to compare
computed model results with the field measurements.

www.nat-hazards-earth-syst-sci.net/18/2561/2018/ Nat. Hazards Earth Syst. Sci., 18, 2561–2602, 2018

https://github.com/rjleveque/nthmp-benchmark-problems
https://github.com/rjleveque/nthmp-benchmark-problems


2576 M. Arce Acuña and T. Aoki: Tree-based mesh-refinement GPU-accelerated tsunami simulator

Figure 18. (a) Entire domain-refined mesh containing seven levels. (b) Zoom on Okushiri island. Higher resolution used around Monai
Valley at level 7 (7 m approx.) and Aonae region at level 6 (14 m approx.).

6.1.1 Problem setup

The following parameters were used for the computation.

– Bathymetry is taken from databases provided by
NTHMP (2012), interpolated where necessary.

– The CFL is 0.9.

– The simulated time is 60 min.

– The initial condition is source generated from the
database provided by the DCRC (Disaster Control Re-
search Center) Japan solution DCRC17a, described in
Takahashi (1996).

– The boundary conditions are open boundaries at the four
domain edges.

– For friction, the Manning coefficient is set to 0.02.

– For the computational domain, a mesh refinement is
used (shown in Fig. 18). Seven levels are used in total.
The resolution of base level 1 is 450 m and the resolu-
tion of level 7 is approximately 7 m. Dry blocks that did
not take part in the computation were removed in the
mesh generation process.

6.1.2 Tasks to be performed

This benchmark requires the following tasks to be per-
formed:

1. compute run-up around Aonae;

2. compute arrival of the first wave to Aonae;

3. show two waves at Aonae approximately 10 min apart
(the first wave came from the west, the second wave
came from the east);

4. compute water level at Iwanai and Esashi tide gauges;

5. maximum modeled run-up distribution around Okushiri
island;

6. modeled run-up height at Hamatsumae; and

7. modeled run-up height at a valley north of Monai.

6.1.3 Numerical results

In this section we present the numerical results obtained with
TRITON-G for benchmark problem no. 9.

Run-up around Aonae

The maximum inundation around Aonae peninsula modeled
during the simulation is shown in Fig. 19. Contours every 4 m
are drawn to show the outline of the topography. Maximum
inundation height computed was nearly 15 m but the scale
used is set to the upper limit of 10 m to highlight the areas
where major inundation occurred.

The west side of the peninsula received the impact of the
first wave, which produced the largest inundation height.
Maximum values of nearly 15 m were obtained in the sim-
ulation. Despite a relatively lower inundation height in the

Nat. Hazards Earth Syst. Sci., 18, 2561–2602, 2018 www.nat-hazards-earth-syst-sci.net/18/2561/2018/



M. Arce Acuña and T. Aoki: Tree-based mesh-refinement GPU-accelerated tsunami simulator 2577

Figure 19. Inundation map of Aonae region with 4 m contours of bathymetry and topography.

Figure 20. Arrival wave at Aonae peninsula coming from the west, snapshots of the wave at times 4.9 and 5.0 min after tsunami generation.

east side of the peninsula, deep penetration was found due to
the flatter topography in this area. The inundation on the east
side was mainly produced by the second wave coming from
the east. The south side of the peninsula experienced the im-
pact of both first and second waves and run-up of over 12 m
was estimated.

Arrival of first wave to Aonae

The arrival of the first wave at Aonae peninsula is shown in
Fig. 20. This wave is coming from the west. Snapshots are
approximately 5 s apart at times 4.9 and 5.0 min to illustrate
the wave arrival. From these snapshots, we estimate that the
wave made impact at around 5 min after the tsunami genera-
tion.

www.nat-hazards-earth-syst-sci.net/18/2561/2018/ Nat. Hazards Earth Syst. Sci., 18, 2561–2602, 2018



2578 M. Arce Acuña and T. Aoki: Tree-based mesh-refinement GPU-accelerated tsunami simulator

Figure 21. Two waves arriving at Aonae peninsula. (a) First wave coming from the west arrived at around t = 5 min. (b) Second wave
coming from the east arrived at around t = 16 min.

Figure 22. Water level comparison between observations and TRITON-G results for Esashi (a) and Iwanai (b) tide gauges.

Two waves arriving at Aonae

The two waves arriving at Aonae peninsula are shown in
Fig. 21. The first one came from the west (Fig. 21a) and made
impact at around 5.0 min after the tsunami generation. The
second major wave to hit the peninsula came from the east
and made impact at around 16 min (Fig. 21b). Slightly over
10 min separated the first and second wave.

Tide gauge comparison at Iwanai and Esashi

Comparison between computed and observed water levels at
Iwanai and Esashi tide gauges is presented in Fig. 22. The
arrival time of the computed wave shows good agreement
for Esashi station. The computed wave positive and negative
phases also follows the observed values rather well. In the
case of Iwanai station, the arrival time is slightly sooner than
the observed; however, the observed wave phase is followed
generally well in the computed results. The discrepancies be-
tween observed and computed values can be attributed to sev-

Nat. Hazards Earth Syst. Sci., 18, 2561–2602, 2018 www.nat-hazards-earth-syst-sci.net/18/2561/2018/



M. Arce Acuña and T. Aoki: Tree-based mesh-refinement GPU-accelerated tsunami simulator 2579

eral reasons. Inaccuracies in the source used for the initial
condition can greatly influence the result. Additionally, the
lack of realistic bathymetry including man-made structures
around the area can affect the results as well.

Inserted in each panel of Fig. 22 are the estimated errors
for the gauge comparison. The maximum wave amplitude
error for Esashi station is 16.27 % and for Iwanai 3.19 %.
These are considerably lower than the mean values obtained
by the models reported in the workshop (NTHMP, 2012) of
43 % and 36 %, respectively. Although no values are reported
in NTHMP (2012), the normalized root-mean-square devia-
tion (NRMSD) error is also estimated for our model and in-
cluded in the panels. Both values are under 20 %.

Maximum run-up around Okushiri

The computed maximum run-up distribution around
Okushiri Island is shown in Fig. 23. Observations were
taken from Kato and Tsuji (1994). Good agreement is found
between observed and computed values around the coast.
Most values are within the observed range or within a small
difference from the field measurement. The simulation
seems to capture well the variations that occurred along the
coast.

The model could simulate well the maximum run-up ob-
served around Monai valley within a reasonable 15 % error.
The major differences are found in the southwest side of the
island, where run-up values were underestimated with larger
difference. The discrepancies could be explained by the use
of different grid around the island coast. Additionally, the
lack of an accurate high-resolution bathymetry database ev-
erywhere can also influence the computed values as well as
an inaccurate initial condition.

Run-up height at Hamatsumae

The maximum inundation map for Hamatsumae region is
shown in Fig. 24. Topography and bathymetry contours are
outlined every 4 m. A grid resolution of approximately 14 m
was used for this region. Near the center of the region and
to the east, run-ups of nearly 16 m were computed. Addition-
ally, inundation values ranging from 8 to 10 m were obtained
which match well with field observations.

Run-up height at a valley north of Monai

The maximum inundation map for the valley north of Monai
is shown in Fig. 24. Topography and bathymetry contours
are outlined every 4 m. A grid resolution of approximately
7 m was used for this region. Inundation of around 26 m was
computed, relatively close to the 30.6 m observed in the field.

Figure 23. Computed and observed run-up values in meters along
the coast of Okushiri island.

7 Case study

In order to compare and validate the results of TRITON-
G under a real tsunami scenario we use the hindcast of the
2004 Indonesian tsunami. Results for propagation, gauges
and inundation comparison are presented.

7.1 Indonesian 2004 tsunami hindcast

This event occurred at 07:58 LT on 26 December 2004, with
a magnitude ofMw = 9.0 generated by the subduction of the
Indian plate by the Burma plate. Nearly 1600 km of fault was
affected around 160 km off the coast of Sumatra (Titov et al.,
2005). This massive earthquake generated a large tsunami
that spread over the Indian Ocean in the following hours.

The tsunami wave propagation computed by TRITON-G
is depicted in Fig. 26. Each subsequent snapshot represents
3 h after the earthquake’s main event. A synoptic qualitative
comparison with existing field surveys and simulations con-
firmed a correct propagation of the initial wave train; how-
ever, to check the validity of the results, two kind of compar-
ison are presented for tide gauge records and for inundation
map simulations.

7.1.1 Tide gauge comparison

To check the correctness of the wave propagation, buoys lo-
cated in different parts of the Indian Ocean were used to
compare TRITON-G results. These buoys measure the ocean
sea level at regular intervals and serve as a critical factor to
determine tsunami wave arrival times and heights. Gauges
recorded at the moment of this event were obtained from
NOAA’s tsunami events database and inundation maps were

www.nat-hazards-earth-syst-sci.net/18/2561/2018/ Nat. Hazards Earth Syst. Sci., 18, 2561–2602, 2018



2580 M. Arce Acuña and T. Aoki: Tree-based mesh-refinement GPU-accelerated tsunami simulator

Figure 24. Inundation map of Hamatsumae region with 4 m contours of bathymetry and topography.

Figure 25. Inundation map for the valley north of Monai with 4 m contours of bathymetry and topography.

obtained through RIMES. Results from RIMES’ previous
operational model are also included for comparison. Their
previous model was based on a customization of TUNAMI
(Srivihoka et al., 2014) to include four nested grids with
fixed resolutions of 2 arcmin, 15 arcsec, 5 arcsec and approx-
imately 1.67 arcsec.

Results for five stations are shown: Diego Garcia
(Fig. 27a) in an atoll in the Chagos Archipelago, located at
7◦30′ N 72◦38′ E; Male (Fig. 27b) near the Maldives islands,
located at 4◦18′ N 73◦52′ E; Gan (Fig. 27c) near the Maldives
islands, located at 0◦68′ N 73◦17′ E; Colombo (Fig. 27d) in
Sri Lanka, located at 64◦93′ N 79◦83′ E; and Point La Rue
(Fig. 27e) near Seychelles, located at 4◦68′ S 55◦53′ E.

The comparison between the tide gauges TRITON-G and
RIMES’ model based on TUNAMI are shown in Fig. 27.
As it can be seen, the arrival times are in good agreement
with the measured ones. The main event peaks are also repro-

duced in all cases with the crests’ signs in accordance with
the measured values. The effect of the tide is not considered
in the current model, which explains the height differences at
initial times in the results. In the case of Male, three of the
first peaks were also estimated in the simulation. The case of
Diego Garcia also serves as a test for long propagation, since
it is located around 2700 km away and there is no topography
between source and station. This makes it a good way to val-
idate that the wave is properly propagated at the right speed,
and no effects of diffusion on the wave height are present.
Diego Garcia and Colombo (which recorded only around 3 h
before being damaged) are two examples of more accurate
and closely obtained results than the previous model used
at RIMES, where a closer height to the measured peak was
obtained. Point La Rue also represents a good test for long
propagation of the TRITON-G numerical model since the lo-
cation is over 4500 km from the source, and the wave has

Nat. Hazards Earth Syst. Sci., 18, 2561–2602, 2018 www.nat-hazards-earth-syst-sci.net/18/2561/2018/



M. Arce Acuña and T. Aoki: Tree-based mesh-refinement GPU-accelerated tsunami simulator 2581

Figure 26. Snapshots every 3 h (a)–(c) of the Indonesian 2004 tsunami propagation simulated by TRITON-G. (a) Time= 0 h. Initial source
in Sumatra. (b) Time= 3 h. (c) Time= 6 h.

www.nat-hazards-earth-syst-sci.net/18/2561/2018/ Nat. Hazards Earth Syst. Sci., 18, 2561–2602, 2018



2582 M. Arce Acuña and T. Aoki: Tree-based mesh-refinement GPU-accelerated tsunami simulator

Figure 27. (a) Comparison of arrival wave at Diego Garcia, tide gauge and model results. (b) Comparison of arrival wave at Male, tide gauge
and model results. (c) Comparison of arrival wave at Gan, tide gauge and model results. (d) Comparison of arrival wave at Colombo, tide
gauge and model results. (e) Comparison of arrival wave at Point La Rue, tide gauge and model results.

traveled over complex bathymetry and reflected on multiple
coastlines. However, the arrival time is still in good agree-
ment as is the wave arrival peak height. No effect of wave
main peak diffusion is noticeable.

The arrival time differences of a few minutes between
measurement and TRITON-G simulation can be partly ex-
plained by the location of simulated gauges. Even though
the main events could be reproduced, a tendency to over-
shoot is noticed; nonetheless, this did not affect the ability
of the model to transport the wave along far distances, and
in no case was an arrival wave sign reported incorrectly. We
briefly discuss three main reasons for the difference in arrival
height and wave oscillation after the main event. The first
is related to bathymetry and topography. Although databases
for bathymetry and topography with good accuracy are avail-
able, these are still far from representing in detail the real
shape of the ocean’s bottom and topography. This difference
makes it challenging to reproduce the wave reflections on

coasts and the effects of traveling through the ocean bottom
in a completely realistic way. Based on this, it is expected
that some differences are found in the wave reflections and
oscillations. A study about the influence on bathymetry reso-
lution can be found in Plant et al. (2009). The second reason
relates to the dependence of every tsunami model on a good
and accurate initial condition to obtain good simulations. The
use of inaccurate initial fault sources can affect the resulting
simulation especially in locations near the source. This is par-
ticularly challenging since it is not possible to precisely mea-
sure the ocean surface at the moment of a tsunami event. The
third reason is related to dispersion. Waves traveling through
the ocean bottom experience physical dispersion due to the
effect of the bathymetry. In general, this dispersion is com-
pensated by numerical dispersion introduced by the trunca-
tion error. However, TRITON-G utilizes a cubic interpolation
upwind scheme that has the advantage of minimizing disper-
sion and diffusion. An almost homogeneous traveling train

Nat. Hazards Earth Syst. Sci., 18, 2561–2602, 2018 www.nat-hazards-earth-syst-sci.net/18/2561/2018/



M. Arce Acuña and T. Aoki: Tree-based mesh-refinement GPU-accelerated tsunami simulator 2583

Figure 28. Inundation comparison for Hambantota, Sri Lanka.
(a) RIMES model. (b) TRITON-G model.

wave with a minimal dispersion effect is produced instead,
reducing the possibility of seeing the higher oscillatory be-
havior of the arrival tsunami wave seen in the gauges. These
kinds of discrepancies had been observed and reported on in
several other operational models as well (Dao and Tkalich,
2007; Grilli et al., 2007; Arcas and Titov, 2006).

7.1.2 Inundation map comparison

A further validation for the TRITON-G model is to com-
pute inundation in certain areas and compare it with field
surveys or existing maps. Since inundation maps that are ex-
actly measured do not exist, we present comparisons with
RIMES’ existing simulated inundation maps (RIMES, 2014)
and post-tsunami field surveys. Two cases are presented: the
first in Hambantota (Sri Lanka) and the second in Phuket
(Thailand).

The first inundation validation presented is the result for
Hambantota in Sri Lanka. The inundation map for Ham-
bantota generated by TRITON-G is shown in Fig. 28b. For
comparison, we include in Fig. 28a panel the previous re-
sult obtained by RIMES in their report “Tsunami Hazard and
Risk Assessment and Evacuation Planning – Hambantota, Sri
Lanka” (RIMES, 2014).

Eyewitness accounts report the arrival time of the first
tsunami wave around 09:00 LT the morning of the 26th, some
2 h after the initial earthquake in Sumatra. This coincides
with TRITON-G’s predicted arrival time of 2 h for this re-
gion. According to measurements done post-tsunami, it was

determined that the arrival waves had heights of over 8 m and
produced run-ups inland in certain areas of up to 2 km.

TRITON-G inundation results also show areas up the
coastal bay where run-up produced inundation hundreds of
meters deep in land, coinciding with the recounts. By com-
paring it with the result provided by RIMES, we found that
both simulations show agreement with each other on the ar-
eas that experienced and did not experience inundation. The
decisive factor that made some areas more prone to inun-
dation than others was the topography. The arrival tsunami
wave hit the coast with heights of around 8–10 m. Coastal
areas that faced the ocean with higher topographic heights
were spared from being inundated. On the contrary, coast
shores that were practically flat were overtaken by the in-
coming wave as shown in the results.

Results for the second inundation validation in Phuket are
compared with those of Supparsri et al. (2011). The wave
arrival time for this region is of around 181 min, which
agrees with the values obtained by TRITON-G model of
180 min. Inundation results are shown in Fig. 29, the im-
age on top presents the inundation simulation obtained in the
report while the image on the bottom depicts the results of
TRITON-G model.

The results around the Kamala region coincide very well
between models. Both report maximum inundation heights
of around 5–6 m, and the run-up distances follow the same
pattern. In the south, at Patong region however, there is a
difference in the run-up distances. This is explained by the
difference in the bathymetry used by TRITON-G. While in
the Supparsri et al. (2011) study, a 52 m resolution was used
on the entire inundation area, our model only used 50 m reso-
lution bathymetry in Kamala. For Patong, values were inter-
polated from a lower 150 m resolution database, which pro-
duced a smoother topography and less accurate run-up re-
sults. This highlights the importance and the effect of having
accurate and realistic bathymetry for the simulation.

This test, together with the good results obtained in the in-
undation benchmark comparisons (Sect. 6 and “Appendix”),
served to validate the ability of TRITON-G to estimate
tsunami inundation.

8 Conclusions

The tragic events of recent tsunamis showed the importance
of developing fast and accurate forecasting models. We im-
plemented several techniques to reduce the time to solution
to meet our runtime goals in the successful development of
this fast and accurate tsunami operational real-time model.
In a short time, wide-area simulations (ocean size) can be
obtained much faster than real time, meeting our goal for
results in less than 15 minutes. The combination of highly
accurate numerical methods with light stencils provided an
excellent solution to the governing equations and gave sta-
bility on complex bathymetry. A customized, tree-based re-

www.nat-hazards-earth-syst-sci.net/18/2561/2018/ Nat. Hazards Earth Syst. Sci., 18, 2561–2602, 2018



2584 M. Arce Acuña and T. Aoki: Tree-based mesh-refinement GPU-accelerated tsunami simulator

Figure 29. Kamala (north) and Patong (south) inundation maps
comparison. (a) Inundation result by Supparsri et al. (2011).
(b) TRITON-G inundation result.

finement that captured complex coastline shapes was suc-
cessfully implemented using two factors; distance and focal
areas. Using the distance from the coast to refine allowed
us to leave coarser blocks in the open ocean, while blocks
near the shoreline were refined to a higher 50 m resolution.
Focal areas were also successfully introduced in the refine-
ment to delimit the regions where the high-resolution blocks
were generated and to use memory and computational re-
sources efficiently. A full-GPU double-precision implemen-
tation was proven successful in delivering a large increase in
speed. All parts of this simulation, including output storage
are processed entirely on GPU with specialized kernels. For
multi-GPU, the use of a weighted Hilbert space-filling curve
successfully generate balanced domain partitions and work-
load.

Using Tsubame 3.0’s GPU Tesla P100 cards for a full-
scale simulation of 10 h resulted on a wall-clock time of just
under 10 min with three GPU cards, including considerably
sized output (65 GB) while using double precision. The hind-
cast of the Indonesian 2004 tsunami served to compare and
validate TRITON-G simulation results, finding very good
agreement with gauge propagation and inundations. Addi-
tionally, good agreement with standard inundation bench-
mark problems BP4, BP6, BP7 and BP9 was obtained. The
flexibility and robustness of TRITON-G allows it to be an ex-
cellent operational model that can be easily adjusted for dif-
ferent tsunami scenarios, and its speed permits it to be a real-
time forecasting tool. For these reasons, and under the col-
laboration with RIMES, TRITON-G has been successfully
deployed as their operational model since August 2017.

Data availability. Underlying research data can be found in the
Open Science Framework repository (Acuna and Takayuki, 2017).

Nat. Hazards Earth Syst. Sci., 18, 2561–2602, 2018 www.nat-hazards-earth-syst-sci.net/18/2561/2018/



M. Arce Acuña and T. Aoki: Tree-based mesh-refinement GPU-accelerated tsunami simulator 2585

Appendix A: Benchmark problem no. 4: solitary wave
on a simple beach – laboratory

Numerical results for benchmarks 4, 6 and 7 are presented
in this section. A detailed description of the problems can be
found in NTHMP (2012). Here, we give a brief explanation
in each section for completeness.

The domain for this test is shown in Fig. A1. In this
problem, the wave height H is located at a distance L

from the beach toe. This test was replicated in a wave tank
31.73 cm long, 60.96 cm deep and 39.97 cm wide at the Cal-
ifornia Institute of Technology. Several experiments with
different water heights were performed. Benchmark prob-
lem 4 (BP4) uses the datasets for H/d = 0.0185 non-
breaking wave and H/d = 0.30 breaking wave for code val-
idation. Results use dimensionless units with the help of pa-
rameters like length d, velocity scale U =

√
gd and time

scale T =
√
d/g.

A1 Problem setup

The following parameters were used for the computation.

– Parameters: d = 1 and g = 9.8 in case A with H/d =
0.0185 and case B with H/d = 0.30.

– Friction: the Manning coefficient is set to 0.01.

– Computational domain: the domain along x direction
spans from x =−20 to x = 80.

– Boundary conditions: a non-reflective boundary condi-
tion is used at the right side of the computational do-
main.

– Grid resolution: the numerical results presented are
solved with a resolution of 1x = 0.1.

– CFL: the value is set to 0.9.

– Initial condition: the initial wave is computed based on
the following equations for height (η) and velocity (u).

η(x.0)=H sech2 [γ (x− xs)/d
]

(A1)

u(x,0)=−η(x,0)
√
g

d
(A2)

A1.1 Tasks to be performed

To accomplish this problem, the following tasks should be
performed.

1. Compare the numerically calculated surface profiles
at t/T = 30 : 10 : 70 for the non-breaking case H/d =
0.0185 with the lab data (case A).

2. Compare the numerically calculated surface profiles
at t/T = 15 : 5 : 30 for the breaking case H/d = 0.30
with the lab data (case C).

3. Compute the maximum run-ups for at least one non-
breaking and one breaking wave case.

A1.2 Numerical results

We present the numerical results obtained using TRITON-
G. Figure A2 shows the comparison between water surface
level measured in the experiment and the modeled numerical
results obtained by our model for times 30, 40, 50, 60 and
70 for case A (H/d = 0.0185). Our results show good agree-
ment between the numerical simulation and the non-breaking
experiment.

Table A1 shows the errors computed for the NRMSD and
for the maximum wave amplitude error (MAX). The er-
ror values obtained by the NTHMP workshop models are
also included for comparison. These values are divided into
two columns: one with results for the non-dispersive mod-
els (ND) and the other with results for the non-dispersive and
dispersive models together (labeled ALL).

Errors obtained from our simulation tend to be similar or
smaller than those errors obtained by other ND models, with
just slight exception for time 70. Additionally, except for
time 70 our errors are smaller than those obtained combin-
ing non-dispersive and dispersive mean error values.

Water level comparison for case C (H/d = 0.30) at
times 15, 20, 25 and 30 is shown in Fig. A3. Table A2 gath-
ers the values for NRMSD and MAX errors for our numerical
results and for the NTHMP workshop models. In this case,
only the results of models that reported their errors are in-
cluded (taken from Tables 1–8, p. 41 in NTHMP, 2012).

For case C conditions, the shallow water equations are no
longer appropriate for modeling and hydrostatic models tend
to produce larger differences than non-hydrostatic ones. Our
numerical results in general show good agreement with the
experiment.

The difference with the steepening of the crest that is no-
ticeable in the results is expected from a hydrostatic model.
In spite of that, this steepening in our model is not very large
and it can trace the wave front well. Once the wave breaking
occurs, our model can simulate the run-up reasonably well.
This is also partly reflected in the small NRMSD error esti-
mation obtained by our model after the wave breaking.

Maximum run-up for case A and case C were calcu-
lated. For the non-breaking case A, the obtained run-up value
is 0.091, and for the breaking case C, the run-up estimated
is 0.588. These values are plotted in Fig. A4 with a yellow
and red dot, respectively. It can be seen that both values lie
well within the experimental results.

A2 Benchmark problem no. 6: solitary wave on a
conical island – laboratory

The goal of this benchmark is to compare computed model
results with laboratory measurements obtained during a
physical modeling experiment conducted at the Coastal and

www.nat-hazards-earth-syst-sci.net/18/2561/2018/ Nat. Hazards Earth Syst. Sci., 18, 2561–2602, 2018



2586 M. Arce Acuña and T. Aoki: Tree-based mesh-refinement GPU-accelerated tsunami simulator

Hydraulic Laboratory, Engineer Research and Development
Center of the US Army Corps of Engineers. The laboratory’s
physical model was constructed as an idealized representa-
tion of Babi Island in the Flores Sea, Indonesia, to compare
with Babi Island run-up measured shortly after the 12 De-
cember 1992 Flores Island tsunami (Yeh et al., 1994). Fig-
ure A5 show schematics of the experiment.

A2.1 Tasks to be performed

To accomplish this benchmark, the following values should
be used.

– Case A: water depth d = 32.0 cm, target H = 0.05,
measured H = 0.045

– Case B: water depth d = 32.0 cm, target H = 0.20,
measured H = 0.096

– Case C: water depth d = 32.0 cm, target H = 0.05,
measured H = 0.181

Model simulations should then be conducted to address the
following:

1. demonstrate that the two wave fronts split in front of the
island and collide behind it;

2. compare the computed water levels with laboratory data
at gauge 6, 9, 16 and 22;

3. compare the computed island run-up with laboratory
gauge data.

A2.2 Problem setup

The following parameters were used for the computation.

– Computational domain: the dimensions are [−5, 23]×
[0, 28];

– Boundary condition: open boundaries are used;

– Initial condition: the same solitary wave as proposed in
BP4 with the correction for two dimensions;

– Grid resolution: the numerical results presented are
solved with a resolution of 1x = 0.05.

– CFL: the value is set to 0.9.

– Friction: the Manning coefficient is set to 0.02.

A2.3 Numerical results

We present the numerical results obtained using TRITON-G
for the three cases (A–C) except for the splitting–colliding
item. For this item, Fig. A6 shows the wave front splitting
in front of the island and then colliding again behind it for
case B (H = 0.096); analog behavior was obtained for the
other two cases.

Water level comparison uses values for gauges 6, 9, 16 and
22 for each of the three cases. Gauge 6 is located at (9.36,
13.80, 31.7), Gauge 9 is located at (10.36, 13.80, 8.2),
Gauge 16 is located at (12.96, 11.22, 7.9) and Gauge 22 is
located at (15.56, 13.80, 8.3).

Numerical results for cases A–C are shown in Figs. A7–
A9, respectively. In the three cases, results were stable and
in good agreement with the experimental values. The inci-
dent wave height and arrival time was captured for all gauges
well. Similarly as with BP4, the steepening of the wave with
increasing H is expected in a non-hydrodynamic model.

After the wave hit the island, some differences between
the experimental and model wave were noticeable as the ini-
tial wave height increased. These oscillations in the exper-
imental data represent the effects of dispersion, which our
non-dispersive numerical method is not designed to capture.
Despite this, the modeled waves show good agreement with
the shape of the experimental waves, and the errors estimated
tend to be small.

Table A3 gathers the normalized root-mean-square devia-
tion (NRMSD) error and the maximum wave height (MAX)
error. For comparison, mean errors obtained by the par-
ticipating models in the NTHMP workshop are also in-
cluded. These are separated in two columns, one for non-
dispersive (ND) models and the other for non-disperse and
disperse models together (ALL).

NRMSD errors for our model tend not to be very large
and in similar range than those of the other non-dispersive
models. In the case of the maximum height error (MAX),
in almost all cases our model produced smaller error values
than the non-dispersive model counterparts. Additionally, in
most cases our MAX errors are smaller than those errors of
the combined non-dispersive and dispersive mean values.

Figure A10 shows the comparisons between computed and
experimental run-up around the island for the three cases.
Case A represents the best agreement with the experimental
values. Differences increased with steeper wave cases B and
C, as several reflections and refraction possibly occur in the
basin.

Table A4 gathers the errors obtained by our model and by
the participating models in the NTHMP workshop for run-
up cases A–C. Figure A10 showed the good agreement for
case A, and this is also reflected in the NRMSD and MAX
error results. Both values are considerably smaller than those
errors obtained by the NTHMP non-dispersive (ND) models
and by the non-dispersive and dispersive together (ALL). For
cases B and C, the errors tend to be larger than but still sim-
ilar to those obtained by other non-dispersive models. In all
cases, the error stayed below the 20 % recommended criteria.

A3 Benchmark problem no. 7: the tsunami run-up
onto a complex 3-D beach – laboratory

A laboratory experiment using a large-scale tank at the Cen-
tral Research Institute for Electric Power Industry in Abiko,

Nat. Hazards Earth Syst. Sci., 18, 2561–2602, 2018 www.nat-hazards-earth-syst-sci.net/18/2561/2018/



M. Arce Acuña and T. Aoki: Tree-based mesh-refinement GPU-accelerated tsunami simulator 2587

Japan, was focused on modeling the run-up of a long wave
on a complex beach near the village of Monai (Liu et al.,
2008). The beach in the tank was a 1 : 400-scale model of
the bathymetry and topography around a very narrow gully,
where extreme run-up was measured.

A3.1 Problem setup

The following parameters were used for the computation.

– Grid resolution: 393× 244 was used with the same res-
olution 0.014 m as the bathymetry.

– CFL: the value is set to 0.9.

– Initial condition: is water at rest.

– Friction: the Manning coefficient is set to 0.01.

– Boundary conditions: solid wall boundaries were used
at the top and bottom. At the left boundary, the given
initial wave (shown in Fig. A11) was used to specify
the condition up to time t = 22.5 s. After that, it became
a wall boundary condition.

A3.2 Tasks to be performed

To accomplish this benchmark, it is suggested to

1. model propagation of the incident and reflective wave
accordingly to the benchmark-specified boundary con-
dition;

2. compare the numerical and laboratory-measured water
level dynamics at gauges 5, 7 and 9;

3. show snapshots of the numerically computed water
level at the time synchronous with those of the video
frames; and

4. compute the maximum run-up in the narrow valley.

A3.3 Numerical results

This section presents the numerical results for BP7 obtained
with TRITON-G to achieve the required tasks.

The comparison with the three requested gauges 5, 7 and 9
is shown in Fig. A12 from t = 0 to t = 25 s. Good agree-
ment is found between modeled and experimental wave for
the three cases.

Values for the normalized root-mean-square deviation er-
ror (NRMSD) and maximum wave amplitude error (MAX)
were estimated for the gauge results. For gauge 5, the
NRMSD error is 10 % and MAX is 0.89 %. For gauge 7,
NRMSD is 10 % and MAX is 4.81 %. For gauge 9, the
NRMSD error is 6.57 % and MAX is 2.66 %.

Comparison with the extracted movie frames is shown in
Fig. A13. In the left column are the five frames provided
from the laboratory recording. These are frames 10, 25, 40,
55 and 70, extracted from the video with a 0.5 s interval. We
found good agreement in time and space for times 15 to 17 s
in 0.5 s increments, shown in the right column. The side-by-
side comparison shows that the modeled wave follows the
experimental wave front well. Additionally, the model cap-
tures the rapid run-up–rundown in the narrow gully.

Finally, the data provided by the benchmark workshop in-
clude a series of experiment tests for maximum run-up. Its
maximum run-up is recorded at x = 5.1575 and y = 1.88 m
with an average value of approximately 0.09 m. In compar-
ison, our numerical result recorded a maximum run-up at
around t = 16.5 with a height of 0.0936 m at x = 5.15 and
y = 1.88 m.

www.nat-hazards-earth-syst-sci.net/18/2561/2018/ Nat. Hazards Earth Syst. Sci., 18, 2561–2602, 2018



2588 M. Arce Acuña and T. Aoki: Tree-based mesh-refinement GPU-accelerated tsunami simulator

Table A1. Modeled surface profile errors with respect to laboratory experiments for case A H/d = 0.0185 at times 30, 40, 50, 60, and 70.
Results from the NTHMP workshop errors are separated in non-dispersive (ND) models and all models (ALL).

H = 0.0185 NRMSD MAX

TRITON-G NTHMP TRITON-G NTHMP

ND ALL ND ALL

T 30 8.8 11 11 4.0 6 4
T 40 6.6 9 8 4.8 3 3
T 50 3.5 6 5 7.4 13 7
T 60 3 4 5 1.4 1 3
T 70 11 33 16 13.5 15 9

Table A2. Modeled surface profile errors with respect to laboratory experiments for case C H/d = 0.30 at times 15, 20, 25 and 30. Results
from the NTHMP workshop model errors available are shown (ALL).

H = 0.3 NRMSD MAX

TRITON-G NTHMP TRITON-G NTHMP
ALL ALL

T 15 11.3 7 5.4 6
T 20 5.9 9 23.3 11
T 25 6.5 6 11.1 10
T 30 2.9 4 1.4 6

Table A3. Water level time series TRITON-G model errors with respect to laboratory experiment data for cases A–C. Mean values obtained
for the performing NTHMP models are separated in non-dispersive models (ND) and non-dispersive and dispersive models together (ALL).

NRMSD MAX

TRITON-G NTHMP TRITON-G NTHMP

ND ALL ND ALL

Case A

Gauge 6 10 6 7 4 9 8
Gauge 9 9 7 8 4 14 10
Gauge 16 7 10 9 5 10 12
Gauge 22 9 8 8 4 25 18

Case B

Gauge 6 10 8 8 7 6 6
Gauge 9 9 8 8 2 7 9
Gauge 16 9 7 7 14 7 7
Gauge 22 8 9 9 6 40 27

Case C

Gauge 6 13 10 8 3 6 5
Gauge 9 12 11 11 2 9 13
Gauge 16 10 9 8 4 3 3
Gauge 22 9 8 8 10 18 15

Nat. Hazards Earth Syst. Sci., 18, 2561–2602, 2018 www.nat-hazards-earth-syst-sci.net/18/2561/2018/



M. Arce Acuña and T. Aoki: Tree-based mesh-refinement GPU-accelerated tsunami simulator 2589

Table A4. Run-up TRITON-G model errors with respect to laboratory experiment data for cases A–C. Mean values obtained for the per-
forming NTHMP models is separated in non-dispersive models (ND) and all models (ALL) and presented for better comparison.

Run-up TRITON-G NTHMP TRITON-G NTHMP

ND ALL ND ALL
NRMSD NRMSD MAX MAX

Case A 9 18 18 0.6 12 7
Case B 19 21 18 9 2 5
Case C 20 12 11 14 5 5

Figure A1. Domain sketch for BP4, slope 1 : 19.85 (figure taken from benchmark description).

www.nat-hazards-earth-syst-sci.net/18/2561/2018/ Nat. Hazards Earth Syst. Sci., 18, 2561–2602, 2018



2590 M. Arce Acuña and T. Aoki: Tree-based mesh-refinement GPU-accelerated tsunami simulator

Figure A2. Comparison of numerically calculated free surface profile at different dimensionless times for the non-breaking case H/d =
0.0185.

Nat. Hazards Earth Syst. Sci., 18, 2561–2602, 2018 www.nat-hazards-earth-syst-sci.net/18/2561/2018/



M. Arce Acuña and T. Aoki: Tree-based mesh-refinement GPU-accelerated tsunami simulator 2591

Figure A3. Comparison of numerically calculated free surface profile at different dimensionless times for the breaking case H/d = 0.30.

www.nat-hazards-earth-syst-sci.net/18/2561/2018/ Nat. Hazards Earth Syst. Sci., 18, 2561–2602, 2018



2592 M. Arce Acuña and T. Aoki: Tree-based mesh-refinement GPU-accelerated tsunami simulator

Figure A4. Scatter plot of non-dimensional maximum run-up from a total of more than 40 experiments conducted by Y. Joseph Zhan
(Synolakis, 1987). The orange point indicates TRITON-G result for the breaking case H/d = 0.30, and the yellow point indicates the result
for the non-breaking run-up case H/d = 0.0185.

Figure A5. Basin geometry and coordinate system. Solid lines represent approximate basin and wavemaker surfaces. Circles along walls and
dashed lines represent wave-absorbing material.

Nat. Hazards Earth Syst. Sci., 18, 2561–2602, 2018 www.nat-hazards-earth-syst-sci.net/18/2561/2018/



M. Arce Acuña and T. Aoki: Tree-based mesh-refinement GPU-accelerated tsunami simulator 2593

Figure A6. Snapshots at several times showing the wave front splitting in front of the island and colliding behind it for case B.

www.nat-hazards-earth-syst-sci.net/18/2561/2018/ Nat. Hazards Earth Syst. Sci., 18, 2561–2602, 2018



2594 M. Arce Acuña and T. Aoki: Tree-based mesh-refinement GPU-accelerated tsunami simulator

Figure A7. Comparison between computed and measured water levels at gauges 6, 9, 16 and 22 for case A (H = 0.045).

Nat. Hazards Earth Syst. Sci., 18, 2561–2602, 2018 www.nat-hazards-earth-syst-sci.net/18/2561/2018/



M. Arce Acuña and T. Aoki: Tree-based mesh-refinement GPU-accelerated tsunami simulator 2595

Figure A8. Comparison between computed and measured water levels at gauges 6, 9, 16 and 22 for case B (H = 0.096).

www.nat-hazards-earth-syst-sci.net/18/2561/2018/ Nat. Hazards Earth Syst. Sci., 18, 2561–2602, 2018



2596 M. Arce Acuña and T. Aoki: Tree-based mesh-refinement GPU-accelerated tsunami simulator

Figure A9. Comparison between computed and measured water levels at gauges 6, 9, 16 and 22 for case C (H = 0.181).

Nat. Hazards Earth Syst. Sci., 18, 2561–2602, 2018 www.nat-hazards-earth-syst-sci.net/18/2561/2018/



M. Arce Acuña and T. Aoki: Tree-based mesh-refinement GPU-accelerated tsunami simulator 2597

Figure A10. Comparison between computed and measured run-up around the island for the three cases.

www.nat-hazards-earth-syst-sci.net/18/2561/2018/ Nat. Hazards Earth Syst. Sci., 18, 2561–2602, 2018



2598 M. Arce Acuña and T. Aoki: Tree-based mesh-refinement GPU-accelerated tsunami simulator

Figure A11. Prescribed input wave for the left boundary condition, defined from t = 0 to t = 22.5 s.

Figure A12. Water level comparison for BP7 between experiment and TRITON-G for gauges 5, 7 and 9.

Nat. Hazards Earth Syst. Sci., 18, 2561–2602, 2018 www.nat-hazards-earth-syst-sci.net/18/2561/2018/



M. Arce Acuña and T. Aoki: Tree-based mesh-refinement GPU-accelerated tsunami simulator 2599

Figure A13. Comparison between extracted movie frames (a) and TRITON-G simulation (b) for times 15, 15.5, 16, 16.5 and 17 s.

www.nat-hazards-earth-syst-sci.net/18/2561/2018/ Nat. Hazards Earth Syst. Sci., 18, 2561–2602, 2018



2600 M. Arce Acuña and T. Aoki: Tree-based mesh-refinement GPU-accelerated tsunami simulator

Author contributions. TA and MAA conceived the presented re-
search. TA proposed the numerical method used and the AMR
implementation and supervised the findings of this work. TA and
MAA verified the methods. MAA developed and performed the
computations. All authors discussed the results and contributed to
the final paper.

Competing interests. The authors declare that they have no conflict
of interest.

Acknowledgements. This research was partly supported by KAK-
ENHI, Grant-in-Aid for Scientific Research (S) 26220002 from the
Japan Society for the Promotion Science (JSPS); the Japan Science
and Technology Agency (JST) Core Research of Evolutional
Science and Technology (CREST) research programs “Highly
Productive, High Performance Application Frameworks for Post
Peta-scale Computing”; and the “Joint Usage/Research Center for
Interdisciplinary Large-scale Information Infrastructures (JHPCN)”
(jh180034, jh180035); and the “High Performance Computing
Infrastructure (HPCI)”. The authors thank the Global Scientific
Information and Computing Center, Tokyo Institute of Technology
for use of the computer resources of the TSUBAME 3.0 supercom-
puter. The authors thank Kiyoshi Honda, Chubu University for his
extensive support as well as the staff of RIMES (The Regional Inte-
grated Multi-Hazard Early Warning System for Africa and Asia) for
their support and collaboration under their project “Development
and Implementation of an Integrated Ocean Information System
for Indian Ocean Countries”, done with funding support from the
Indian National Centre for Ocean Information Services (INCOIS),
Ministry of Earth Sciences, Government of India.

Edited by: Mauricio Gonzalez
Reviewed by: two anonymous referees

References

Abadie, S. D., Morichon, S. D., Grilli, S., and Glockner, S.: Numeri-
cal simulation of waves generated by landslides using a multiple-
fluid Navier–Stokes model, Coast. Eng., 24, 779–794, 2010.

Abadie, S. D., Harris, J. C., Grilli, S. T., and Fabre, R.: Numerical
modeling of tsunami waves generated by the flank collapse of
the Cumbre Vieja Volcano (La Palma, CanaryIslands): Tsunami
source and near field effects, J. Geophys. Res., 117, 50–30, 2012.

Acuna, M. A. and Takayuki, A.: TRITON-G, available at: https:
//osf.io/fydz8/, 2017.

Arcas, D. and Titov, V.: Sumatra tsunami: lessons from modeling,
Surv. Geophys., 27, 679–705, 2006.

Babeyko, A.: Fast Tsunami Simulation Tool for Early Warning,
available at: https://docs.gempa.de/toast/current/apps/easywave.
html (last access: 13 September 2018), 2017.

Berger, M. J. and Colella, P: Local Adaptive Mesh Refinement for
Shock Hydrodynamics, J. Comp. Phys., 82, 64–84, 1989.

Berger, M. and LeVeque, R.: Adaptive mesh refinement using wave-
propagation algorithms for hyperbolic systems, SIAM J. Numer.
Anal., 35, 2298–2316, 1998.

Berger, M. and Oliger, J.: Adaptive mesh refinement for hyperbolic
partial differential equations, J. Comp. Phys., 53, 484–512, 1984.

Bermúdez, A. and Vázquez, M.: Upwind methods for hyperbolic
conservation laws, Comput. Fluids, 8, 1049–1071, 1994.

Bradford, S. and Sanders, B.: Finite-Volume Model for Shallow-
Water Flooding of Arbitrary Topography, in: vol. 129, 17th In-
ternational Conference on Coastal Engineering, J. Hydraul. Eng.,
128, 289–298, 2002.

Burwell, D., Tolkova, E., and Chawla, A.: Diffusion and dispersion
characterization of a numerical tsunami model, Ocean Model.,
19, 10–30, 2007.

Courant, R., Friedrichs, F., and Lewy, H.: On the partial difference
equations of mathematical physics, IBM J., 11, 215–234, 1967.

Dao, M. H. and Tkalich, P.: Tsunami propagation modelling –
a sensitivity study, Nat. Hazards Earth Syst. Sci., 7, 741–754,
https://doi.org/10.5194/nhess-7-741-2007, 2007.

Fedkiw, S. and Osher, R.: Level Set Methods and Dynamic Implicit
Surfaces, Springer-Verlag, New York, 2003.

Fischer, G.: Ein numerisches Verfahren zur Errechnung von Wind-
stau und Gezeiten in Randmeeren, Tellus, 11, 60–76, 1959.

Gottschalk, S., Ming, L., and Manocha, D.: OBBTree: A Hierar-
chical Structure for Rapid Interference Detection, in: ACM Sig-
graph ’96, 4–9 August 1996, New Orleans, LA, USA, 1996.

Grilli, S., Ioualalen, M., Asavanant, J., Shi, J., Kirby, T., and Watts,
P.: Source Constrainsts and Model Simulation of the Decem-
ber 26, 2004 Indian Ocean Tsunamia, Port, Ocean Coast. Eng.,
133, 414–428, 2007.

Hansen, W.: Theorie zur Errechnung des Wasserstands und der Stro-
mungen in Randemeeren, Tellus, 8, 287–300, 1956.

Horrillo, J., Wood, G., Kim, B., and Parambath, A.: A simplified
3-D Navier–Stokes numerical model for landslide tsunami: Ap-
plication to the Gulf of Mexico, J. Geophys. Res.-Oceans, 118,
6934–6950, 2013.

Imamura, F.: Review of tsunami simulation with a finite difference
method, Word Scientific Publishing Co., Singapore, 1996.

Imamura, F., Goto, C., Ogawa, Y., and Shuto, N.: Numerical
Method of Tsunami Simulation with the Leap-Frog Scheme,
IUGG/IOC Time Project Manuals, United Nations Educational
Scientific and Cultural Organization (UNESCO), France, 1995.

Kato, K. and Tsuji, Y.: Estimation fo fault parameters of the 1993,
Hokkaido–Nansei–Oki earthquake and tsunami characteristics,
Bull. Earthq. Rest. Inst., 69, 39–66, 1994.

Kirby, J. T., Fengyan, S., Babak, T., Harrisb, J. C., and Stephan,
T.: Dispersive tsunami waves in the ocean: Model equations and
sensitivity to dispersion and Coriolis effects, Ocean Model., 62,
39–55, 2013.

Lawrence Livermore National Laboratory: Silo User’s Guide,
available at: https://wci.llnl.gov/codes/silo/media/pdf/
LLNL-SM-453191.pdf (last access: 13 September 2018),
2017.

LeVeque, R. and George, D.: Advanced Numerical Models for Sim-
ulating Tsunami Waves and Runup, World Scientific World Sci-
entific Publishing, Singapore, 43–74, 2014.

LeVeque, R. J.: Balancing source terms and flux gradients in high-
resolution Godunov methods: the quasi-steady wave-propagation
algorithm, J. Comput. Phys., 146, 346–365, 1998.

LeVeque, R. J.: Finite volume methods for hyperbolic problems,
in: Cambridge University Atlas de Radiologie Clinique de

Nat. Hazards Earth Syst. Sci., 18, 2561–2602, 2018 www.nat-hazards-earth-syst-sci.net/18/2561/2018/

https://osf.io/fydz8/
https://osf.io/fydz8/
https://docs.gempa.de/toast/current/apps/easywave.html
https://docs.gempa.de/toast/current/apps/easywave.html
https://doi.org/10.5194/nhess-7-741-2007
https://wci.llnl.gov/codes/silo/media/pdf/LLNL-SM-453191.pdf
https://wci.llnl.gov/codes/silo/media/pdf/LLNL-SM-453191.pdf


M. Arce Acuña and T. Aoki: Tree-based mesh-refinement GPU-accelerated tsunami simulator 2601

la Presse Medicale, Cambridge University Press, Cambridge,
United Kingdom, 2002.

Liu, P. L., Yeh, H., and Synolakis, C.: Advanced numerical models
for simulating Tsunami waves and runup, Advances in coastal
and ocean engineering, World Scientific, 10, 344 pp., New Jersey,
2008.

Liu, P. W. G. C.: COMCOT, Cornell Multi-grid Coupled Tsunami
Model, available at: http://223.4.213.26/archive/tsunami/cornell/
comcot.htm (last access: 13 September 2018), 1998.

Lynett, P., Wu, T., and Lui, P.: Modeling wave runup with depth-
integrated equations, Coast. Eng., 46, 89–107, 2002.

Macías, J., Castro, M. J., Ortega, S., Escalante, C., and González-
Vida, J. M.: Performance benchmarking of Tsunami-HySEA
model for NTHMP’s inundation mapping activitie, Pure Appl.
Geophys., 174, 3147–3183, 2017.

Moller, T., Hoffman, N., and Haine, E.: Real-Time Rendering,
AK Peters Ltd., Massachusetts, 1999.

Motoki, K. and Toshihiro, N.: Damage statistics (Summary of
the 2011 off the Pacific Coast of Tohoku Earthquake damage),
Soils Foundat., 52, 780–792, 2012.

Nakamura, T., Tanaka, R., Yabe, T., and Takizawa, K.: Exactly con-
servative semi-Lagrangian scheme for multi-dimensional hyper-
bolic equations with directional splitting technique, J. Comput.
Phys., 174, 171–207, 2001.

Nicolsky, D., Sileimani, E., and Hansen, R.: Validation and verifi-
cation of a numerical model for tsunami propagation and runup,
Pure Appl. Geophys., 168, 1199–1222, 2011.

NTHMP: National Tsunami Hazard Mitigation Program (NTHMP),
in: Proceedings and Results of the 2011 NTHMP Model Bench-
marking Workshop, NOAA Special Report, Department of Com-
merce/NOAA/NTHMP, Boulder, CO, 2012.

NVIDIA: CUDA Zone, available at: https://developer.nvidia.com/
cuda-zone (last access: 13 September 2018), 2017a.

NVIDIA: Tesla P100 Datasheet, available at: https://images.nvidia.
com/content/tesla/pdf/nvidia-tesla-p100-PCIe-datasheet.pdf
(last access: 13 September 2018), 2017b.

Nwogu, O.: An alternative form of the Boussinesq equations for
nearshore wave propagation, Coast. Ocean Eng., 119, 618–638,
1993.

Oceans (GEBCO): T. G. B. C. of the: GEBCO, available at: http:
//www.gebco.net/ (last access: 13 September 2018), 2017.

Ogata, Y. and Takashi, Y.: Multi-Dimensional Semi-Lagrangian
Characteristic Approach to the Shallow Water Equations by
the CIP Method, Int. J. Comput. Eng. Sci., 05, 699–730,
https://doi.org/10.1142/S1465876304002642, 2004.

Peregrine, D.: Long waves on a beach, J. Fluid Mech., 27, 815–827,
1967.

Plant, N., Kacey, E., Kaihatu, J., Veeramony, J., Hsu, L., and Todd,
H.: The effect of bathymetric filtering on nearshore process
model results, Coast. Eng., 56, 484–493, 2009.

Reed, D.: User Datagram Protocol (UDP), RFC 768, available
at: https://tools.ietf.org/html/rfc768 (last access: 13 September
2018), 1980.

Regional Integrated Multi-Hazard Early Warning System: RIMES,
available at: http://www.rimes.int/ (last access: 13 September
2018), 2017.

RIMES: Tsunami Hazard and Risk Assessment and Evacua-
tion Planning – Hambantota, Sri Lanka, Regional Integrated

Multi-Hazard Early Warning System, RIMES program unit,
Pathumthani, Thailand, 2014.

Roeber, V. and Cheung, K. F.: Boussinesq-type model for energetic
breaking waves in fringing reef enviroments, Coast. Eng., 70, 1–
20, 2012.

Rusanov, V.: Characteristics of the general equations of gas dy-
namics, Zhurnal Vychislistelnoi Mathematiki Mathematicheskoi
Fiziki, 3, 508–527, 1963.

Sagan, H.: Space-Filling Curves, Universitext, Springer-Verlag,
New York, 1994.

Shi, F., Kirby, J. T., Geiman, J. D., and Grilli, S.: A high-order
adaptive time-stepping TVD solver for Boussinesq modeling of
breaking waves and coastal inundation, Ocean Model., 43, 36–
51, 2012.

Smylie, L. and Mansinha, D. E.: The Displacement Fields of In-
clined Faults, B. Seismol. Soc. Am., 61, 1433–1440, 1971.

Srivihoka, P., Honda, K., Ruangrassamee, A., Muangsinc, V., Na-
paratb, P., Foytong, P., Promdumrong, N., Aphimaeteethomrong,
P., Intaveec, A., Layug, J. E., and Kosinc, T.: Development of an
online tool for tsunami inundation simulation and tsunami loss
estimation, Cont. Shelf Res., 79, 3–15, 2014.

Stoker, J. J.: Water Waves: The Mathematical Theory with Applica-
tions, Wiley-Interscience, Wiley-Interscience, New York, 1992.

Supparsri, A., Koshimura, S., and Imamura, F.: Developing tsunami
fragility curves based on the satellite remote sensing and the nu-
merical modeling of the 2004 Indian Ocean tsunami in Thailand,
J. Nat. Hazards Earth Sci., 11, 173–189, 2011.

Swarztrauber, P. N., Williamson, D. L., and Drake, J. B.: The carte-
sian method for solving partial differential equations in spherical,
Dynam. Atmos. Oceans, 27, 679–706, 1997.

Synolakis, C. E.: The runup of solitary Waves, J. Fluid Mech., 185,
523–545, 1987.

Szauer, G.: Game Physics Cookbook, Amazon Digital Services,
Birmingham, UK, 2017.

Takahashi, T.: Benchmark Problem 4. The 1993 Okushiri tsunami,
Data collected, Conditions and Phenomena, in: Long waves
runup models, edited by: Yeh, H., Piu, P., and Synolakis, C.,
Word Scientific Publishing Co., Singapore, 384–403, 1996.

Thacker, W. C.: Some exact solutions to the nonlinear shallow-
water wave equations, J. Fluid Mech., 107, 499–508, 1981.

Titov, V. and Synolakis, C.: Evolution and runup of the breaking
and nonbreaking waves using VTSC2, J. Waterway, Port, Coast.
Ocean Eng., 126, 308–316, 1995.

Titov, V., Rabinovich, A., Mojfeld, H., Thomson, R., and Gonza-
les, F.: The Global Reach of the 26 December 2004 Sumatra
Tsunami, Science, 309, 2045–2048, 2005.

Toro, F.: Shock-capturing methods for free-surface shallow flows,
John Wisley & Sons, AK Peters Ltd., London, 2010.

Tsubame, T. I.: Manual Tsubame 3.0, available at: http://www.t3.
gsic.titech.ac.jp/ (last access: 13 September 2018), 2017.

Utsumi, T., Kunugi, T., and Aoki, T.: Stability and accuracy of
the cubic interpolated propagation scheme, Comput. Phys. Com-
mun., 101, 9–20, 1997.

Vazhenin, A., Lavrentiev, M., Romanenko, A., and Marchuk, A.:
Acceleration of tsunami wave propagation modeling based on re-
engineering of computational components, Int. J. Comput. Sci.
Network Secur., 13, 32–70, 2013.

www.nat-hazards-earth-syst-sci.net/18/2561/2018/ Nat. Hazards Earth Syst. Sci., 18, 2561–2602, 2018

http://223.4.213.26/archive/tsunami/cornell/comcot.htm
http://223.4.213.26/archive/tsunami/cornell/comcot.htm
https://developer.nvidia.com/cuda-zone
https://developer.nvidia.com/cuda-zone
https://images.nvidia.com/content/tesla/pdf/nvidia-tesla-p100-PCIe-datasheet.pdf
https://images.nvidia.com/content/tesla/pdf/nvidia-tesla-p100-PCIe-datasheet.pdf
http://www.gebco.net/
http://www.gebco.net/
https://doi.org/10.1142/S1465876304002642
https://tools.ietf.org/html/rfc768
http://www.rimes.int/
http://www.t3.gsic.titech.ac.jp/
http://www.t3.gsic.titech.ac.jp/


2602 M. Arce Acuña and T. Aoki: Tree-based mesh-refinement GPU-accelerated tsunami simulator

Vincent, S., Caltagirone, J. P., and Bonneton, P.: Numerical model-
ing of bore propagation and run-up on sloping beaches using a
MacCormack TVD scheme, J. Hydraul. Res., 39, 41–49, 2001.

Wang, D., Becker, N. C., Walsh, D., Fryer, G. J., Weinstein, S.
A., McCreery, C. S., Sardina, V., Hsu, V., Hirshorn, B. F.,
Hayes, G. P., Duputel, Z., Rivera, L., Kanamori, H., Koyan-
gai, K., and Shiro, B.: Real-time forecasting of the April 11,
2012, Sumatra Tsunami, Geophys. Res. Lett., 39, L19601,
https://doi.org/10.1029/2012GL053081, 2012.

Wei, G., Kirby, J., Grilli, S. T., and Subramanya, R.: Fully nonlinear
Boussinesq model for free surface waves. Part 1: Highly nonlin-
ear unsteady waves, J Fluid Mech., 294, 71–92, 1995.

WHO: Indonesia situation reports, available at: http://www.who.int/
hac/crises/idn/sitreps/en/ (last access: 13 September 2018), 2014.

Williamson, D. L., Drake, J. B., Hack, J. J., Jakob, R., and Swarz-
traube, P. N.: A standard test set for numerical approximations
to the shallow water equations in spherical geometry, J. Comput.
Phys., 102, 211–224, 1992.

Yabe, T. and Aoki, T.: A universal solver for hyperbolic equations
by Cubic-Polynomial Interpolation I. One-dimensional solver,
Comp. Phys. Comm., 66, 219–232, 1991.

Yabe, T., Tanaka, R., Nakamura, T., and Xiao, F.: An Exactly Con-
servative Semi-Lagrangian Scheme (CIP–CSL) in One Dimen-
sion, Mon. Weather Rev., 129, 332–344, 2001.

Yamamoto, S. and Daiguji, H.: Higher-order-accurate upwind
schemes for solving the compressible Euler and Navier-Stokes
equations, Comput. Fluids, 22, 259–270, 1993.

Yamazaki, Y., Cheung, K. F., and Kowalik, Z.: Depth-integrated,
non-hydrostatic model with grid nesting for tsunami generation,
propagation, and run-up, Int. J. Numer. Meth. Fluids, 67, 2081–
2107, 2011.

Yeh, H., Liu, P., Briggs, M., and Synolakis, C.: Propagation and am-
plification of tsunamis at coastal boundaries, Nature, 372, 353–
355, 1994.

Yerry, M. and Shephard, M.: Automatic three-dimensional mesh
generation by the modified-octree technique, J. Numer. Meth.
Eng., 32, 709–749, 1991.

Zaytsev, A., Yalciner, A., Chernov, A., Pelinovsky, E., and Kurkin,
A.: NAMI DANCE, available at: http://namidance.ce.metu.edu.tr
(last access: 13 September 2018), 2006.

Zhang, Y. and Baptista, A. M.: An efficient and robust tsunami
model on unstructured grids, Pure Appl. Geophys., 165, 2229–
2248, 2008.

Zhou, J. G., Causon, M. D., Mingham, C., and Ingram, G.: The
surface gradient method for the treatment of source terms in the
shallow-water equations, J. Comp. Phys., 168, 1–52, 2001.

Nat. Hazards Earth Syst. Sci., 18, 2561–2602, 2018 www.nat-hazards-earth-syst-sci.net/18/2561/2018/

https://doi.org/10.1029/2012GL053081
http://www.who.int/hac/crises/idn/sitreps/en/
http://www.who.int/hac/crises/idn/sitreps/en/
http://namidance.ce.metu.edu.tr

	Abstract
	Introduction
	Governing equations
	Numerical methods and boundary conditions
	Methods of characteristics for SSWEs
	Run-up calculation
	Tsunami source model
	Boundary conditions

	Tree-based mesh refinement and bathymetry
	Customized mesh generation
	Halo exchange
	Topography and bathymetry

	GPU computing
	SSWE GPU kernels
	Halo update on GPU
	Specialized kernel types

	Space-filling curve and multi-GPU
	Variables and rendering output
	Subcycling implementation
	Runtime performance


	Tsunami inundation benchmark comparison
	Benchmark problem no. 9: Okushiri Island tsunami -- field
	Problem setup
	Tasks to be performed
	Numerical results


	Case study
	Indonesian 2004 tsunami hindcast
	Tide gauge comparison
	Inundation map comparison


	Conclusions
	Data availability
	Appendix A: Benchmark problem no. 4: solitary wave on a simple beach -- laboratory
	Appendix A1: Problem setup
	Appendix A1.1: Tasks to be performed
	Appendix A1.2: Numerical results

	Appendix A2: Benchmark problem no. 6: solitary wave on a conical island -- laboratory
	Appendix A2.1: Tasks to be performed
	Appendix A2.2: Problem setup
	Appendix A2.3: Numerical results

	Appendix A3: Benchmark problem no. 7: the tsunami run-up onto a complex 3-D beach -- laboratory
	Appendix A3.1: Problem setup
	Appendix A3.2: Tasks to be performed
	Appendix A3.3: Numerical results


	Author contributions
	Competing interests
	Acknowledgements
	References

