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Abstract. This paper presents an assessment of the fragility
of a reinforced concrete (RC) element subjected to avalanche
loads, and more generally to dynamic pressure fields applied
orthogonally to a wall, within a reliability framework. In
order to obtain accurate numerical results with supportable
computation times, a light and efficient Single-Degree-of-
Freedom (SDOF) model describing the mechanical response
of the RC element is proposed. The model represents its
dynamic mechanical response up to failure. Material non-
linearity is taken into account by a moment–curvature ap-
proach, which describes the overall bending response. The
SDOF model is validated under quasi-static and dynamic
loading conditions by comparing its results to alternative ap-
proaches based on finite element analysis and the yield line
theory. Following this, the deterministic SDOF model is em-
bedded within a reliability framework to evaluate the fail-
ure probability as a function of the maximal avalanche pres-
sure reached during the loading. Several reliability meth-
ods are implemented and compared, suggesting that non-
parametric methods provide significant results at a moder-
ate level of computational burden. The sensitivity to mate-
rial properties, such as tensile and compressive strengths,
steel reinforcement ratio, and wall geometry is investigated.
The effect of the avalanche loading rate is also underlined
and discussed. Finally, the obtained fragility curves are com-
pared with respect to the few proposals available in the snow
avalanche engineering field. This approach is systematic and

will prove useful in refining formal and practical risk assess-
ments. It could be applied to other similar natural hazards,
which induce dynamic pressure fields onto the element at risk
(e.g., mudflows, floods) and where potential inertial effects
are expected and for which fragility curves are also lacking.

1 Introduction

The hazard posed by avalanches threatens human com-
munities in mountainous areas. Fatalities due to snow
avalanches result from the practice of mountaineering or
from avalanches reaching dwellings (e.g., an avalanche in
1999 killed 12 people in their homes in French Chamonix-
Montroc village) or holiday accommodations (e.g., an
avalanche in Val-d’Isère French valley in 1970 destroyed a
vacation resort, where 39 people died; an avalanche in 2017
in the Italian Abruzzo region affected a hotel killing 29 peo-
ple inside the buildings).

For formal risk assessment, fragility and/or vulnerabil-
ity curves are required to evaluate individual risks (Key-
lock et al., 1999; Cappabianca et al., 2008; Eckert et al.,
2012) or design defense structures by loss minimization
(Eckert et al., 2008, 2009; Favier et al., 2016). For a
given element at risk, the vulnerability relations represent
its loss distributions, whereas the fragility curves represent
its damage states distributions. Until now, very few fragility
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curves have been established for snow avalanches. Indeed,
most studies have been dedicated to vulnerability curves
(Papathoma-Köhle et al., 2011). Existing vulnerability and
fragility relations were mostly empirically assessed, based
on historical observations (Wilhelm, 1998; Keylock and Bar-
bolini, 2001; Barbolini et al., 2004). Since these relationships
were deduced from scarce data, which can be site-dependent,
their accuracy and representativeness is questionable. Re-
cently, in order to offer an alternative way of deriving vulner-
ability curves, finite element analysis (FEA) has been used to
describe the damage level of typical reinforced concrete (RC)
structures subjected to an avalanche pressure field (Bertrand
et al., 2010). The main advantage of numerical approaches
is that they accurately define and simulate the studied struc-
ture, e.g., through its geometry, the specificity of its technol-
ogy and the non linear mechanical behavior of its materials.
Using such numerical approaches, snow avalanche fragility
curves have recently been proposed (Favier et al., 2014; Ous-
set et al., 2016).

In earthquake engineering, fragility curves have been
widely studied and methodologies to determine these have
traditionally been categorized as empirical, numerical, judg-
mental, or hybrid (Rossetto and Elnashai, 2003). For in-
stance, for buildings exposed to earthquakes, the probabil-
ity of overpassing a drift limit according to the peak ground
acceleration is described via reliability-based numerical
fragility curves (Ellingwood, 2001; Kyung and Rosowsky,
2006; Li and Ellingwood, 2007; Lagaros, 2008). On the
contrary, for mass flow gravity-driven hazards, few fragility
relationships have been developed. Indeed, the prevailing
lack of documented fragility relationships in snow avalanche
engineering can also be noticed in rockfall (Mavrouli and
Corominas, 2010a, b) or landslide (Papathoma-Köhle et al.,
2012) engineering.

Numerical fragility curves are mainly derived using
the well-established framework of reliability analysis (e.g.,
Lemaire, 2005). Once the deterministic model and the failure
criterion of the system are chosen, the uncertainties related
to the random variables are propagated through the mechan-
ical model in order to calculate the failure probability. Usu-
ally, simulation methods which give robust results are used,
e.g., the direct Monte Carlo approach. However, they can be
time consuming. If too many runs are needed to achieve an
accurate estimate of the failure probability or if the determin-
istic model is not effective enough in terms of computation
time, alternative sampling methods can be used, e.g., impor-
tance sampling (Melchers, 1989), subset sampling (Au and
Beck, 2001). Such approaches do not always ensure the con-
vergence of the results according to the non-linearity degree
of the deterministic model or to the number of random vari-
ables involved.

In reliability analysis, very time-consuming models are
generally discarded in favor of time-effective ones. Such al-
ternative models, also called meta-models, are often built on
a statistical basis, e.g., using polynomial chaos expansion

(Sudret and Mai, 2013; Ousset et al., 2016) or, sometimes, on
a physical basis. Simplifying assumptions on the mechanical
model can be an efficient way to reduce computation times
along with keeping the essential physics involved. This is es-
pecially true for reinforced concrete for which various nu-
merical models exist to describe the mechanical response of
a structure and its possible failure. Hence, in order to find
a compromise between time-efficient but simplified models
and refined but time consuming models, RC structures can be
described using Single-Degree-of-Freedom (SDOF) models
(Biggs, 1964), where the structure is modeled by an equiva-
lent mass and an equivalent spring. This approach has been
largely used and validated in the field of structures subjected
to blast loads (Ngo et al., 2007; Jones et al., 2009; Carta
and Stochino, 2013). On the contrary, in the field of snow
avalanches such approaches are only emerging. A recent ex-
ample is the application of a SDOF model to study the behav-
ior of trees towards powder snow avalanche air blasts (Bartelt
et al., 2018). As a consequence, the dichotomy remains quite
strong between FEA approaches (Berthet-Rambaud, 2004;
Bertrand et al., 2010; Ousset et al., 2013) and simpler mod-
els based of civil engineering abacuses (Favier et al., 2014),
that is to say, models that use structural sizing tables to cal-
culate the resistance of standard structures. The first allows
a better understanding of the detailed interaction between
avalanche flows and structures but only under very specific
conditions due to the computational burden. The second al-
lows obtaining the failure probability of an RC member im-
pacted by snow avalanches for a wide range of boundary con-
ditions. However, simplified approaches often operate under
questionable assumptions (e.g., quasi-static response of the
structure, no spatial pressure field distribution) and can lead
to ignoring potential inertial effects due to the dynamic na-
ture of the loading.

As a response to the important issue of obtaining accu-
rate numerical results with reasonable computation times,
this paper presents a light and efficient SDOF model and
uses it to refine the assessment of physical fragility regard-
ing snow avalanches to elements at risk, such as residential
RC buildings. Even if several kinds of constructive technolo-
gies are used in snow avalanche engineering (e.g., masonry,
reinforced concrete, or metallic structures), for the sake of
simplicity only the most common type of structure found in
avalanche prone areas in the Alps is considered: reinforced
concrete. In order to justify the assumptions made for the
avalanche loading, Sect. 2 reminds some of the main fea-
tures of an avalanche and especially in terms of pressure
magnitude that can be expected. Section 3 describes the pro-
posed SDOF model used as a physically based meta-model
of a more comprehensive finite element model of an RC wall
subjected to the avalanche pressure. Based on FEA and limit
analysis (yield line theory) comparisons, the SDOF model is
able to describe the dynamic mechanical response of the RC
wall up to its collapse by excessive bending. Section 4 ex-
poses the statistical framework used to derive fragility curves
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using different sets of input variables and different reliabil-
ity methods. Section 5 details the results, namely the rel-
ative efficiency of the different reliability methods tested,
the sensitivity to input statistical distributions and geometric
properties of the wall, and the influence of the loading rate
on fragility curves. Section 6 discusses the curves obtained
with respect to the crude proposals that can be found in the
snow avalanche literature, highlighting the usefulness of the
proposed approach for improving risk assessment. Finally,
Sect. 7 highlights some key perspectives and conclusions.

2 Avalanche dynamics and retained pressure signal

Avalanches can be defined as the release of a snow vol-
ume that propagates down a slope under the action of grav-
ity. Snow avalanches can be classified according to several
criteria (e.g., snow type, release zone, weather conditions).
Two main types of avalanches are distinguished: (i) powder
snow avalanches composed of diluted dry snow, due to air in-
corporation, characterized by a mean flow velocity that can
reach 100 m s−1 and having a density from 1 to 10 kg m−3;
(ii) dense snow avalanches mostly composed of humid snow
that can develop a mean flow velocity of hardly 30 m s−1 and
a high density up to 500 kg m−3. The pressure field devel-
oped by an avalanche onto an obstacle depends on those lat-
ter features. Within the heart of the flow, high peak pressures
can develop. For powder avalanches, important pressure val-
ues are related to high velocities of the flow and for dense
snow avalanches to high snow densities.

Up to now, measured peak pressures span from 6.6 kPa
at the Lautaret experimental site (Berthet-Rambaud et al.,
2008) up to more than 1200 kPa at the Sionne site (Sovilla
et al., 2008). However, this last pressure was measured very
locally on the height of the avalanche front. The analysis of
the signals data held by the authors suggests that the low-
est recorded average loading rate is 6 kPa s−1 for a peak
pressure of 21 kPa at the Lautaret experimental site (Thib-
ert and Baroudi, 2010) and the highest is 400 kPa s−1 for a
peak pressure of 490 kPa at the Taconnaz site (Bellot et al.,
2013). Those measurements were made with sensors placed
at key positions within the flow, typically in the middle of the
avalanche path, where high pressures and high loading rates
can be recorded (see for instance Schaerer and Salway, 1980;
Berthet-Rambaud et al., 2008; Sovilla et al., 2008, 2013 or
Thibert et al., 2015).

However, it must be stressed that such direct measure-
ments, related back calculations, and numerical calculations
of avalanches’ pressure impacts and loading rates still suf-
fer from large uncertainties and lack of information. In ad-
dition, dwellings and buildings are commonly located at the
bottom of avalanche paths, in the so-called avalanche runout
areas, where magnitudes of peak pressures and loading rates
are lower than those recorded in the middle of avalanche
paths, which adds further uncertainty to the analysis. This

means that engineering studies, as with this study, cannot
currently rely on very specific inputs to specify impact pres-
sures and loading rate values. Hence, in most of what fol-
lows, because the RC wall is supposed to be located within
the runout zone of the avalanche, a rough loading rate value
of 0.1 kPa s−1 has been assumed. This leads to load the
RC wall under quasi-static conditions. However, a specific
section (Sect. 5.3.3) is dedicated to assessing the effect of
the avalanche loading rate on the fragility curve derivation.
In many European countries, if a building is located in an
avalanche prone area, civil engineering standards impose that
the wall facing the avalanche flow has to support pressures of
up to 30 kPa.

In order to perform the fragility analysis of an RC wall
impacted by an avalanche, the pressure field should be de-
scribed in time and space. For the sake of simplicity, based
on previous research, it seems reasonable to use the follow-
ing assumptions for the modeling of the avalanche loading.
A uniform spatial distribution of the pressure field (Fig. 1a)
is used. It evolves through time with a triangular shape
(Fig. 1b). One can note that in this paper, the assumption re-
lated to the temporal pressure field description can be easily
changed if one wants to consider different pressure signals.

3 Deterministic SDOF model

3.1 RC wall description

3.1.1 Geometry, loading, and material behavior laws

We consider a simply supported wall with length L= 8 m,
width b = 1 m, and thickness h= 20 cm (Fig. 1a). The RC
wall is simply supported along its two smaller edges and,
thus, the problem can be described in 2-D. It is assumed
that the snow avalanche applies a uniform pressure field p(t)
along the y axis, which evolves through time from t = 0 s
to tend. The maximal pressure pmax is reached at time tend/2
(Fig. 1b). The loading rate is defined as τ = 2pmax

tend
.

The concrete and steel behavior laws are described by
piece-wise linear relationships that describe the evolution of
stress σ as a function of strain ε. The elastic part of the be-
havior laws is described by the Young moduli of steel Es and
concrete Ec.

Under compression regime, the stress σc increases linearly
as a function of the strain εc up to the compressive strength of
the concrete fc, which corresponds to a strain of εcy (Fig. 2a).
Then σc reaches a plateau until the total crushing of the con-
crete under the ultimate compressive strain, where εc = εcu.
In addition, it has been assumed that no tensile stress can de-
velop within the concrete.

For steel, the behavior law is assumed to be elastic per-
fectly plastic (Fig. 2b). Variable fy is defined as the yielding
stress related to the yielding strain εsy with fy = Esεsy and
εsu is the ultimate strain of steel. The reinforcement ratio of
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Figure 1. Simply supported RC wall loaded by a uniform pressure field (a) and time evolution of the applied pressure based on triangular
shape (b). The maximal pressure (pmax) is reached for time t = tend/2 where tend corresponds to the end of the pressure application.

Figure 2. Stress-strain relations for concrete (a) and steel (b).

Figure 3. Cross-section of the RC beam (a), stress (b), and strain (c)
distributions along y axis.

the RC wall, ρr, equals 0.4%. The latter is defined as the
ratio between the steel area, As, and the cross-section area,
A= h × b. Figure 3a depicts a view of the cross section
of the RC wall. Figure 3b–c depict the stress and strain dia-
grams.

3.2 SDOF model

The SDOF model corresponds to a dynamic mass-spring sys-
tem loaded by a force time evolution deduced from the uni-
form pressure field applied to the RC wall (Fig. 4a–b). An

Figure 4. Simply supported beam (a), mass-spring system (b), and
failure mode of the RC wall (c).

equivalent mass Meq is connected to a spring of equivalent
stiffnessKeq (Biggs, 1964). The expressions ofMeq andKeq
are deduced from the geometric features of the RC wall (ge-
ometry and boundary conditions) and from the mechanical
properties of the RC material via bending moment–curvature
relationship (M −χ relationship), respectively. In addition,
no damping has been considered. If the structure collapses,
the failure will occur during the loading phase and thus it is
not necessary to account for the post-peak oscillation regime.

The loading rate (e.g., from 0.1 to 6 kPa s−1) involves
higher characteristic times (e.g., about 1 to 20 s) than the
first natural frequency of the structure with oscillation pe-
riod of 0.2 s. Moreover, the slenderness of the RC wall is
h/L= 1/40. Thus, it is possible to assume that the failure
mode occurs due to the excessive bending moment at the
midspan (Fig. 4c).
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3.2.1 Elasto-plastic response

The characteristic load–displacement curve (P − v0) of the
RC wall is derived from the moment–curvature relationship
(Fig. 5a) deduced at the cross-section scale (cf. Sect. 3.2.2).
The bending moment (My) corresponds to the beginning of
either steel yielding or concrete crushing depending on the
reinforcement ratio. The ultimate bending moment (Mu) cor-
responds to the achievement of the ultimate strain value by
either concrete or steel. The related curvature to My and Mu
is χy and χu, respectively.

The P − v0 curve represents the elasto-plastic behavior
of the SDOF model (Fig. 5b). The first part of the load–
displacement bilinear curve represents the elastic response
while the second part represents the plastic response of the
RC wall. Forces are expressed as Py =

8My
L

and Pu =
8Mu
L

,
which can be transformed into a uniform pressure as p =
P/(bL) (Fig. 4a). Then, the expression of the midspan dis-
placement corresponding to the transition from elastic to
plastic is

vy =
5PyL

3

384K
, (1)

where K = My
χy

is the bending stiffness of the RC wall. The
ultimate midspan displacement is deduced from

vu = vy+
1
4
(χu−χy)L lp, (2)

where lp is the plastic hinge length (Fig. 4c), which can be
estimated by the relation lp = d + 0.05L (Mattock, 1967),
where d is the effective depth of the cross-section (Fig. 3a).
Finally, the load–displacement curve (Fig. 5b) has two stiff-
nesses, which are defined as

Kel =
Py

vy
, (3)

Kpl =
Pu−Py

vu− vy
. (4)

3.2.2 Moment–curvature relationship

The curvature is defined as χ = ∂2vo
∂x2 , where vo is the midspan

displacement. The curvature is obtained assuming that the
strain distribution along the y axis follows classical Euler–
Bernoulli assumptions, meaning that the sections remain
plane and orthogonal to the neutral axis during the loading
of the RC wall (Fig. 3b). Thus, the curvature can be calcu-
lated as

χ =
εc(y =−

h
2 )

xy
=
εs(y = d −

h
2 )

d − xy
, (5)

where xy is the neutral axis depth. The value of xy is de-
duced from the translational mechanical balance along y of
the cross-section, which can be expressed by

b

xy∫
0

σcdy = σsAs + b

h∫
xy

σcdy. (6)

The moment–curvature relationship is constructed step by
step by calculating the position of the neutral axis for a given
strain distribution, i.e., a given curvature χ , which fulfills the
condition of Eq. (6). Next, the bending moment is calculated
from

M(χ)= b

xy∫
0

σc(d − y)dy. (7)

At the end of the process, My, Mu, χy, and χu are identified
on theM−χ curve and used to derive the load–displacement
curve of the SDOF model.

3.2.3 Equations of motion

From Newton’s second law, the dynamic mechanical balance
of the SDOF produces the following ordinary differential
equations. For the elastic phase, where 0< vo ≤ vy:

Mel v̈o(t)+Kelvo(t)= P(t), (8)

and, for the plastic phase, where vy < vo < vu,

Mpl v̈o(t)+Kplvo(t)+ (Kel−Kpl)vy = P(t), (9)

where v̈o = d2vo
dt2 , Mel and Mpl are elastic and plastic equiv-

alent masses, respectively, which are calculated as Mel =

KLM
el Mtot and Mpl = KLM

pl Mtot with Mtot the total mass of
the beam, andKLM

el = 0.78 andKLM
pl = 0.66 (Biggs, 1964),

P(t) is the time evolution of the external force deduced from
the uniform pressure p(t) applied to the RC wall. In order to
solve Eqs. (8) and (9) over time, the usual Newmark’s algo-
rithm techniques were used (Newmark, 1959).

If needed, non-uniform spatial distributions of the pres-
sure field can be described by the SDOF model (Biggs,
1964). In that case, the pressure (p(x, t)) depends on the
time (t) but also on the position (x) onto the RC wall. It is
assumed that the spatial distribution of the pressure field re-
mains the same during the entire simulation. Only its mag-
nitude evolves. The transformation factors are established
from KL =

∫
L
p(x)φ(x)dx and KM =

∫
L
mφ2(x)dx, where

KLM =KM/KL, m is the mass of the beam per unit length
and φ(x) describes the qualitative shape of the structure
taken to be the same than the one resulting from the static
loading application under the external load p(x).
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Figure 5. Bending moment–curvature relation (a) and load–displacement relation of the SDOF model (b).

Figure 6. Cross section discretization of the beam multi fiber finite
element. The diameter sizes of the steel reinforcements are know-
ingly exaggerated.

3.3 Validation

3.3.1 Finite element analysis

To validate the SDOF model, a finite element simulation of
the RC wall response to an avalanche load was undertaken
using the computation software Cast3M (Millard, 1993). The
analysis was carried out in 2-D and the RC wall is assumed
to behave as a simply supported beam. Multi-fiber beam fi-
nite elements were used. The formulation of these finite ele-
ments is based on classical assumptions of Euler–Bernoulli.
Concrete and steel were distributed over the cross section of
the beam via fibers (Fig. 6), where the uniaxial response of
both materials are described along the longitudinal x axis.
The same behavior laws (Fig. 2) have been used within the
finite element analysis. A total of 100 finite elements were
placed along the x axis and 7 along the y axis. A perfect ad-
hesion between concrete and steel was assumed. A uniform
pressure was applied along y axis over the total length L of
the beam.

3.3.2 Limit analysis (yield line theory)

Under quasi-static loading conditions, the ultimate resistance
of RC slabs under uniformly distributed pressure can be
derived from classical yield line theory (Johansen, 1962),
which also provides the collapse mechanism of the RC wall.
Under external loading, macro-cracks will develop to form
a pattern of yield lines until a mechanism is formed and to-
tal collapse takes place. A yield line corresponds to a nearly

straight line along which a plastic hinge develops, where the
bending moment becomes constant and equals the plastic
bending moment. The ultimate pressure is deduced from the
energy balance between external and internal energies. The
external energy coming from the loading and the internal en-
ergy is due to energy dissipation within the yield lines.

For a simply supported one-way slab, the only collapse
mechanism that can arise is depicted in Fig. 4c. Under uni-
form pressure, a single yield line would develop at the mid
span and thus, for a given arbitrary midspan rotation θ , the
internal work, calculated as 2θMp, equals the external work,

calculated as 2
∫ L

2
0 θ x qdx = θ qL

2

4 . Finally, it leads to the ul-

timate pressure qYLT =
8Mp
L2 , whereMp is the plastic bending

moment of the RC wall. The value of Mp can be obtained
by (Favre et al., 1990)

Mp = As fy 0.9d, (10)

which leads to Mp = 57.6 kN m and finally qYLT =

7.2 kN m−2.

3.3.3 Results comparison

Table 1 summarizes the inputs of the FEA and the SDOF
models. Table 2 gives a comparison of ultimate displacement,
ultimate pressure, and computation time. With the same com-
puter, a computation time of 5 min is needed for the FEA
whereas the SDOF model runs and finishes calculations in
nearly 10 s. Limit analysis is time efficient but only provides
the ultimate pressure.

Results demonstrated that both models are in very good
agreement under either quasi-static (Fig. 7a) or dynamic con-
ditions (Fig. 7b). In the first case, the elastic regime is accu-
rately described by the SDOF model. The ultimate pressure is
also well-reproduced, even if a slight underestimation can be
noted due to the estimation of the ultimate bending moment
(Mp) from the approach of (Favre et al., 1990). Moreover, a
slight difference can be noticed concerning the ultimate dis-
placement, which is higher in the case of the FEA. This can
be explained by the formulation of the beam fiber element,

Nat. Hazards Earth Syst. Sci., 18, 2507–2524, 2018 www.nat-hazards-earth-syst-sci.net/18/2507/2018/
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Figure 7. Comparisons of (a) FEA (CASTEM), SDOF models, and ultimate load prediction by yield lines theory in the case of a quasi-static
pushover test; and (b) time evolution of the mid-span displacement (v0) of the RC wall for several loading times ( tend

2 ) (blue: 0.1, cyan: 0.2,
red: 0.3, black: 0.5, magenta: 1, green: 2, yellow: 5 s).

Table 1. Parameter values for models comparison. The following
notations are adopted: Ult. is an abbreviation of ultimate, S signifies
steel, and C signifies concrete.

Parameters Symbol Value

Length L 8 m
Width b 1 m
Thickness h 20 cm
Concrete cover eexc 4 cm
Mass density (S) ρs 7500 kg m−3

Mass density (C) ρc 2500 kg m−3

Young modulus (S) Es 200 GPa
Young modulus (C) Ec 30 GPa
Poisson ratio (S) νc 0.3
Poisson ratio (C) νc 0.2
Ult. tensile strain (S) εsu 0.01
Ult. compressive strain (C) εcu −0.0035
Ult. compressive strength (C) fc 30 MPa
Reinforcement ratio ρr 0.4%
Yield strength (S) fy 500 MPa

where the tangent stiffness matrix approaches zero when the
structure is close to the collapse. Within a reliability context,
those observations ensure the SDOF model is able to provide
conservative and hence safe results for the ultimate state pre-
diction of the RC wall. Under dynamic loading conditions,
the FEA and the SDOF models develop a very similar re-
sponse over time (Fig. 7b) for a width range of loading times.

4 Fragility assessment

4.1 Failure probability definition

The quantification of failure probability is carried out
through the reliability analysis of the physical model
(Lemaire, 2005). Thus, the deterministic model (i.e., physical
model) is combined with the probabilistic description of the
model inputs and with an ad hoc reliability method used to
compute the failure probability of the structure. The assess-
ment of the random response of the system is expressed by
the probability density function fR(r), where R is the struc-
ture resistance. The related cumulative distribution function
is obtained by integration and gives the failure probability for
a given solicitation s which is, in this case, the maximal pres-
sure applied to the wall over time. The failure probability is
expressed as

Pf (s)= P(R ≤ s)=

s∫
−∞

fR(r)dr, (11)

where the capacity r of the RC wall is defined by its ulti-
mate state which is directly related to the ultimate displace-
ment. Thus, the failure criteria is defined as g = vu− vmax,
where vmax is the maximal displacement of the RC wall
through time, i.e., vmax =max(v0(t)). The case where g ≤ 0
corresponds to the RC wall collapse. The fragility curve
is obtained by calculating the cumulative distribution func-
tion curve defined as FR(s)= P(R ≤ s). In the follow-
ing, the probability distributions of the physical model in-
puts (i.e., geometry and material properties) are presented
and, then, the reliability numerical methods used to derive
fragility curves are shown.

www.nat-hazards-earth-syst-sci.net/18/2507/2018/ Nat. Hazards Earth Syst. Sci., 18, 2507–2524, 2018
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Table 2. Ultimate displacement, ultimate pressure and computation time provided by the three approaches considering quasi-static pushover
test.

Models Ult. pressure Ult. displacement Comp. time

SDOF 7.57 kPa 20.15 cm ∼ 10 s
FEA 7.56 kPa 21.32 cm ∼ 5 min
Limit Analysis 7.2 kPa – ∼ 0.2 s

4.2 Inputs probability distributions

Two classes of inputs are considered random variables,
i.e., geometrical (L, b and h) and strength-related (fc, fy
and ρr) variables. In addition, several sets of input variable
distributions are used, depending on (i) the values of the
coefficients of variation (from 0, the deterministic case, to
0.18); (ii) the choice of the probability distributions expres-
sion; and (iii) independent or dependent distributions. These
are summed up in Table 3.

4.2.1 Independent probability distribution function
distributions

To describe geometrical uncertainties, normal distributions
are largely assumed (Lu et al., 1994; Val et al., 1997; Low
and Hao, 2002; Kassem et al., 2013). The coefficient of vari-
ation (COV) is usually taken from a range of 0.01 to 0.05.
Three sets (1, 2, 3 of Table 3) of COV are tested using nor-
mal distributions.

Regarding both compressive and tensile strength param-
eters, in a first approximation, normal distributions with a
COV of 0.05 are considered (set a). Second, more realistic
COV are used (set b). For the compressive strength of con-
crete fc the normal distribution is the usual choice (Mirza
et al., 1979; Val et al., 1997; Low and Hao, 2001, 2002) and
a COV ranging from 0.11 to 0.18 is generally used. Here
a COV of 0.18 is used (set b). Finally, for the tensile steel
parameter fy, normal, log-normal, or beta distributions are
often proposed (MacGregor et al., 1983) and the COV varies
from 0.08 to 0.11 (Val et al., 1997). In the paper, a normal
distribution is adopted and the COV equals 0.08 (set b).

No data is available regarding the reinforcement ratio’s
COV. As ρr is defined from geometrical parameters, a nor-
mal probability distribution function (PDF) is assumed and
the COV is assumed to be equal to 0.05, 0.03 and 0, for sets
α, β, and γ , respectively.

4.2.2 Strength parameters advanced expression

The JCSS (Joint Committee on Structural Safety, JCSS,
2001) proposed more realistic distribution descriptions by
accounting for their potential dependencies (cf. set J, Ta-
ble 3). The distribution of fc is deduced from the basic con-

20 30 40 50 60 70
fc (MPa)

0.0

0.1

0.2

Pr
ob

ab
ili

ty
 d

en
si

ty

(a) Normal, COV = 0.05
Normal, COV = 0.18
Histogram, JCSS

300 400 500 600 700 800 900
fy (MPa)

0.000

0.005

0.010

0.015
Pr

ob
ab

ili
ty

 d
en

si
ty

(b) COV = 0.05
COV = 0.18
JCSS

Figure 8. Statistical distributions of (a) the concrete compressive
strength fc and (b) the normally distributed steel yield strength fy
according to Table 3.

crete compression strength fc28 distribution. For a ready-
mixed type of concrete with a C25 concrete grade, it yields:

fc28 = exp

(
m+ tv s

(
1+

1
n

)0.5
)
, (12)

where the values of the parameters m,v, s,n are: m= 3.65,
v = 3.0, s = 0.12, n= 10 and, tv is a random variable from
a Student distribution with v degrees of freedom. Then, fc is
calculated as follows:

fc = αcf
λ
c28Y1, (13)

where λ is assumed to be equal to 0.96 and accounts for the
systematic variation of in situ compressive strength and the
strength from standard tests, αc equals 0.92, and Y1 is a log-
normal variable representing additional variations due to the
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Table 3. Marginal distributions of input parameters. “determ.” means deterministic, which corresponds to a coefficient of variation (COV)
equal to zero. In the case of independent variables, normal distributions are used (∗ mean of fy is 560 MPa for set J).

Inputs Mean Coefficient of variation

set 1 set 2 set 3
L 8 m 0.05 0.03 determ.
b 4 m 0.05 0.03 determ.
h 20 cm 0.05 0.03 determ.

set α set β set γ
ρr 0.4% 0.05 0.03 determ.

set a set b set c set J
fc 30 MPa 0.05 0.18 determ. cf. Sec. 4.2.2
fy 500 MPa 0.05 0.08 determ. cf. Sec. 4.2.2*

special placing, curing, and hardening of the concrete with a
mean of 1 and coefficient of variation 0.06.

For the yield strength of steel (fy) based on JCSS assump-
tions, a normal distribution can be adopted with a mean of
560 MPa and a COV= 0.054 (set J, Table 3). Figure 8a–b
depicts the strength parameter distributions used in this pa-
per and highlights the observed differences related to the fy
probability density function definitions.

4.3 Reliability methods for fragility curves derivation

Four reliability methods are used, two non-parametric ones
and two parametric ones. Non-parametric approaches con-
sist of a direct estimate derived from the fragility curve with
no assumptions regarding the output function. Parametric ap-
proaches assume the shape of the output probability density
function via functional relationships and estimates of their
constitutive parameters. The four considered methods are as
follows.

1. A direct Monte Carlo (MC) approximation of the cumu-
lative distribution function to build the empirical cumu-
lative distribution function (ECDF).

2. A Gaussian kernel smoothing approximation using the
Monte Carlo samples (MCKS).

3. A method based on parametric distribution definitions
of the CDF, with parameters deduced following a Tay-
lor expansion of the first two statistical moments of the
resistance (TECDF).

4. Fitting a parametric distribution to the Monte Carlo
samples via the maximum likelihood estimation method
(MLECDF).

The extensive reliability methods library of the Open-
TURNS software, which is dedicated to the treatment of un-
certainty, risk, and statistics, was used to build the fragility
curves from these four methods (Baudin et al., 2017). A brief
description of these four methods is provided as supplemen-
tary material.

4.3.1 Empirical CDF via direct Monte Carlo
simulations (ECDF)

Fragility curves can be assessed by using the output samples
of direct Monte Carlo simulations such as

P̂f (pu)=
1
n

n∑
i=1

I
(
p(i)u ≤ pu

)
, (14)

where p is the external pressure applied to the RC wall,
p
(i)
u corresponds to the ultimate pressure of the ith simulated

RC wall, and n is the number of simulations. The indicator
function I (pu ≥ p

(i)
u ) equals 1 if the structure collapses and

0 otherwise. Because of computation time limitations, the re-
sulting ECDF is often a rough but robust approximation. An-
other limitation is that the ECDF is non differentiable and
non-strictly monotonous.

4.3.2 Gaussian kernel smoothing (MCKS)

Direct MC simulations of input variables can provide a dis-
crete PDF of the model’s output. However, the resulting
curve is a piecewise linear function. The Gaussian kernel
smoothing method allows the output PDF to be estimated
considering a normal, i.e., Gaussian, kernel function K such
as

f̂pu(pu)=
1
nhK

n∑
i=1

K

(
pu−p

(i)
u

hK

)
, (15)

where p(i)u is the ith component of the output sample of ulti-
mate pressure of size n and the kernel function is expressed
as

K(x)=
1
√

2π
e−

1
2 x

2
, (16)

and hK is the optimal bandwidth which is evaluated us-
ing the Silverman rule (Wand and Jones, 1995). In contrast
to crude MC approaches, smoothing methods allow strictly
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monotonous and bijective curves to be obtained. An estimate
of the fragility curve can be expressed by integrating out the
Eq. (15), which gives the following expression:

P̂f (pu)=

pu∫
−∞

f̂pu(q)dq. (17)

4.3.3 Taylor expansion using log-normal and normal
CDF (TECDF)

Hereafter, M refers to the physical model function that links
the vector of inputs x to the vector of outputs pu. Mean and
variance of the output vector of M can be calculated directly
from MC simulations but this can be time consuming. Taylor
expansion (TE) allows faster estimating of the output mo-
ments of the model. The moment approximations assume
that the mean of the output µpu can be well-estimated by
developing the Taylor expansion around the input mean µx .
The estimators of the mean µ̂pu and the variance σ̂ 2

pu
of the

output pu are quantified by the following expressions:

µ̂pu =M(µx), (18)

σ̂ 2
pu
=

m∑
i,k=1

∂M

∂xi
(µx)

∂M

∂xk
(µx)Cik, (19)

where m is the number of input variables, µx is the mean
of the input vector x and Cik is the ik component of the
variance–covariance matrix of x. The non-linearity of the de-
terministic model should not be too strong in order to ensure
a satisfactory approximation of the partial derivatives of the
model and, hence, of the results µ̂pu and σ̂ 2

pu
provided by this

method. If no covariances are considered (Cik = 0 if i 6= k
and Cii = σ 2

x ), Eq. (19) can be rewritten more simply as

σ̂ 2
pu
=

m∑
i=1

(
∂M

∂xi
(µx)

)2

Cii . (20)

If a functional shape of the fragility curve is postulated,
e.g., normal or log-normal CDF, the parameters can be de-
duced from the first (µ̂pu ) and second (σ̂pu ) centered statis-
tical moment approximations based on TE as in Eqs. (18)
and (19). Assuming a normal CDF FN produces the follow-
ing expression:

P̂f (pu)= FN(pu|µ̂pu , σ̂pu)= φ

(
pu− µ̂pu

σ̂pu

)
, (21)

where φ(x)=
∫ x
−∞

1
√

2π
e
−u2

2 du is the CDF of the standard
normal distribution. For an assumed log-normal CDF, the es-
timators (µ̂LN, σ̂LN) are deduced from the following relation-

ships:

µ̂LN = log

 µ̂2
pu√

σ̂ 2
pu
+ µ̂2

pu


and σ̂LN =

√√√√log

(
σ̂ 2
pu

µ̂2
pu

)
+ 1. (22)

A random variable has a log-normal CDF distribution (µ̂LN
and σ̂LN) if the logarithm of the variable follows a normal dis-
tribution with mean µ̂LN and standard deviation σ̂LN. Then,
the fragility curve can be estimated by the log-normal CDF
FLN:

P̂f (pu)= FLN(pu|µ̂LN, σ̂LN)= φ

(
log(pu)− µ̂LN

σ̂LN

)
. (23)

4.3.4 Maximum likelihood estimation using log-normal
and normal CDF (MLECDF)

From the MC sampling, the output CDF can also be fitted as-
suming the functional shape of the fragility curve. The maxi-
mum likelihood estimation (MLE) allows estimators µ̂jMLE

and σ̂MLE
j to be calculated for the normal or the log-normal

CDF, such as µ̂jMLE and σ̂MLE
j aimed at maximizing the

probability of having obtained the sample at hand (Fisher,
1922). Fragility curves are expressed as

P̂f (pu)= Fj (pu|µ̂j
MLE, σ̂MLE

j ), (24)

where µ̂jMLE and σ̂MLE
j are the mean and variance maxi-

mum likelihood estimators, respectively, and j equals N and
LN in the case of a normal and log-normal CDF considera-
tion, respectively.

5 Results

This section is divided in three sub-sections: Sect. 5.1 shows
a comparison study, which provides the pros and cons of
choosing one reliability method for fragility curve derivation
over another, Sect. 5.2 shows how the fragility curves behave
depending on the inputs statistical distribution considered,
and Sect. 5.3 shows how fragility curves change depending
on the values of the mean chosen for the inputs statistical
distribution and depending on the loading rate values.

5.1 Reliability methods comparisons

The comparison between each method, presented in Sect. 4,
is carried out choosing one set of input distributions, namely
set (1.α.a) where all COVs are fixed to 0.05. For the relia-
bility methods using MC simulations (i.e., ECDF, MLECDF
and MCKS), the number of simulations is set to 30, 300, and
1000, respectively. The ECDF method is the most robust and
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Figure 9. Reliability method comparisons between empirical cumu-
lative distribution functions (ECDF) with set (1,α, a) sample of size
1000 and (a) empirical cumulative distribution functions with sam-
ples of sizes 30 and 300; (b) Gaussian kernel smoothing (MCKS)
cumulative distributions functions with samples of sizes 30 and 300;
(c) maximum likelihood estimation cumulative distribution function
(MLECDF) fitting of normal (N-MLE) and log-normal (LN-MLE)
distributions with samples of sizes 30 and 300; (d) Taylor expan-
sion of the first two centered statistical moments estimates to build
normal (N-TE) and log-normal (LN-TE) cumulative distributions
functions.

its accuracy increases with the MC sample size (Fig. 9a).
Thus, the reference fragility curve is the one derived from
the 1000 simulations ECDF sample.

We defined the fragility range as the interval between the
2.5 % and 97.5 % quantile of the limit pressure CDF, i.e., the
pressure range in which the fragility increases from ≈ 0 to
≈ 1. Depending on the fragility range width, a relatively high
number of simulations may be needed in order to obtain
smooth fragility curves. Since the MCKS method, by def-
inition, smooths the CDF curve approximation, fewer sim-
ulations are required than with ECDF method in order to
obtain such smooth curves (Fig. 9b). The same conclusion
can be drawn in the case of MLECDF method, which, by
definition, always leads to smooth curves. In Fig. 9c, a sig-
nificant effect of the assumed output CDF can be seen at
low simulation numbers, i.e., for a 30-sample data set. The
fragility curves provided by normal and log-normal fitting
are far from the fragility curves given by the 1000-sample
ECDF method. This effect disappears when 300 simulations
are performed (Fig. 9c).

In the case of the TECDF method, the approximation of
the first statistical moments and the second centered statis-
tical moments combined with normal or log-normal CDF
needs only 15 simulations at the first order of the Taylor
expansion. One simulation allows the mean to be estimated
at the first order and 14 simulations allow the variance to
be estimated at the first order. The second order mean esti-
mate needs 113 simulations. For the TECDF method, the ap-
proximation of the fragility curve exhibits slight differences
compared to the ECDF fragility curve regardless of the as-
sumed output CDF (Fig. 9d). This method is based on the
assumption that a good estimator of the output mean of the
model can be calculated from the mean of input variables.
Observed differences can be due to the non-linearity of the
SDOF model. Nevertheless, if non-linearities of the deter-
ministic model are not too significant, few simulations are
needed which allows fragility curves to be derived quickly.

The efficiency and drawbacks of each method are summed
up in the scheme of Fig. 10. All in all, the kernel smoothing
method appears to be a good compromise. It allows possible
non-linearities of the deterministic model to be taken into
account and smooth curves to be obtained without too many
MC simulations and without any assumption of the shape of
the fragility curve. Therefore, it is used for all further sensi-
tivity and parametric studies.

5.2 Fragility curve sensitivity to inputs distributions

5.2.1 Input PDF effect

Independent input PDFs give similar fragility curves when
they are centered around the same mean input values
(Fig. 11a). For the three independent cases, the 50 % quan-
tile is similar and the fragility range varies slightly (Table 4).
The greater the COV values, the greater the spread of the
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Figure 10. Advantages and drawbacks of each method to derive fragility curves.
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Figure 11. Statistical distributions effects on fragility curves (built
with 300 data using the Gaussian Kernel Smoothing method) con-
sidering (a) different types of statistical inputs distributions, i.e.,
sets (1,α, a), (1,α, b), (2,β, b), and (2,β, J) of Table 3, (b) different
number of input parameters, i.e., fully deterministic with set (3,γ,
c), mixed deterministic-statistical with sets (1,α,a) and (3,α,a), and
fully statistical with set (1,α,a) of Table 3.

fragility curve, a quite intuitive result. Neither the 50 % quan-
tile, nor the fragility range are similar to the latter set (2.β.J)
for which, for a given pressure, the failure probability is esti-
mated to be significantly lower.

Table 4. The 2.5,%, 50 %, and 97.5 % quantiles (in kPa) of the
fragility curve according to the input PDF reference set.

Input PDF set 2.5 % 50 % 97.5 %

set (1.α.a) 5.4 7.5 10.8
set (1.α.b) 5.0 7.4 10.2
set (2.β.b) 5.8 7.4 9.4
set (2.β.J) 6.5 8.9 13.0

set (3.α.a) 6.3 7.5 8.6
set (3.γ .a) 6.7 7.5 8.3
set (3.γ .c) (–) 7.5 (–)

5.2.2 Number and class of random variables

Four combinations are considered to investigate the effect of
the number and the class of random variables, i.e., (i) the
deterministic case, set (3.γ .c), which is taken as the refer-
ence fragility curve; (ii) only geometrical inputs are assumed
to be deterministic with set (3.α.a); (iii) only the material
strength parameters are described as random variables with
set (3.γ .a); and finally, (iv) all the input variables are con-
sidered as random variables with set (1.α.a). Results are pre-
sented in Fig. 11b. The number of random input parameters
controls the spread of the fragility curve (Table 4). If the ge-
ometrical uncertainties are not considered, the fragility range
drops from [5.4–10.8] to [6.3–8.6] kPa. Assuming a deter-
ministic reinforcement ratio, the fragility range drops from
[6.3–8.6] to [6.7–8.3] kPa. The more random input variables
that are considered, the wider the fragility range is. Finally,
one can notice the asymmetry of the fragility range even if
input distributions are symmetric (e.g., normal distributions),
which represents the non-linear nature of the problem.
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Figure 12. Effects on fragility curves (built with 300 data using the
Gaussian Kernel Smoothing method) of the mean values of (a) the
length of the RC wall, i.e., 4, 8 and 16 m; and (b) the reinforcement
ratio, i.e., 0.3 %, 0.4 %, 0.5 %, and 1.8 %.

5.3 Effect of physical parameters

5.3.1 Length effect

The ultimate pressure value (pu) is significantly influenced
by the mean length of the RC wall (Fig. 12a). The longer the
RC wall, the lower the ultimate pressure (Pu =

8Mu
L

). If the
fragility range scope is normalized by the 50 % quantile, such
as, for instance (Q97.5 %−Q2.5 %)/Q50 %, it leads to 0.68,
0.72, and 0.72 for 16, 8, and 4 m, respectively (Table 5).

5.3.2 Reinforcement ratio

The influence of the reinforcement ratio is explored for sev-
eral typical values. The lower the reinforcement ratio, the
lower the ultimate pressure (Fig. 12b). The values of the
50% quantile are presented in Table 5.

As the reinforcement ratio plays an important role in the
failure mode of the structure, a high density reinforcement
ratio is tested, such as ρr = 1.8%. For a low reinforcement
ratio, e.g., < 1%, the failure of the RC wall occurs when
the ultimate strain within steel is reached. On the contrary,
for a high reinforcement ratio, the concrete reaches its ul-
timate strain first. This aspect is implicitly taken into ac-
count by the bending moment–curvature relationship. Nev-
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Figure 13. Effects on fragility curves of the avalanche loading rate.
Fragility curves have been computed using the ECDF reliability
method.

ertheless, for highly reinforced RC walls, the failure mode
can change depending on the magnitude of traversal shear-
ing forces, i.e., along the y axis, and thus a bending failure
mode may be questionable when the length of the RC wall
becomes small.

5.3.3 Avalanche loading rate

Depending on the RC wall mechanical properties and on the
avalanche loading time evolution, inertial effects can develop
and modify the structural response through time. In order to
assess the effect of the avalanche loading rate (τ ), three val-
ues were tested: 3, 6, and 9 kPa s−1. Resulting fragility curves
are depicted in Fig. 13 and compared to the quasi-static case
investigated so far (lower loading rate). For higher loading
rates, inertial effects appear and lead to an increase of the
apparent structural strength. The fragility curve is shifted to
the right with the increase of the loading rate, which sug-
gests that under dynamic loading conditions the structure is
safer (i.e., able to support higher peak pressures). However,
it must be kept in mind that the considered time evolution
of the pressure is triangular (Fig. 1b). Thus, for high loading
rates, the duration of the applied pressure becomes shorter.
With longer loading durations, for instance using a trape-
zoidal pressure signal through time, the fragility curves can
be affected in a different way. Thus, the increase of resis-
tance of the structure with the loading rates, which is herein
showed, can not be generalized. One of the advantages of
the proposed SDOF model is that any kind of pressure time
evolutions can be applied onto the structure and thus the ef-
fect of the pressure signal on fragility curves can be easily
investigated.

6 Comparison to existing curves

Very few snow avalanche fragility and vulnerability curves
have been reported in the literature. However, to put our re-
sults in a broader perspective, the herein obtained fragility
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Table 5. The 2.5 %, 50 %, 97.5 % quantiles (in kPa), and the fragility range ratio (Q97.5 %−Q2.5 %)/Q50 % of the fragility curves according
to the length and reinforcement ratio.

RC wall length (L) Q2.5 % Q50 % Q97.5 % (Q97.5 %−Q2.5 %)/Q50 %

4 m 20.2 29.3 41.4 0.68
8 m 5.4 7.5 10.8 0.72
16 m 1.3 1.9 2.6 0.72

Reinforcement Ratio (ρr)

0.3% 3.9 5.5 7.9 0.72
0.4% 5.3 7.4 10.8 0.74
0.5% 6.4 9.3 13.2 0.73
1.8% 20.2 27.8 38.8 0.64

curves were plotted against existing curves. First, the numer-
ical fragility curves proposed by (Favier et al., 2014) were
considered (Fig. 14a). The expert judgmental fragility curves
proposed by (Wilhelm, 1998) and, finally, the vulnerability
curves proposed by (Keylock et al., 1999) and (Barbolini
et al., 2004) were subsequently considered (Fig. 14b–c).

Based on classical engineering approaches, (Favier et al.,
2014) obtained ultimate pressures related to four typical limit
states of an RC structure. The limit state “Elast” is related to
the reach of the elastic limit within the RC wall. Limit state
“ULS” and “ALS” is based on the classical definition of the
ultimate and accidental limit state given in Eurocode 2, re-
spectively, which allows the ultimate pressure to be calcu-
lated, considering safety coefficients related to strength pa-
rameters of the RC wall. The last limit state allows the col-
lapse pressure deduced from the classical yield line theory
(“YLT”) to be obtained. Several boundary conditions were
investigated (i.e., clamped edges, simply supported edges,
free edges, and a combination of all three). The compari-
son with our results is presented in Fig. 14a. The same input
PDFs have been considered in both studies, where the COVs
are equal to 0.05 for all random variables (cf. set (1.α.a)).
The fragility curve obtained in this work shows that the struc-
ture collapses for lower pressure values than those found in
(Favier et al., 2014). This difference is mainly due to the dis-
crepancy of boundary conditions between the RC walls con-
sidered within both approaches. Indeed, a one-way slab con-
figuration leads to a lower structural capacity than those con-
sidered by (Favier et al., 2014), which were mostly two-way
RC slabs.

(Wilhelm, 1998) built fragility curves for reinforced con-
crete structures according to expert information. This was
done by associating three and four pressures with three and
four typical damage thresholds, respectively, i.e., a lower
damage threshold, a general damage threshold and a specific
demolition limit (additionally, a specific destruction limit).
The resulting curves are plotted in Fig. 14b, i.e., curves “Con-
crete with reinforcement – 1” and “Reinforced” and curves
“Concrete with reinforcement – 2”, respectively. Compared
to these, the herein obtained fragility curves is shifted to

the left by approximately 18 to 32 kPa and has a wider dis-
persion. In addition, the shapes of the curves are different.
The curves obtained by (Wilhelm, 1998) are piecewise lin-
ear functions whereas the herein obtained fragility curve is a
smooth differentiable function.

(Keylock et al., 1999) and (Barbolini et al., 2004) proposed
empirical fragility curves constructed using a method derived
from the seismic engineering field and least squares regres-
sion. This allowed linking snow avalanche damage data from
Iceland and Austria, respectively, to the specific loss. Com-
pared to these, as for (Wilhelm, 1998)’s curves, our fragility
curve is shifted to the left, less dispersed, and has a smoother
shape.

Many points can explain the differences in shapes and val-
ues between all these curves. Indeed, even if some similarity
is expected, all curves, especially those representing the fail-
ure probability on the one hand and the sensitivity of damage
as function of avalanche pressure on the other, do not nec-
essarily have to follow the same trends. Specifically, several
factors can explain the differences we highlighted.

First, the failure probability gives the probability that the
structure exceeds the ultimate damage state, whereas the sen-
sitivity of damage gives a deterministic value of damage ra-
tio, which is rather different. For instance, it can be assumed
that the expert in (Wilhelm, 1998) has chosen, for safety rea-
sons, pressure thresholds from the tail of the pressure dis-
tribution, which could explain the shift with regards to our
results. Second, numerical fragility or vulnerability curves
result from the uncertainty and variability assumptions made
by those performing the measurements (e.g., for materials,
geometries), whereas empirical curves sum-up the uncer-
tainty and variability resulting from the available field data
(e.g., variability of damages among one given damage state
category of a building, epistemic uncertainties, variabilities
among damaged buildings in the avalanche signal for a given
avalanche, or from one avalanche to another), and these do
not necessarily correspond. Third, even if all the considered
(real or numerical) buildings fall in the “reinforced concrete”
typology, their technologies of construction may have been
quite different. For instance, little information is provided by
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Figure 14. Comparison of the article fragility curve to (a) the numerical fragility curves from (Favier et al., 2014), (b) the expert judgmental
fragility curves of (Wilhelm, 1998), and (c) the vulnerability curves of (Barbolini et al., 2004) and (Keylock et al., 1999). The exact meaning
of each curve is provided in text.

(Wilhelm, 1998), which may imply that the materials and the
geometries considered were in fact rather different than oth-
ers such as (Barbolini et al., 2004).

7 Conclusions

This paper presents the derivation of fragility curves for a
reinforced concrete wall loaded by a dynamic pressure field
due to a snow avalanche. Methods from the reliability frame-
work have been implemented and combined with a simplified
SDOF model, which is light and efficient. A one-way simply
supported RC wall has been considered and a deterministic
model based on an equivalent mass-spring system has been
used to represent its mechanical behavior up to the rupture
when subjected to a uniform pressure field. The ability of
the SDOF model to predict the RC wall mechanical response
has been validated based on comparisons with FEA and limit
analyses. Using a SDOF approach significantly reduces the
computation time needed to perform a single simulation and
allows accounting for the physics involved up to the collapse
of the structure during wall–avalanche interactions. Second,
four reliability methods have been implemented to derive
fragility curves. All methods gave similar results regardless

of the configuration considered, at least for the core of the
distribution. The advantages and drawbacks of each method
have been identified, and the kernel smoothing method was
selected as a reasonable compromise for further parametric
and sensitivity studies. This comprehensive framework could
be valuable for a wide range of reliability-based engineering
applications where structural members are loaded by non-
uniform pressure fields which can evolve through time.

For our specific snow avalanche case study, systematic
fragility curves were derived. The results emphasize that
fragility curves are very sensitive to physical parameters such
as the RC wall’s geometry, its reinforcement ratio or the load-
ing features. In particular, the spread of the fragility range
appeared to be strongly variable. However, as soon as the
fragility range was standardized by its 50 % quantile, the rel-
ative fragility spread remained almost the same. These results
supplement the few fragility and vulnerability curves already
available in snow avalanche engineering literature. They will
be of great value for future works that seek to refine formal
risk evaluation in avalanche prone areas.

According to the scarce available measurement data, it was
assumed that the response of the structure was quasi-static.
The SDOF model formulation has been made within a dy-
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namic framework. The proposed SDOF model is thus able
to describe the occurrence of potential additional resisting
forces (structural inertia), which are governed by the pres-
sure time evolution. The effect of the latter was explored, un-
derlining the increase of the apparent strength with the load-
ing rate when triangular pressure time evolutions are consid-
ered and high loading rates are imposed onto the RC wall. As
this result cannot be generalized, further research is needed
to explore the influence of various pressure time evolutions
on the fragility curves derivation. Moreover, our approach
can be implemented for other types of structures with dif-
ferent technologies (e.g., other RC structure configurations,
masonry, timber or metallic structures) and/or more sophis-
ticated structure geometries. Finally, extension to other mass
movements hazards such as debris flows, rockfalls or ice
avalanches, for which similar gaps in engineering need to be
filled, may be pursued. It should be kept in mind that for
each hazard, the challenge will be to propose simplified me-
chanical models able to account for the main physics with a
reduced computation time.

As a perspective, the main difficulty concerns the model-
ing of the avalanche pressure, which can vary significantly as
function of meteorological conditions and especially in terms
of pressure magnitude, spatial distribution and typical time of
variation. Pressure magnitude is implicitly taken into account
by the fragility curves but the spatial distribution and pres-
sure variations through time can have a significant influence
on the structure mechanics. The structure’s mechanical fea-
tures are generally better known than the avalanche loading.
Thus, further research, accounting for several typical spatial
distributions and time evolutions of the pressure, might be
of specific interests to highlight the influence of avalanche
loadings on curves, which are used in formal risk evaluation.
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