
Nat. Hazards Earth Syst. Sci., 18, 2331–2343, 2018
https://doi.org/10.5194/nhess-18-2331-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Evaluation of predictive models for post-fire debris flow occurrence
in the western United States
Efthymios I. Nikolopoulos1, Elisa Destro2, Md Abul Ehsan Bhuiyan1, Marco Borga2, and Emmanouil N. Anagnostou1

1Department of Civil and Environmental Engineering, University of Connecticut, Storrs, CT, USA
2Department of Leaf, Environment, Agriculture and Forestry, University of Padova, Legnaro, PD, Italy

Correspondence: Efthymios I. Nikolopoulos (efthymios.nikolopoulos@uconn.edu)

Received: 27 March 2018 – Discussion started: 3 April 2018
Revised: 6 August 2018 – Accepted: 17 August 2018 – Published: 4 September 2018

Abstract. Rainfall-induced debris flows in recently burned
mountainous areas cause significant economic losses and hu-
man casualties. Currently, prediction of post-fire debris flows
is widely based on the use of power-law thresholds and lo-
gistic regression models. While these procedures have served
with certain success in existing operational warning sys-
tems, in this study we investigate the potential to improve
the efficiency of current predictive models with machine-
learning approaches. Specifically, the performance of a pre-
dictive model based on the random forest algorithm is com-
pared with current techniques for the prediction of post-fire
debris flow occurrence in the western United States. The
analysis is based on a database of post-fire debris flows re-
cently published by the United States Geological Survey. Re-
sults show that predictive models based on random forest
exhibit systematic and considerably improved performance
with respect to the other models examined. In addition, the
random-forest-based models demonstrated improvement in
performance with increasing training sample size, indicating
a clear advantage regarding their ability to successfully as-
similate new information. Complexity, in terms of variables
required for developing the predictive models, is deemed im-
portant but the choice of model used is shown to have a
greater impact on the overall performance.

1 Introduction

Wildfires constitute a natural hazard with devastating con-
sequences to the natural and built environment. In addition
to the immediate impact of wildfire events to human lives,
infrastructure and the environment, their adverse effects on

landscape characteristics generate a cascade of hydrogeo-
morphic hazards (Shakesby and Doerr, 2006; Parise and Can-
non, 2012; Diakakis et al., 2017). One of the most frequent
post-fire hazards is debris flow. Debris flows are rapidly flow-
ing, gravity-driven mixtures of sediment and water, com-
monly including gravel and boulders (Iverson, 2005), which
rush down on steep channels and discharge onto debris fans,
posing a significant threat to downstream populations.

Post-fire debris flows (hereinafter DF) are predominantly
derived from channel erosion and incision, usually generated
during heavy precipitation events on burned areas (Cannon
and DeGraff, 2009; Parise and Cannon, 2017). Recent stud-
ies have shown that in fire-affected regions the threat asso-
ciated with debris flows may persist for several years after
the fire incident (DeGraff et al., 2013; Diakakis et al., 2017),
demonstrating the necessity for developing short and long-
term plans for the mitigation of this hazard (DeGraff et al.,
2013).

In the western United States, DF is a well-recognized haz-
ard that has claimed human lives and caused severe damage
to infrastructure over the years (Cannon et al., 2003; Coe
et al., 2003; Cannon and Gartner, 2005; Santi et al., 2008).
The occurrence of the DF hazard in this region is expected
to further intensify due to an expected increase in fire occur-
rence and fire season length, as a result of climate change
(Riley and Loehman, 2016), and the continuous population
growth on the wildland–urban interface (Cannon and De-
Graff, 2009). Therefore, developing effective measures to
reduce the vulnerability of local communities to DF is of
paramount importance.

Early warning is a critical element for the successful mit-
igation of DF hazard. Over the last decade a number of re-
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searchers have worked on developing procedures for predict-
ing DF in the western United States (Cannon et al., 2008;
DeGraff et al., 2013; Staley et al., 2013). In addition, federal
agencies associated with monitoring and forecasting natural
hazards like the United States Geological Survey (USGS),
National Oceanic and Atmospheric Administration (NOAA)
and National Weather Service (NWS) have jointly developed
a debris flow warning system for recently burned areas (Re-
strepo et al., 2008). In their vast majority, the foundations of
these warning procedures lie on empirical relationships that
are used to identify the conditions likely to lead to the oc-
currence of DF. In their simplest form, these relationships
refer to rainfall intensity (or accumulation–)duration thresh-
olds above which DF is likely to occur (Cannon et al., 2008;
Staley et al., 2013). Other procedures involve the applica-
tion of statistical models that incorporate information on land
surface characteristics (e.g., percentage of burned area, local
topographic gradients), in addition to rainfall properties, to
predict the likelihood of a DF occurrence. The most com-
monly used statistical model for DF prediction is the logistic
regression model (Rupert et al., 2008; Cannon et al., 2010).
Updates of these past prediction models were recently sug-
gested by Staley et al. (2017), who proposed a new logistic
regression model that improves current DF prediction proce-
dures in the western United States. Additionally, in a recent
study by Kern et al. (2017), a number of machine-learning
approaches were evaluated for DF prediction. The conclu-
sions based on that study is that advanced statistical model-
ing techniques can offer significant improvement in the per-
formance of current DF prediction models.

Both of the recent works of Staley et al. (2017) and Kern
et al. (2017) suggest that, although models for DF predic-
tion may already exist for specific regions (Cannon et al.,
2010), the importance of improving their accuracy and also
extending prediction beyond the boundaries of these regions
calls for continuous advancements of currently established
procedures. Following this line of thought, this study fo-
cuses on the development of a new DF prediction model
that is based on a nonparametric statistical approach and the
evaluation of its performance against state-of-art approaches
for DF prediction in the western United States. Specifically,
we evaluate the performance of four models that include
(i) rainfall accumulation–duration thresholds (Guzzetti et al.,
2007; Cannon et al., 2011; Rossi et al., 2017; Melillo et al.,
2018), (ii) the logistic regression model suggested by Staley
et al. (2017) and (iii) two models based on the random forest
technique (Breiman, 2001) that are introduced in this study.
In addition to the consistent evaluation of the performance of
each model, this work investigates the relationship between
prediction accuracy with complexity and data requirements
(in terms of both record length and variables required) of
each model. These are important aspects for selecting the
most appropriate method and for providing guidance for data
scarce regions on global scale.

Figure 1. Location of all post-fire debris flow records included in
the USGS database. Note that all events in Utah and Montana were
excluded from the analysis due to their incomplete record of vari-
ables.

2 Study area and data

This study is based on a USGS database that was recently
published (Staley et al., 2016) and includes information on
the hydrologic response of several burned areas in the west-
ern United States (Fig. 1). The database reports the occur-
rence of debris flow (DF) or no-debris flow (noDF), and
rainfall characteristics for 1550 rainfall events in the period
2000–2012 together with field-verified information charac-
terizing the areas affected by wildfires (Table 1). The area of
fire-affected catchments analyzed varied between 0.02 and
7.9 km2. Rainfall data were collected from rain gauges lo-
cated within a maximum distance of 4 km from the docu-
mented response location. Reported rainfall characteristics
included rainfall peak intensities (and accumulations) at 15,
30 and 60 min time intervals, event total accumulation, dura-
tion and average intensity. According to the description of the
data set provided in Staley et al. (2016), the rainfall charac-
teristics (peak intensities, accumulation, etc.) were calculated
using a backwards differencing approach (Kean et al., 2011).
Land surface characteristics of burned areas were recorded
in order to evaluate the influence of the burned area to the
hydrologic response. Information on burn severity was based
on the differenced normalized burn ratio (dNBR) (Key and
Benson, 2006), calculated from near-infrared and shortwave-
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Table 1. A summary of variables reported in the post-fire debris flow database.

Variables Unit of measurement

Hydrological response (DF = 1, noDF= 0)
Storm duration h
Storm accumulation mm
Average storm intensity mm h−1

Peak 15 min rainfall intensity (accumulation) mm h−1 (mm)
Peak 30 min rainfall intensity (accumulation) mm h−1 (mm)
Peak 60 min rainfall intensity (accumulation) mm h−1 (mm)
Contributing area km2

Proportion of upslope area with moderate or high dNBR and slope higher than 23◦ %
Average differenced normalized burn ratio (dNBR)/1000 –
Average KF factor (soil erodibility index) –

infrared observations, which is frequently used for the clas-
sification of burn severity (Miller and Thode, 2007; Kee-
ley, 2009). Severity classification from dNBR was validated
from field observations provided by local burned area emer-
gency response teams. In addition to dNBR, the database in-
cludes information on the proportion of the upslope catch-
ment area that has been classified at high or moderate sever-
ity and with terrain slope higher than 23◦. Finally, since in
burned areas changes in recovery vegetation increase ero-
sion, the average erodibility index (KF factor) derived from
the STATSGO database (Schwartz and Alexander, 1995) is
reported in the database as well. The KF factor provides evi-
dence of erodibility of soil, taking into account the fine-earth
fraction (< 2 mm). For more information on the estimation
procedures of the variables (Table 1), the interested reader is
referred to Staley et al. (2016) and references therein.

The 334 events (∼ 22 %) of hydrologic responses in the
database were identified as debris flows. The location of
events in the data set corresponds predominantly to the area
of southern California (CA), which includes 61 % (60 %) of
all records (DF records). Colorado (CO) corresponds to 20 %
(10 %) of the data (DF) and the rest of the data correspond to
other regions – Arizona (AZ), New Mexico (NM), Utah (UT)
and Montana (MT) – of the western United States (Fig. 1).
Since values for some of the variables (e.g., rainfall duration,
15 min peak intensity) are not reported consistently for all
records, the analysis presented hereinafter is focused only on
the 1091 events with a complete record that involve the areas
of Arizona, California, Colorado and New Mexico.

3 Seasonality and characteristics of rainfall events

Most of the western United States is characterized by dry
summers, when the fire activity is widespread, with a high
percentage (50 %–80 %) of annual precipitation falling dur-
ing October–March. However, there are also regions, such
as Arizona and New Mexico, where heavy rains occur be-
tween July and August as a result of the North American
monsoon (Westerling et al., 2006). More specifically, four

different seasonal rainfall types characterize the southwest-
ern United States (Moody and Martin, 2009): Arizona, Pa-
cific, sub-Pacific and plains types. Arizona is characterized
by dry spring, moist fall and wet winter and summer; Cali-
fornia is mainly characterized by Pacific-type rainfall, with
a maximum in winter and extremely dry summer. The sub-
Pacific type, with a wet winter, moist spring and summer, and
dry fall, characterizes the southern part of the Sierra Nevada
region, a small area in southern California. A climate similar
to Arizona type characterizes southwestern Colorado, while
east Colorado is characterized by plains, where the rainfall
maxima occur in summer. The Arizona type also character-
izes western New Mexico, while the eastern part is charac-
terized as plains.

Examination of the seasonality of the rainfall events ana-
lyzed (Table 2) demonstrates the similarities and differences
attributed to the different climate types described above. The
vast majority (92 %) of rainfall events in Arizona occurred
during the summer months (July and August). Similarly,
the majority of rainfall events in western Colorado occurred
during late summer–early fall months (August and Septem-
ber). California, which is influenced by the Pacific rainfall
regime, is dominated by winter rainfall events, where 82 %
of events occurred between December and January. Season-
ality of rainfall events for New Mexico exhibits a character-
istic dominance of occurrences in summer, with 94 % of the
events occurring in July and the remainder in June.

The North America monsoon is responsible for the sum-
mer rainstorms in these regions that typically last between
June and mid-September, causing strong thunderstorm ac-
tivities in the uplands of Arizona and New Mexico and the
absence of rainy events in southern California (Mock, 1996;
Adams and Comrie, 1997). September is the rainiest month
in Colorado because of midlatitude cyclones coming from
the Gulf of Alaska (Mock, 1996).

Differences in seasonality and large-scale climatic con-
trols essentially correspond to differences in dominant pre-
cipitation type (e.g., convective vs. stratiform) and differ-
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Table 2. Total number and monthly distribution of DF and noDF events analyzed for Arizona, California, Colorado and New Mexico. Values
per month correspond to percentage (%) of the total number of events (DF+ noDF) analyzed per region.

Regions – US states

AZ CA CO NM

Total number of DF (noDF) events 7 (77) 201 (572) 31 (151) 35 (17)

Jan 0 (0) 9.8 (31.7) 0 (0) 0 (0)
Feb 0 (0) 2.7 (7.4) 0 (0) 0 (0)
Mar 0 (0) 0 (1.9) 0 (0) 0 (0)
Apr 0 (0) 0 (0) 0 (0) 0 (0)
May 0 (0) 0 (0) 0 (0) 0 (0)
Jun 0 (0) 0 (0) 1.1 (4.4) 0 (5.8)
Jul 6 (47.6) 0 (0) 1.65 (0.55) 67.3 (26.9)
Aug 2.4 (35.7) 0 (0) 7.14 (16.48) 0 (0)
Sep 0 (8.3) 0 (0) 7.14 (60.44) 0 (0)
Oct 0 (0) 0.8 (0.1) 0 (1.1) 0 (0)
Nov 0 (0) 0.8 (4.4) 0 (0) 0 (0)
Dec 0 (0) 11.9 (28.5) 0 (0) 0 (0)

Figure 2. Box plot for (a) storm duration, (b) storm accumulation and (c) peak 15 min storm accumulation for Arizona (blue), California
(green), Colorado (black) and New Mexico (red). Dark (light) colors correspond to DF and noDF events.

ences in characteristic properties of rainfall events triggering
debris flows (Nikolopoulos et al., 2015). Analysis of the char-
acteristics of the rainfall events revealed clear regional de-
pendences and for certain regions there were also distinct dif-

ferences in the characteristics between DF and noDF events
(Fig. 2).

Rainfall duration for events in Arizona and New Mexico is
significantly lower than events in other regions, with Califor-
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nia being associated with the longest events (10–70 h in most
cases), typical for the winter-type rainfall that is dominant in
this region. The DF-triggering events for Arizona, Colorado
and New Mexico correspond to the shortest events, while the
opposite is shown for California (Fig. 2a). Variability among
regions and within noDF and DF-triggering events also ex-
ists for the magnitude of rainfall events (Fig. 2b, c). With
the exception of events in New Mexico, the other regions
exhibit a distinct separation in the distribution of total rain-
fall accumulation (Fig. 2b) and peak 15 min accumulation
(Fig. 2c) between DF and noDF events. For these regions,
the highest values for both variables are associated with the
DF-triggering events, which justifies the rational for using
these variables for predicting DF occurrence.

In addition to the marginal distribution of the rainfall vari-
ables shown in Fig. 2, the relationship between duration and
magnitude is presented in Fig. 3. California events are dis-
tinctly clustered over the high accumulation–duration area
(Fig. 3a), demonstrating the discussed regional dependence
of rainfall characteristics. The total rainfall accumulation is
strongly correlated with duration for the DF-triggering events
(Pearson’s correlation coefficient 0.7). On the other hand, the
peak 15 min accumulation, which is a proxy for the maxi-
mum intensity of the events, does not correlate well with du-
ration (Pearson’s correlation coefficient −0.2). Overall, it is
apparent from Fig. 3 that there are areas in the accumulation–
duration spectrum where the DF and noDF events are well
mixed, which highlights the challenge of identification be-
tween the two and the need for classification approaches
based on additional parameters.

Findings from the analysis of rainfall seasonality provide
clear indications that there are distinct regional differences in
the triggering rainfall characteristics. This justifies the devel-
opment of regional predictive models as stated in past studies
and raises an important point of consideration for creating a
single multi-region-wide framework for DF prediction. The
issue of regional dependence and how it can be incorporated
into a single model is further discussed in Sect. 4.1.3 below.

4 Methods

4.1 Models for predicting post-fire debris flow
occurrence

This section describes the different models that will be
evaluated for predicting the occurrence of post-fire debris
flow (PFDF). Selection of the different models is based on
criteria of model simplicity, data requirements and relevance
to common practice.

4.1.1 Rainfall thresholds

Rainfall thresholds correspond to one of the simplest and
most widely used approaches for predicting the occurrence of
rainfall-induced mass movements such as shallow landslides

Figure 3. (a) Total rainfall accumulation vs. duration and (b) peak
15 min rainfall accumulation vs. duration for Arizona, California,
Colorado and New Mexico. Colored dots and x symbols correspond
to DF and noDF occurrences, respectively.

and debris flows (Caine, 1980, Guzzetti et al., 2007, Cannon
et al., 2011). Rainfall thresholds are commonly formulated
as power-law relationships that link rainfall magnitude and
duration characteristics, as in the following:

E = αDβ , (1)

where total event rainfall accumulation (E) is related to event
duration (D). The intercept (α) and exponent (β) are param-
eters estimated from the available observations. In this case,
the threshold (hereinafter ED threshold) provides the rain-
fall accumulation, above which a debris flow event will occur
for a given duration. In this work, the parameter β was esti-
mated according to the slope of log(E) vs. log(D) using least
squares linear regression and considering only the events that
resulted in debris flows. The full record (both DF and noDF
events) was then used to identify the optimum value of pa-
rameter α. Details on the optimization of parameter α and
the criteria used are discussed in Sect. 4.3.
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4.1.2 Logistic regression

Another model that is frequently used for modeling the statis-
tical likelihood of a binary response variable is the logistic re-
gression (LR) model. In the western United States, LR mod-
els were first developed for DF prediction almost a decade
ago (Rupert et al., 2008; Cannon et al., 2010) and are still
used to date (Staley et al., 2016, 2017).

The probability of occurrence (P ) of PFDF according to
logistic regression is given as

P =
ex

1+ ex
, (2)

where the link function x is modeled as a linear combination
of one or more explanatory variables according to

x = γ + δ1X1+ δ2X2+ . . .+ δnXn, (3)

where Xn is the nth explanatory variable and γ and δn
are parameters estimated from the observation data set.
Selection of the explanatory variables is very crucial for
successfully developing LR models. In this study, we
adopted the latest LR model proposed by Staley et al. (2016,
2017), which can also be considered to be the state of the
art for DF prediction in the western United States. After a
thorough examination of several LR models, the authors
of those works concluded that the most appropriate set of
explanatory variables are

X1 =max 15 min rainfall accumulation × proportion
of upslope area burned at high or moderate severity with
gradients ≥ 23◦;
X2 =max 15 min rainfall accumulation × average dNBR
normalized by 1000;
X3 =max 15 min rainfall accumulation × soil KF factor.

Based on this formulation, information on the maxi-
mum 15 min rainfall accumulation is used to weigh the other
three parameters (upslope burned area, average dNBR and
KF factor). Parameters γ and δn were estimated based on
least squares regression. Specifically, the glmfit function
of MATLAB software (version 2017b) was used to fit the
binomial distribution to available data using the logit link
function.

4.1.3 Random forest

Random forest (RF) is a nonparametric statistical technique
that is based on the decision tree ensemble (i.e., forest) proce-
dure for classification or regression (Breiman, 2001). Despite
being a well-known algorithm with extensive use in other
fields (e.g., medicine), there are not many examples of RF ap-
plications in hydrogeomorphic response studies and most of
them deal with landslide susceptibility (e.g., Brenning, 2005;
Vorpahl et al., 2012; Catani et al., 2013; Trigila, 2015). Some

of the main advantages of RF algorithm are that it allows nu-
merical and categorical variables to be mixed and it does not
require any knowledge on the distribution of variables and
the relationship between them. In this work, we used RStudio
software and the R package randomForest (Liaw and Wiener,
2002) to develop the RF model for PFDF prediction.

For the selection of the most important variables for the
RF model we tested several different scenarios of variable
combinations. During that investigation, we found that the
use of an extra categorical variable (named “region class”
hereinafter) that is used to classify the data set into two ge-
ographic regions (i.e., within California and other) improves
RF model performance and thus was included in the vari-
ables used for the RF development. Explanation for the im-
portance of this regional distinction lies on the existence of
a clear difference in the seasonality and subsequently rain-
fall characteristics between California and the other regions
considered. From all the different combinations of variables
tested, we identified two different models that we present and
discuss in the work. The first model (RF-ED) was developed
using the variables of rainfall accumulation, duration and re-
gion class. We consider it to be the one with minimum data
requirements, given that only two rainfall variables and a re-
gion classification are used for the prediction. The second
model (RF-all) is considered to be the data-demanding RF
model and uses almost all available information on rainfall
characteristics, burn severity, land surface properties, etc. Ta-
ble 3 reports all the variables used in each model.

4.2 Model performance criteria

Evaluation of model performance in predicting DF occur-
rence was based on the contingency table (Table 4), which is
used to measure the number of correct and false predictions.
True positive (TP) corresponds to the number of debris flow
events correctly predicted by the model, false positive (FP)
indicates the number of falsely predicted debris flows, false
negative (FN) is the number of missed debris flow events
and true negative (TN) corresponds to the “no debris flow”
events correctly predicted. The metrics, according to the con-
tingency table, that we use in the evaluation of the predictive
skill of the models are the threat score (TS), the true positive
rate (TPR) and the false positive rate (FPR) defined as

TS=
TP

TP+FN+FP
(4)

TPR=
TP

TP+FN
(5)

FPR=
FP

TN+FP
. (6)

The threat score (also known as the critical success index)
provides information on the overall skill in predicting posi-
tive (i.e., DF) responses with respect to total (TP+FP) and
missed (FN) positive predictions. TPR and FPR provide in-
formation on correct positive and false positive predictions
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Table 3. Description of variables included in the development of RF models. Symbol X denotes the variables that were included in each
model.

RF models

Variables RF-ED RF-all

Region class X X
Rainfall accumulation (mm) X X
Rainfall duration (h) X X
Peak 15 min rainfall (mm) X
Proportion of upslope area with moderate or high dNBR and slope higher than 23◦ X
Average differenced normalized burn ratio (dNBR)/1000 X
Average KF factor (soil erodibility index) X

Table 4. Contingency table.

Observed

Debris flow No debris flow

Predicted Debris flow TP FP

No debris flow FN TN

as percentages of the total positive and negative events, re-
spectively. Lastly, the predictive performance of the different
models examined is assessed based on the receiver operating
characteristic (ROC) curves (Fawcett, 2006).

4.3 Identification of thresholds

Whether using ED, LR or RF models, identification of de-
bris flow occurrence is based on the use of a threshold value,
above which we consider that a debris flow will occur. In the
case of ED thresholds, the slope (parameter β) is estimated
from the data (as discussed in Sect. 4.1.1) and the intercept
(parameter α) is identified according to the maximization of
TS. In other words, given the estimated parameter β, the ED
threshold is always defined in order to achieve a maximum
TS value for the data set used to train the model (see example
demonstrated in Fig. 4a).

LR and RF models estimate a probability of DF occur-
rence for both DF and noDF events. Equivalently, this re-
quires the selection of the appropriate threshold of the prob-
ability value above which we consider DF occurrence. Of-
ten, the probability threshold corresponds to a value of 0.5
(see for example Staley et al., 2017) but this does not neces-
sarily imply optimum performance considering that DF and
noDF events are not perfectly separated and some overlap in
probability space exists (see example in Fig. 4b). During the
training of both the LR and RF models, we allow the prob-
ability threshold value to be defined according, again, to the
maximization of TS value.

4.4 Model training and validation framework

For training and validation of the predictive models we fol-
lowed two different approaches that included a Monte Carlo
random sampling and hold-one-out validation framework.

In the random-sampling framework, a training data set of
size M and a test data set of size K is sampled randomly
from the original data sample. The training data are used to
train each model (i.e., estimate parameters for ED and LR
and build RF) and then the trained models are evaluated us-
ing the test data. This random-sampling training–validation
procedure was repeated 500 times to provide an estimate of
the effect of sampling uncertainty on the model performance.
The only condition that was imposed during the construction
of the random training and test samples was the proportion
of DF/noDF events in each sample. We set the percentage of
DF events to be 20 % in both train and test, following ap-
proximately the same percentage used in the training data set
of Staley et al. (2017), which also roughly corresponds to the
percentage of DF events in the original sample as well. The
test sample size K was fixed to 100, while the train sample
size M was allowed to vary from 100 up to 900 to also al-
low investigation of the sensitivity of results to different train
sample sizes.

In the hold-one-out validation, all events in the database
except one are used each time as the training data set and
the models are evaluated for each event that is left out. This
procedure is repeated by sequentially holding out all events,
essentially allowing the models to be validated against all
available events. This process somewhat mimics better what
would have been done in practice, considering that in an
operational-like environment we would be training our pre-
dictive models with all available historic events and use them
to predict the next new event. Therefore, in this case the train-
ing sample size was equal to 1090 and was constructed by
sequentially leaving one event out from the original sample
size. The training–validation process was repeated until all
events were included as validation points (i.e., 1091 times).

www.nat-hazards-earth-syst-sci.net/18/2331/2018/ Nat. Hazards Earth Syst. Sci., 18, 2331–2343, 2018
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Figure 4. Example plot demonstrating the (a) ED threshold and (b) probability threshold for optimizing (i.e., maximizing TS) DF prediction.
In (a), the αmaxTS corresponds to the optimum intercept parameter (see Sect. 4.1.1) and in (b) the vertical black line identifies the probability
value used to optimize classification between DF and noDF events.

Figure 5. Sensitivity to sample size: box plots of the threat
score (TS), according to the random-sampling validation frame-
work, for increasing sample size and for the four models considered
for post-fire debris flow prediction.

Table 5. Relative change (%) in TS distribution between sample
sizes of 900 and 100.

Relative change (%) between sample sizes of 100 and 900

Median IQR
RF-ED +51 % −20 %
RF-all +63 % 0.4 %
Power law-ED +7 % −25 %
LR +11 % −19 %

5 Results and discussion

In this section, we present and discuss the findings based on
the evaluation results for the different predictive models and
the two validation frameworks considered.

5.1 Random-sampling validation

The random-sampling validation results (Fig. 5) demonstrate
the relative performance of the models examined as a func-
tion of the training sample size. Interestingly, even for the
smallest sample size examined (M = 100), the RF-based
models exhibit higher median values than the ED and LR
models but at the same time are characterized by greater
variability in their performance, manifested on the graph as
larger boxes. As sample size increases, the model perfor-
mance (in terms of TS values) increases for both RF-based
models. An interesting point to note from these results is
that for the smaller sample sizes examined (M = 100–500)
the RF-ED performed marginally better than the RF-all but
as the sample size increased, the situation is reversed and
higher TS values are associated with the RF-all model. This
suggests that the increasing amount of data used for training
improves the RF-based model that involves a greater number
of explanatory variables at a higher rate.

On the other hand, both ED and LR models exhibit con-
sistently worse performances overall than RF-based models
and a lower sensitivity to sample size.

A summary of the change in TS distribution with sam-
ple size is presented in Table 5, where the relative differ-
ence in median and interquartile range (IQR), between max-
imum (M = 900) and minimum (M = 100) sample size ex-
amined, is reported for each model. The performance of RF-
ED model improved significantly with an increase in the me-
dian value of 51 % and a decrease in the IQR of 20 %. The
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Table 6. Relative difference in TS distribution between the refer-
ence model (LR) and the RF-ED, RF-all and ED models at the max-
imum sample size examined. Positive values denote an increase in
other models relative to LR.

Relative difference (%) reference to LR at 900 sample size

Median IQR

RF-ED +55 % +12 %
RF-all +58 % +54 %

Power law-ED −3 % −17 %
LR – –

Table 7. Model performance according to the thresholds based on
maximization of TS.

TPR FPR TS

RF-ED 0.84 0.11 0.63
RF-all 0.76 0.06 0.64
Power law-ED 0.78 0.31 0.41
LR 0.77 0.29 0.41

RF-all model showed an even higher increase in the me-
dian (63 %) but variability in performance remained practi-
cally unchanged. On the other hand, the ED and LR mod-
els showed much smaller (than RF-based) median increases
(7 % and 11 %) but exhibited considerable decreases in IQR
(25 % and 19 %).

Furthermore, the relative difference between the models
is presented for the highest sample size (M = 900) and with
reference to the LR model, which corresponds to the current
state of the art in PFDF occurrence prediction for the west-
ern United States (Staley at al., 2017). Based on the results
(Table 6), the RF-ED model TS is 55 % higher than the LR
model but with an increased IQR (+12 %). The RF-all model
TS is 58 % higher but with significantly increased variabil-
ity in performance (IQR +54 %). The ED model performs
slightly worse (−3 % in median) but with reduced variability
(IQR −17 %) relative to the LR model.

The results from this random-sampling validation exercise
demonstrate a superior performance of the RF-based models
particularly for the largest sample sizes examined. For the
smallest sample size, the RF-based models are characterized
by significant variability in their performance, which may
raise questions regarding their applicability when short data
records are available. However, for higher sample sizes and
despite the fact that variability remains, the median perfor-
mance increases to the degree that makes clear the distinction
in performance with respect to other models. Additionally,
an important note is that overall the variability of the perfor-
mance of all models, for a given sample size, is considerable
and this essentially highlights the effect of the sampling un-

Figure 6. ROC curves for the hold-one-out validation technique for
the four models. Circles correspond to the model performance when
selected thresholds were based on TS maximization.

certainty; an aspect that requires careful consideration for the
development and application of such predictive models.

5.2 Hold-one-out validation

For the hold-one-out validation, results are reported by col-
lectively considering the model prediction outcome for all
events, meaning that the prediction of all 1091 events were
used to summarize the performance indicators (TS, TPR,
FPR) reported in Table 7. Recall that, for the prediction of
each event, each model was trained with the remaining data
set (i.e., 1090 events) and thresholds were determined ac-
cording to the maximization of TS in each case. Accord-
ing to the TS values reported, the RF-based models with TS
equal to 0.63 (RF-ED) and 0.64 (RF-all) exhibit consider-
ably improved performance with respect to the ED and LR
models with TS values of 0.41 for both models. Compari-
son of the TPR and FPR values suggests that the superiority
of RF-based models is primarily attributed to the lower false
alarm rates (≤ 11 %) relative to ED and LR models (∼ 30 %).
The true positive rate appears equivalent among the different
models.

However, an important note here is that these metrics (TS,
TPR, FPR) depend highly on the selection of the threshold.
So far in the analysis we have considered the identification
of thresholds based on maximization of TS. To further in-
vestigate the dependence of results for varying thresholds
we evaluated the model performance considering a variable
threshold and reported the results based on the receiver op-
erating characteristic (ROC) curves (Fawcett, 2006). In the
ROC graph (Fig. 6), the point (0, 1), which corresponds to

www.nat-hazards-earth-syst-sci.net/18/2331/2018/ Nat. Hazards Earth Syst. Sci., 18, 2331–2343, 2018



2340 E. I. Nikolopoulos et al.: Prediction of post-fire debris flow occurrence in the western United States

Figure 7. Box plots of predicted probability of DF occurrence for
LR, RF-ED and RF-all models for both DF and noDF events.

100 % TPR and 0 % FPR, represents the points of perfect
prediction. The 45◦ line corresponds to a random predictor
(i.e., 50 % of the times being correct) and any point above
that line corresponds to a model with some predictive skill.
The ROC curves demonstrate the model’s predictive perfor-
mance of different thresholds and the higher the area un-
der the curve (AUC), the more skillful the model is. From
a visual examination of the ROC curves in Fig. 6, one can
quickly identify a number of main points regarding the pre-
dictive skill of the models examined in this study. First, all
models show significant skill (i.e., large departure from 45◦

line). Second, the performance of all models is highly depen-
dent on the selection of the threshold. Third, the performance
for the thresholds corresponding to the maximization of TS
(denoted as solid circles in Fig. 6) does not necessarily coin-
cide with the point of best-available performance (i.e., point
closer to point, 0, 1). The ROC curves from RF-based mod-
els demonstrate once again the superior performance of both
RF models examined, while the ROC curves from ED and
LR models are relatively close. Based on the corresponding
AUC value for each model, which provides a mean of quan-
tification for the comparison of their performance, we can
rank the models in increasing performance as follows: 0.77
(ED), 0.80 (LR), 0.90 (RF-ED) and 0.94 (RF-all).

Based on these results, the choice of LR is justified rela-
tive to the use of a simple power-law ED model, but it still
remains inferior to the RF-based models for all threshold val-
ues examined. Comparison between RF-ED and ED models
highlights the benefit of using a machine-learning approach
in predictive modeling. Considering that both these models
are developed based on the same information (rainfall accu-
mulation and duration), it is noteworthy that the technique
involving random forest (in contrast to the power-law thresh-
old) can impact the respective performance.

5.3 Comparison of predicted DF probabilities

Thus far in the analysis, we have evaluated the predictive
performance of the different models as binary classifiers
(DF/noDF). This is meaningful when considering the oper-
ational context of a DF warning system, when the decision
maker needs to take a binary decision (yes/no) to issue, for
example, a response protocol (e.g., evacuation plan). How-
ever, given that the LR and RF-based models provide a range
of probabilities for DF occurrence, evaluating them only as
a binary classifier does not allow us to understand in detail
how the predicted DF probabilities differ between the LR-
and RF-based models. Therefore, to better investigate this
aspect we have carried out a comparison of the DF probabili-
ties predicted during the hold-one-out validation experiment
(Sect. 5.2), i.e., DF probability predicted for each event when
using all other events for model training. Note that the ED
model is a binary classifier and as such it cannot be included
in the analysis presented in this section.

The distribution of predicted DF probabilities for both DF
and noDF events is presented in Fig. 7 for LR, RF-ED and
RF-all models. An ideal predictive model would be able to
completely separate the probability values for DF and noDF
events, with higher values (ideally equal to 1) for DF and
lower values (ideally equal to 0) for noDF events. Consid-
ering Fig. 7, this ideal performance would graphically result
in no overlap of blue (noDF) and red (DF) box plots. How-
ever, this is not the case, as shown in Fig. 7. The degree of
overlap between DF and noDF box plots is thus an indication
of the performance of the models. Consistently with findings
in previous sections, the RF-all model appears to have the
best performance among the models considered. The main
issue with the LR model relative to RF-based models is that
the predicted probabilities for DF (noDF) events are under-
estimated (overestimated). Indicatively, the median values of
DF (noDF) probabilities from LR, RF-ED and RF-all models
are 0.32 (0.16), 0.47 (0.004) and 0.75 (0.03). The net result of
this under-/overestimation of LR is a considerable overlap of
DF and noDF probabilities (Fig. 7). This essentially lowers
the ability of binary classification as well, even if the thresh-
old in probability is selected dynamically (see Sect. 4.3). The
RF-ED model exhibits the best performance in prediction of
noDF events (i.e., predicted the lowest probabilities), but the
probabilities associated with DF events are still significantly
underestimated with respect to the RF-all model.

6 Conclusions

In this study, we evaluated the performance of four differ-
ent models for post-fire debris flow prediction in the western
United States. The analysis was based on a data set that was
recently made available by USGS and the models involved
included the current state of the art, which is a recently de-
veloped model based on logistic regression; a model based on
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rainfall accumulation–duration thresholds, followed in prac-
tice worldwide; and two models based on the random for-
est algorithm that were developed in this study. We inves-
tigated the relationship between prediction accuracy with
model complexity and data requirements (in terms of both
record length and variables required) of each model. Accord-
ing to the results from this analysis we found that the appli-
cation of the random forest technique leads to a predictive
model with considerably improved accuracy in the prediction
of post-fire debris flow events. This was attributed mainly to
the ability of RF-based models to report lower values of false
alarm rates and higher values of detection, which is a result
of their ability to minimize the overlap between the probabil-
ity space associated with DF and noDF events. The currently
used LR model performed better than the simple ED model,
but it was outperformed by both RF-based models, particu-
larly as the training sample size increased. Increasing sample
size has a profound effect on improving the median perfor-
mance of RF-based models, while variability of the perfor-
mance remained significant for all sample sizes examined,
highlighting the importance of sampling uncertainty on the
results. On the other hand, the LR and ED models exhibited
minimal improvement in the median performance but con-
siderable reduction in the IQR with increasing sample size.
Comparison between the two RF-based models suggests that
even the model with significantly fewer data requirements
(i.e., RF-ED) constitutes a relatively good predictor. Overall
the more complex model (RF-all) exhibited the best perfor-
mance. The analysis of sample size sensitivity showed that
increasing data variables can lead to increasing performance,
but this comes at a cost to data availability when properly
training the more data-demanding models. The ROC analysis
indicated that the performance of the various predictive mod-
els is closely related to the selection of thresholds. Selection
of thresholds should be based on operator/stakeholder crite-
ria, which can identify the threshold according to the target
TPR and tolerance at FPR of the prediction system at hand.

Uncertainty is a very important element to consider when
developing and evaluating predictive models of this nature.
Two important sources of uncertainty pertain to estimations
of input variables (e.g., rainfall, burn severity) and sampling.
In this work, we implicitly demonstrated the impact of sam-
pling uncertainty on a model’s prediction skill through the
random sampling exercise, but we did not account for uncer-
tainty in input parameters. To investigate the impact of input
parameter uncertainty we need to first statistically character-
ize and quantify the uncertainty of each input source and then
propagate the various uncertainties through the predictive
models and evaluate uncertainty in the final predictions. This
goes beyond the scope of the current work and thus will be a
topic of future research. Specifically, future work will be fo-
cused on examining the model performance using alternative
sources of rainfall information (e.g., weather radar, satellite-
based sensors and numerical weather prediction models)
and further investigating how extra physiographic parameters

(not included in existing database) can potentially improve
the predictive ability of models. In conclusion, although cur-
rent findings provide a clear indication that the random forest
technique improves prediction of post-fire debris flow events,
it is important to note that there may be other approaches (see
for example Kern et al., 2017) that can offer additional ad-
vantages; therefore, future investigations should also expand
on the investigation of other machine-learning or statistical
approaches for developing post-fire debris flow prediction
models.
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