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Abstract. We present a spatial analysis of weather-related
fire brigade operations in Berlin. By comparing operation oc-
currences to insured losses for a set of severe weather events
we demonstrate the representativeness and usefulness of such
data in the analysis of weather impacts on local scales. We
investigate factors influencing the local rate of operation oc-
currence. While depending on multiple factors – which are
often not available – we focus on publicly available quanti-
ties. These include topographic features, land use informa-
tion based on satellite data and information on urban struc-
ture based on data from the OpenStreetMap project. After
identifying suitable predictors such as housing coverage or
local density of the road network we set up a statistical model
to be able to predict the average occurrence frequency of lo-
cal fire brigade operations. Such model can be used to deter-
mine potential “hotspots” for weather impacts even in areas
or cities where no systematic records are available and can
thus serve as a basis for a broad range of tools or applica-
tions in emergency management and planning.

1 Introduction

It has been stated within the Sendai Framework for Disaster
Risk Reduction 2015–2030 by the United Nations (UNISDR,
2015) that the implementation of effective disaster risk re-
duction measures should be based on an understanding of
disaster risks, including all its dimensions of vulnerability,
capacity, exposure of persons and assets, hazard characteris-
tics and the environment. On local and national levels, this
requires to systematically evaluate, record, share and pub-
licly account for disaster losses to gain understanding of the

impacts in the context of event-specific hazard, exposure and
vulnerability information.

While insurance records are a very useful data source and
have been used in many analyses of regional weather im-
pacts, their availability is generally limited due to economic
interests of insurance providers. Making use of records of lo-
cal emergency managers (first responders) yields an immense
potential as an alternative database for analysing weather im-
pacts, particularly on local scales. While often such records
exist, they mostly lack systematic and homogenous data for-
mat and quality standards. Definition of such data standards
must be regarded key requisite to be able to scientifically ad-
dress disaster losses as required within the Sendai Frame-
work.

Relating emergency call data to extreme weather, most
studies analyse ambulance operation data or emergency de-
partment visits in face of temperature extremes, in particu-
lar extreme heat (Bassil et al., 2005; Dolney and Sheridan,
2008; Schaffer et al., 2012; Thornes et al., 2014). Wargon
et al. (2009) have done a review on studies concerned with
the modelling and forecasting of emergency department vis-
its. It is found that the number of patient visits at emergency
departments or walk-in clinics can be modelled with rather
good performance. Mostly based on predictors such as the
day of the week or season these models explain between
31 and 75 % of patient-volume variability. However, includ-
ing meteorological data apparently failed to improve model
performance (Wargon et al., 2009). Findings of more recent
studies, however, do find that weather factors such as tem-
perature and humidity play a role in the demand for ambu-
lance services and demonstrate that including weather fore-
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cast data can in fact improve forecasts of daily ambulance
demand (Wong and Lai, 2014).

There have been only few studies making use of spatial
information of emergency operation data (i.e. the location of
an assistance request) in relation to severe weather events.
Two studies by Schuster et al. (2005) and Rossi et al. (2013)
compared emergency call data with radar reflectivity data for
a severe hailstorm event and found a satisfying representa-
tion of the hailstorm path in the density of emergency calls
on the ground. Other studies have tried to utilize similar data,
but they faced problems concerning the availability of accu-
rate data. As described in Busch (2008), problems can occur
in the case of catastrophic events since the archiving of fire
brigade operation data is often limited in such cases. In par-
ticular, this means that spatial information on the individual
location of operations is not archived, hindering spatial anal-
yses for these events.

Pardowitz and Göber (2016) have demonstrated – similar
to the studies mentioned above – that satisfying correspon-
dence of radar reflectivity for severe thunderstorm events and
locations with occurrences of fire brigade operations can be
found. However, this occurrence is strongly modulated by
other factors such as the density of buildings. This is a con-
firmation of the common understanding that the occurrence
and height of impacts are determined by the simultaneous
existence of a hazard and vulnerability against this hazard.

Approaches to address the local vulnerability have been
developed in flood impact modelling. Apel et al. (2009)
and Jongman et al. (2012) describe different modelling ap-
proaches to estimate economic damages for flood events
(particularly the 2002 flood event in Saxony). Based on data
from digital elevation models (DEMs), local damages are
estimated in dependence of inundation depth. Furthermore,
such depth–damage relation can be differentiated – e.g. by
considering information on land use – to account for variable
vulnerabilities.

In this study we focus exclusively on the estimation of
predictors describing the local vulnerability and exposure.
We thus neglect temporal variations of weather parameters
and investigate the long-term averaged occurrence frequen-
cies (which can be regarded as the equivalent to a local “cli-
matology”) of fire brigade operations. We also test whether
it is possible to predict these long-term occurrence frequen-
cies for areas in which we might not have actual operation
records available.

Based on a new data set of fire brigade operations in Berlin
for the period of 2002–2012, this study aims at assessing the
latter, namely the vulnerability against hydrometeorological
hazards. In a first step we analyse this new data set particu-
larly with respect to the question of how these impacts are re-
lated to building damages induced by windstorms and thun-
derstorms. It needs to be noted that neither insurance loss
data nor the archive of fire brigade operation extensively de-
scribes all possible weather impacts. Instead it is important to
investigate the different causes of weather impacts included

in the individual data sets. Within the metropolitan area of
Berlin, we then aim to identify factors describing the local
vulnerability and thus influencing the local risk for weather
impacts as given by the fire brigade operations. Potential fac-
tors include topographic features, land use information based
on satellite data and information on urban structure based on
data from the OpenStreetMap (OSM) project. After identify-
ing suitable predictors such as housing density or local den-
sity of the road network we set up a statistical model to be
able to predict local operation densities. Such model can be
used to determine potential “hotspots” for weather impacts
even in areas or cities where no systematic records are avail-
able.

The remainder of this paper is structured as follows. Sec-
tion 2 describes the various data sets that are used to de-
scribe impacts as well as potential predictors for vulnerabil-
ity. Methodological steps and modelling approaches are de-
scribed in Sect. 3, while results are shown in Sect. 4. Finally,
Sect. 5 provides a discussion of results as well as the major
conclusions that can be drawn from this study.

2 Data

2.1 Fire brigade operations

A data set provided by the Berlin fire brigade is analysed,
comprising weather-related fire brigade operations for the
period 2002–2011. The data set contains location and time
of alerts, as well as keywords associated with each oper-
ation indicating the type of operation. Keywords indicate
“water-related” operations, “tree-related” operations, “traffic
obstructions”, operations related to “construction elements”,
operations due to “ice and snow” and a few operations asso-
ciated with other keywords. The keywords are assigned op-
erationally by the Berlin fire brigade and reflect the type of
(technical) operation the fire brigade had to handle. While
“water-related” operations consist of flooded basements or
other incidents requiring the disposal of water, the keyword
“tree-related” refers to operations in which windthrow had
to be handled. The keyword “traffic obstruction” includes
all operations dealing with the removal of obstacles to re-
store traffic while “construction element” refers to the re-
moval of damages due to destroyed construction compo-
nents. It needs to be noted that individual keywords might
overlap in the sense that more than one keyword applies.
However, for the present analysis we focus on the primary
keywords assigned to an individual operation. Additional de-
tails on the usage of keywords of the Berlin fire brigade can
be found in Kox et al. (2015). Total counts of weather-related
fire brigade operations in the period 2002–2011 amounted to
slightly above 10 000 per year. This is about 27 % of all op-
erations of the Berlin fire brigade, which – according to the
annual reports – amounted to about 37 000 operations per
year in the same period. In comparison, fire extinction op-
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Table 1. Distributions of impacts of different types in Berlin for the period 2002–2011, stratified by their cause and by season, i.e. winter and
summer half year and temporal correlations to daily building damages.

Full year Summer Winter

Absolute Total Correlation Summer Correlation Winter Correlation with
number fraction with daily losses share with daily losses share daily losses

All operations 10.069 100 % 0.58∗∗∗ 50 % 0.59∗∗∗ 50 % 0.57∗∗∗

Water damage 3.358 33 % 0.14∗∗∗ 53 % 0.06 47 % 0.41∗∗∗

Traffic obstruction 2.549 25 % 0.22∗∗∗ 46 % 0.15∗∗∗ 54 % 0.30∗∗∗

Tree-related 1.715 17 % 0.67∗∗∗ 73 % 0.69∗∗∗ 27 % 0.74∗∗∗

Construction element 1.407 14 % 0.58∗∗∗ 45 % 0.59∗∗∗ 55 % 0.67∗∗∗

Ice and snow 211 2 % 0.00 0 % − 100 % 0.00
Others 831 8 % 0.00 18 % 0.01 82 % 0.01

Significance is indicated if p value is below 0.05 (∗), below 0.01 (∗∗) and below 0.001 (∗∗∗).

erations (about 7500 per year) accounted for about 20 % of
all operations. Note that ambulance call outs (∼ 245 000 per
year) and false alarms (∼ 31 000 per year) have been disre-
garded here. Most weather-related operations are due to wa-
ter damages (33 %). Traffic obstruction accounted for 25 %
of operations and tree-related operations for about 17 % (Ta-
ble 1). Operations related to construction elements accounted
for about 14 % and ice- and snow-related operations for 2 %.
Some other keywords (individually accounting for 1 % or
less each) were used, which sum up to about 8 %. Stratify-
ing by season shows that, in total, operations are equally dis-
tributed over winter (October–March) and summer half year
(April–September). This choice is done primarily to best dis-
criminate between thunderstorm and winter storm impacts
(see e.g. Donat et al., 2011). The individual types of oper-
ations, however, partly show distinct differences in summer
and winter (Table 1). Particularly tree-related operations oc-
cur mainly in summer (73 %) while ice- and snow-related
operations naturally occur in winter exclusively.

2.2 Building loss data

Insurance data on windstorm and thunderstorm losses to
residential buildings were provided by the German in-
surance association (Gesamtverband der Deutschen Ver-
sicherungswirtschaft e.V., GDV). Berlin-wide damages are
available on a daily basis for the period 1997–2011, while
data at the zip code level (190 within Berlin) are available
for a small selection of events only. Direct (liquid) precipi-
tation damages as well as flooding damages are not part of
the available data set even though they might be highly rel-
evant in the case of severe precipitation related to thunder-
storm events. Still, for investigations of severe weather events
– particularly small-scale events such as thunderstorms – in-
surance loss data are thus extremely valuable. However, dif-
ficulties arise when interpreting the insurance data since the
data set does not allow a direct attribution of losses to their
cause (i.e. hail or windstorm induced). In addition, faulty at-

tribution of individual insurance claims (both temporal and
spatial) can cause inaccurate loss figures. For example, this
can be because the exact day of occurrence of a damage is
unknown in some cases. In addition, if damage occurs at a
house managed by a real estate company, the insurance claim
might be attributed according to their administrative centre
instead of the actual origin. For the set of events for which
insured loss data are available on zip code area, an evaluation
of the spatial patterns and a comparison to the occurrences of
fire brigade operations can be made. The selection of events
contains the four windstorm events with the highest impacts
in Berlin within the reference period 2007–2011 (Kyrill on
17–19 January 2007, Lothar07 on 24–28 May 2007, Emma
on 28 February–2 March 2008, Xynthia on 27 February–1
March 2011) and two convective events (Aram on 6 June
2011 and Gunnar on 22 June 2011), which have been selected
because they were studied in detail in Wapler et al. (2015).
The data set comprises area-wide coverage of losses due to
windstorm and thunderstorm. Also, to address the temporal
correlation of different impacts, Berlin-wide losses are anal-
ysed and compared to total operation counts within Berlin.
According to the insurance loss records (covering windstorm
and hail damages), EUR 8.12 Mio in damage is recorded for
Berlin per year. The temporal distribution is rather balanced
with 48 % of damage occurring in summer and 52 % in win-
ter. While most damage in winter is related to intense winter
windstorms (Klawa and Ulbrich, 2003; Pinto et al, 2010; Do-
nat et al., 2011), a large share of summer damage is due to
thunderstorms and in particular due to hailfall (Aller and Ko-
zlowski, 2008; Kunz and Puskeiler, 2010).

2.3 OpenStreetMap data

Data from the open-source project OSM (www.
openstreetmap.org, last access September 2016) are used
to derive predictors for local vulnerability. Particularly we
analyse georeferenced information on individual buildings
(including their location and extent) as well as information
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on road networks. As a first predictor, the number of build-
ings per grid cell on a regular 1× 1 km grid is derived. Also,
by including information on housing extent, the fraction of
the grid cell covered by buildings is calculated. As discussed
later, even though these quantities are highly correlated,
both predictors should be considered to distinguish between
the high-density city centre with very large buildings and
suburban areas with large numbers of detached houses.
Additionally, the density of the road networks is considered
by calculating the total length of road segments within a
1× 1 km grid cell (specified as a length per grid cell area,
thus km km−2). The OSM data set contains a classification
of the road networks (the major categories being highway,
primary, secondary and tertiary road networks), which is
why road densities can be assessed individually for these
classes. It would be valuable to add the population density as
a predictor as well. However, population density is not freely
available on the spatial resolution required in this analysis
(1 km). Freely available data sets include the CIESIN global
gridded data set (with a resolution of about 5 km) or that of
the German Federal Statistical Office (DESTATIS), which is
available on a district level only.

2.4 CORINE land cover data

The CORINE (Coordination of Information on the Environ-
ment) land cover (CLC) data set provides European-wide in-
formation on land cover and land use, based on a unified clas-
sification of the most important types of land usage (CEC,
1994; Bossard et al., 2000, Büttner et al., 2012). More specif-
ically, we used CLC2006, which is based on SPOT-4/5 and
IRS P6 LISS III satellite data. Geometric accuracy of satel-
lite images is specified to be smaller than 25 m and result-
ing minimum mapping units within CLC are specified to be
25 ha, with the geometric accuracy of the CLC data being
better than 100 m. In total, 44 land usage classes are used
in CLC2006 as subcategories of the main land usage types:
“artificial surfaces”, “agricultural areas”, “forest and semi-
natural areas”, “wetlands” and “water bodies”. More details
on CLC2006 can be found in Büttner et al. (2012). The orig-
inal data consist of polygon data in the form of shape files,
which have been processed to calculate land use characteris-
tics on a grid-point basis. For this, the area fractions of all 44
CLC types (adding up to 100 %) are calculated on a speci-
fied grid. Here we use a regular long–lat grid with a 1× 1 km
resolution. These gridded fields of the area fraction are then
used as predictors in the following analyses.

2.5 Data from DEM

Data from the digital elevation model dgm200 (GeoBasis-
DE / BKG 2016) are also used to derive orographic height
and slope. Original data have a horizontal resolution of 200 m
and are available for Germany. Alternatively, GTOPO30
has been used, which has a lower horizontal resolution

of 30 arcsec (approximately 1 km). However, GTOPO30 is
available globally. The data are used to derive orographic
height as well as the slope on a regular 1× 1 km grid for
Germany. In the case of dgm200, which has a finer resolution
compared to the target grid, orographic height is calculated as
the average height over all original 200 m× 200 m grid boxes
within a target grid box. In the case of GTOPO30 orographic
height on the target grid is determined by means of a nearest
neighbour remapping. Since differences for the Berlin region
were negligible, dgm200 has been used in the following. The
slope is calculated according to the algorithm proposed by
Horn (1981). The algorithm also assesses the aspect, which
– in further studies – might be considered as an additional
vulnerability predictor. However, since the area for which
the vulnerabilities are analysed is limited to Berlin (featur-
ing no considerable height variations), topographic features
play only a minor role here. However, in future studies in-
cluding other investigation areas, topographic features may
be more important to consider.

3 Methodology

3.1 Comparison of fire brigade operations and building
damage data

To assess how representative spatial information on weather
impacts on a sub-city scale can be derived from the data
set and whether there is a temporal correspondence be-
tween daily damages and operation numbers, a comparison
of building loss data and fire brigade operations is performed.
While insured losses on residential housing comprise spe-
cific impacts caused by windstorms and thunderstorms, fire
brigade operations can be caused by additionally meteoro-
logical phenomena such as flooding (which is not included
in the loss data set) or impacts due to freezing rain or road
icing. The aim of this comparison is to identify how specific
categories of fire brigade operations (i.e. tree-related opera-
tions) are related to the wind and hail impacts as described
by the insured loss data. It can be expected that other cate-
gories (operations due to road icing) will not relate to insured
losses.

For a set of events, including two convectively driven
summer events and four windstorm events, a qualitative
and quantitative comparison is performed between the spa-
tial patterns of building damages and the occurrence of fire
brigade operations. This is done by calculating total opera-
tion count numbers for zip code areas (190 within Berlin)
for each of the six events. Besides total operation numbers,
counts for operations related to individual keywords are as-
sessed. Resulting maps are compared and spatial correlations
calculated. Spatial correlations (i.e. measuring the correla-
tion of spatial variations amongst zip codes) are calculated
using the Pearson correlation. Since it cannot be assumed that
all considered parameters are Gaussian distributed, the dif-
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ference in results was tested using the Spearman rank corre-
lation. It was found that results are not qualitatively affected
by the chosen correlation method. Correlations are tested for
significance by testing whether the Pearson’s product mo-
ment correlation follows at distribution. Significance of cor-
relations is assessed by considering the resulting p values.
Daily total operation counts for Berlin are furthermore com-
pared to Berlin-wide damages, which are available on a daily
level for the period of 2002–2011. Temporal correlations to
daily building damages are calculated, again for both total
count and counts for operations related to individual key-
words.

3.2 Spatial correlation between potential vulnerability
predictors and patterns of operation occurrences

To identify predictors for vulnerability, a spatial correlation
analysis between numerous quantities derived from the dif-
ferent geospatial data sets and gridded operation densities is
performed. Variables include gridded densities of man-made
structures (buildings, streets), topographic features (height,
slope) and land use information. The latter is pre-processed
such that the area fraction of a specific land use type (as spec-
ified in the CORINE data set) within each 1× 1 km grid box
is given. Again, spatial correlations are assessed using either
operations of one specific category or operations irrespec-
tive of their type. As described above, correlations are calcu-
lated using the Pearson correlation. Again, using the Spear-
man rank correlation did not qualitatively affect the results.
Significance of correlations is assessed as described in the
previous section.

3.3 Multiple linear regression model

On the basis of the set of potential vulnerability predictors
(as listed in Table 3), a statistical model is set up based on
multiple linear regression to analyse the predictability of the
spatial distribution of (long-term) operation occurrence rates.
Such model could potentially be used to identify “hotspots”
in the local occurrence of operations in areas where no ex-
plicit data on operations are available and might be highly
relevant in terms of long-term planning of capacities for ef-
fective emergency management. In the following, three dif-
ferent types of models are addressed. A linear model, a log-
arithmic variant (assuming a log-normal distribution of the
predictant, modelling the logarithm of operation density) and
a Poisson model (typically used to model count variables). To
provide robust results and prevent overfitting of the data, an
appropriate subset of variables must be chosen from the set
of available predictors. This is particularly important since
some predictors are highly correlated amongst each other,
which is referred to as multicollinearity (Belsley et al. 1980).
Even though multicollinearity does not reduce the predictive
power of the model, it may strongly affect the interpretation
of individual regression coefficients of predictors containing

mutual information. Besides being the cause of overfitting, it
is thus desirable to reduce the number of (correlated) predic-
tors to also better interpret resulting regression coefficients.
To do so we chose an iterative procedure which – starting
from an initial model – stepwise removes or adds predictor
variables. Which predictor to add to (or remove from) the list
of predictors in the model is decided in each iterative step by
maximization of the Akaike information criterion (AIC; see
Akaike, 1985). The basic idea is to assume a certain penalty
for each (additional) predictor within the model. This penalty
needs to be balanced to the resulting goodness of the model
fit (e.g. by means of R2), leading to an optimization prob-
lem between the total penalty and fit quality. The algorithm
converges if no predictor can be added or removed to further
optimize the model in terms of the AIC. To perform this op-
timization procedure, the weight of the penalty can be varied
by means of the parameter k. While k = 2 corresponds to the
classical AIC, higher k result in an increased penalty for ad-
ditional predictors. Different choices of k will ultimately lead
to different optimized models including more (less) predictor
variables if k is lower (higher).

3.4 Model validation methodology

To assess the predictive skill of the optimized model a cross
validation is set up. For this, the area of Berlin is divided
into four sectors. Then the model – using the set of predic-
tors identified by means of the iterative procedure described
above – is fitted four times, each time using all grid points
within three of the four sectors. Each model fit is then used
for predicting the operation density for grid points within the
fourth sector. In this way predictions are obtained for data
that have not been used for model fitting. Calculating the
mean square error of these model predictions in compari-
son to observed operation density values results in the cross-
validation error, which is used as the criterion for predictive
model skill. The optimal choice of k in the iterative opti-
mization procedure described above is not known up front.
Different choices of k lead to differing numbers of predictor
variables. Thus, to find the optimal model for predictive pur-
poses, we vary k and compare the predictive model skill of
the resulting models. The optimal choice is found by maxi-
mizing the predictive model skill, i.e. minimizing the cross-
validation error.

4 Results

4.1 Comparison of fire brigade operations and building
damage data

Daily operation counts in the period 2002–2011 for the
whole of Berlin are correlated to daily building losses in
Berlin. Correlations are calculated for total operation counts
as well as counts for operations associated with individual
alert keywords, additionally stratified by season. The aim
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of this analysis is to identify how specific categories of fire
brigade operations (i.e. tree-related operations) are related to
the wind and hail impacts as described by the insured loss
data. Particularly because impact data cannot be directly re-
lated (e.g. missing flood damages in the insured loss data) it
is valuable to analyse the relationships to gain an understand-
ing of the causing events for fire brigade operations which is
not readily available. However, this means that the interpre-
tation of correlation results is difficult, because wind, hail
and precipitation may occur simultaneously for both winter
storms and thunderstorms. It is not directly clear if a certain
correlation means that both data sets contain impacts due to
the same meteorological factor (i.e. wind) or if correlations
are due to the simultaneous occurrence of multiple meteoro-
logical factors.

Highest correlations are found between tree-related opera-
tions and building damages, particularly in winter (0.74). In
addition, operations associated with the alert keyword “con-
struction element” show rather high correlations to building
damages (0.67). In both cases, winter correlations are higher
which indicates that a large share of these operations are
caused by severe wind gusts. Counts of water damage op-
erations in summer do not show any correlation to building
losses, which is due to the fact that flooding damages are
not contained in the insurance data set available. In winter,
however, considerable correlation is found (0.41). It can be
assumed that this correlation is because water-related oper-
ations in winter often occur in conjunction with large-scale
storm events, which would indicate that precipitation impacts
coincide with wind impacts on housing. Correlating tree-
related with water-related operations gives further weight to
this assumption. While correlation is considerable in win-
ter (0.25), there is low correlation in summer (0.08). Similar
results are found correlating operations related to the key-
word “construction elements” and water-related operations.
Thus, operations caused by severe winds (tree-related and
construction elements) and water-related operations seem to
occur mostly independently in summer, while in winter they
seem to coincide more often. However, the low correlation
between summer damage and water-related operations is still
surprising. The fact that flooding damage to housing is not in-
cluded in the loss data set obviously leads to a non-existing
correlation when regarding effects due to rainfall only. Thun-
derstorm events being often related to severe precipitation
and in some cases to hail would suggest a certain correla-
tion between hail-induced building damage and water-related
operations in summer. The fact that no correlation is found
might in turn indicate that either hailfall is sufficiently rare
to make up for a significant effect or hailfall impacts do not
play a major role for the occurrence of operations.

Spatial patterns of insured losses and operation occur-
rences were compared for a set of four windstorm events
(Kyrill, Emma, Xynthia and Lothar07) and two convectively
driven summer events (Aram and Gunnar). A visual com-
parison of impacts for the winter storm Kyrill (17–19 Jan-

uary 2007) and the thunderstorms related to the frontal pas-
sage of Gunnar (22 June 2011) can be found in Fig. 1. In
general, a rather good agreement in the patterns of the num-
ber of operations per zip code area and the number of insur-
ance claims is found. For Kyrill, both data sets show consid-
erably higher impacts in the south of Berlin, while central
and some northern parts of Berlin featured lower impacts. It
can be argued that there is an influence of the size of areas
that is not homogeneous (particularly large areas are found
in the south, while particularly small areas in central Berlin).
However, the consideration of relative numbers (normaliz-
ing for the zip code area) did not alter the qualitative find-
ings. For the thunderstorms related to the frontal passage of
Gunnar, spatial patterns also show considerable agreement.
Affected areas are considerably larger when considering fire
brigade operations, while building damages are more con-
centrated on individual zip code areas. This might be related
to localized hailfall that led to localized occurrence of build-
ing damage, while precipitation and wind gusts were more
widespread, leading to water-related operations and wind-
induced tree fall in larger areas. A spatial correlation analy-
sis is performed, correlating the number of insurance claims
and the number of operations within each zip code area. We
found that using different quantities (e.g. damage ratio and
normalized operation densities) does not qualitatively influ-
ence the correlations. Also, it must be kept in mind that these
spatial correlations are evaluated only for individual events,
which may thus not be generalized. Resulting spatial corre-
lations for the six events are given in Table 2.

Most prominently, significant correlations are found for
tree-related operations in relation to building damages. This
might affirm that tree-related operations mostly represent
wind-induced tree fall, which relates directly to wind-
induced building damages. For some events (Kyrill, Lothar07
and Aram), considerable correlation is found for water-
related operations while for the others there is no correlation
at all. While no direct water-induced damages are included
in loss data set, there might be an indirect relation. For a spe-
cific event, severe precipitation might coincide with hailfall,
which can induce damages. For Lothar07 and Aram there
are confirmed hail observations in Berlin or surrounding ar-
eas. For Kyrill a study indicates that there was thunderstorm
activity during the frontal passage, which might have been re-
lated to hailfall (Fink et al., 2009). The authors also note that
the severe precipitation could have increased damages. This
might in turn explain why for Kyrill, Lothar07 and Aram,
correlations for tree-related operations and building damages
are particularly high.

Thus, it shows that the relationship is far from being an
identity between building damages and fire brigade opera-
tions. Spatial patterns can be found to show considerable
agreement in some cases, but individual impacts (i.e. differ-
ent categories of operations) are generated by multiple me-
teorological variables (severe gusts, precipitation and hail)
or even by a complex interplay of those variables. Addi-
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Figure 1. Spatial comparison of the number of insurance claims (a, b) to the number of fire brigade operations (c, d) for winter storm Kyrill
in 2007 (a, c) and frontal passage Gunnar in 2011 (b, d).

Table 2. Spatial correlations for specific events. The correlation is calculated between the number of fire brigade operations and the number
of insurance claims within individual zip code areas.

Kyrill Emma Xynthia Lothar07 Aram+ Gunnar+

All operations 0.70∗∗∗ 0.20∗∗ 0.09 0.78∗∗∗ 0.57∗∗∗ 0.46∗∗∗

Water damages 0.45∗∗∗ −0.05 −0.06 0.54∗∗∗ 0.20** 0.06
Traffic obstruction 0.09 −0.08 0.11 0.45∗∗∗ 0.16* −0.04
Tree-related 0.73∗∗∗ 0.42∗∗∗ 0.28∗∗∗ 0.79∗∗∗ 0.79∗∗∗ 0.58∗∗∗

Construction element 0.03 −0.04 −0.1 0.21** 0.19* −0.07
Others 0.06 −0.05 −0.01 −0.06 0.17∗ 0.01

Significance is indicated if p value is below 0.05 (∗), below 0.01 (∗∗) and below 0.001 (∗∗∗).

tional factors might distort the relationship between insured
damages and operations. These include the fact that in the
case of major events both insurers and emergency services
might alter their usual procedural strategies. For instance,
insurers forego detailed plausibility checks for individual
damage reports in the case of cumulative loss events. Also,
emergency services request the public to handle non-life-
threatening damage by themselves in certain situations to re-
lieve workload for first responders. Both reasons might have
contributed to the fact that for Kyrill an extremely high in-
sured loss has been recorded (about 10 times higher com-
pared to Lothar07) while the number of fire brigade opera-
tions is not as exceptional (comparable to Lothar07).

4.2 Spatial correlation between potential vulnerability
predictors and patterns of operation occurrences

Patterns of average operation densities (represented by the
number of operations per square kilometre and per year) are
calculated on a 1× 1 km grid (Fig. 2). Considering all op-
erations (Fig. 2a), distinct spatial variations can be observed.
In general, high densities are found in central areas of Berlin,
while outskirts feature low densities. However, numerous ad-
ditional spatial variations can be found, such as particularly
low operation densities in less densely (or unsettled) areas
such as the Grunewald and areas in the south-east of Berlin.
But distinct local minima in operation densities are found
for central parts of Berlin as well, e.g. for the zoo or the
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Figure 2. Mean yearly density of fire brigade operations during 2002–2011 calculated on a 1× 1 km grid (units: operations per square
kilometre per year). Operation recordings are available for Berlin only (boundaries are indicated by black solid lines); i.e. zero values outside
of Berlin are due to unavailability of data. Note the different colouring scale due to the fact that the absolute numbers of operations for a
certain operation type vary considerably.

former airport Tempelhof. Considering individual alert key-
words shows that patterns of the spatial densities of opera-
tions considerably vary. While water-related operations show
a rather similar spatial pattern compared with all operations,
operations related to traffic-obstructions or tree fall are dis-
tributed rather differently. Both are distributed more broadly
over the area of Berlin, not featuring the distinct concentra-
tion in the centre. Furthermore, for operations related to traf-
fic obstructions a concentration of emergency operations near
important junctions can be found (Fig. 2c). For tree-related
operations, it seems that maxima of operation occurrence are
not found in forest areas themselves but rather at their bor-
ders with housing areas (e.g. compare the border areas of the
Grunewald in Fig. 2d). This is not unexpected, since major
impacts due to tree fall are not expected in wooden areas but
rather in areas where trees are present in the direct vicinity

of man-made structures (e.g. roadside trees or trees in recre-
ational areas). This implies that only in very few cases can
the modelling of vulnerabilities to (meteorological) hazards
be made in a univariate fashion. Instead, combinations of
multiple factors will determine local vulnerability and con-
sequently those that should be considered.

Examples of the spatial patterns of potential predictors
for vulnerability are given in Fig. 3. Even though building
density (shown in Fig. 3a) and building coverage (Fig. 3b)
are based on the same data (i.e. individual housing informa-
tion as derived from OpenStreetMap), different information
can be extracted. While building density is calculated as the
number of houses per square kilometre, building coverage as-
sesses the area fraction covered by buildings. Hence, building
density is particularly high in suburban areas with numerous
small houses while building coverage is highest in central ar-
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Figure 3. Example set of exposure predictors calculated on a 1× 1 km grid. While building density (a), building coverage (b) and street
density for tertiary roads and higher (c) are based on information extracted from OpenStreetMap data, panel (d) shows the area fraction of
artificial surfaces as derived from the CORINE land cover data set.

eas with concentrated large buildings. Similarly, information
on the density of the road network can be derived from Open-
StreetMap (Fig. 3c). Additional predictor variables from the
CORINE land cover data set are assessed by calculating the
fraction of a grid box that is covered by areas of a specific
CORINE land use type (as one example, Fig. 3d shows the
area fraction of artificial surfaces). Again, quite different in-
formation can be gathered, e.g. when considering the differ-
ent land use types encoded in CORINE. Finally, with respect
to the aim of modelling local vulnerabilities, the characteris-
tics of the local urban structure can be described on the basis
of not one but instead many of these predictor variables.

For the predictor variables listed in Table 3, the spatial cor-
relation to the gridded operations densities is calculated. For
this, only those grid points within Berlin are considered for
which data on operations are available. Furthermore, corre-
lation is assessed for individual alert keywords, as well as

considering all operations. Resulting correlations are listed in
Table 3, with colours indicating positive correlation (in red)
and negative correlations (in blue). Several predictor vari-
ables stand out in this table, in particular the building cov-
erage and the area fraction of continuous urban fabric, which
have high correlations with spatial patterns of operations dis-
regarding their alert keyword. One exception are tree-related
operations for which the correlation with both building cov-
erage and area fraction of continuous urban fabric is consid-
erably lower. Instead, in this case correlations are rather high
for building density and the area fraction of discontinuous ur-
ban fabric. It might be assumed that this is due to the fact that,
particularly in the outskirts of Berlin (with a high number
of small buildings), the vulnerability is increased due to the
presence of trees in gardens (i.e. in the vicinity to buildings).
However, in general it can be deduced that the degree of ur-
banization (both expressed by the area coverage of housing
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Table 3. Spatial correlation coefficients (Pearson correlation) between yearly averaged operation density with exposure predictors. Some
CORINE classes are excluded in this table, if there are no areas in Berlin, and thus the area fraction (AF) is 0 everywhere. High and low
correlations are highlighted in red and blue, respectively.

Predictor All Water-related Traffic obstruct. Tree-related Constr. element Ice and snow Other

Building density 0.24∗∗∗ 0.21∗∗∗ 0.16∗∗∗ 0.49∗∗∗ 0.18∗∗∗ 0.15∗∗∗ 0.17∗∗∗

Building cover 0.79∗∗∗ 0.71∗∗∗ 0.72∗∗∗ 0.62∗∗∗ 0.73∗∗∗ 0.64∗∗∗ 0.7∗∗∗

Street density (all) 0.48∗∗∗ 0.38∗∗∗ 0.58∗∗∗ 0.43∗∗∗ 0.42∗∗∗ 0.29∗∗∗ 0.38∗∗∗

Street density (motorway) 0.05 0.02 0.14∗∗∗ 0.03 0.03 −0.01 0.01
Street density (primary) 0.36∗∗∗ 0.27∗∗∗ 0.53∗∗∗ 0.18∗∗∗ 0.32∗∗∗ 0.23∗∗∗ 0.29∗∗∗

Street density (secondary) 0.54∗∗∗ 0.45∗∗∗ 0.59∗∗∗ 0.39∗∗∗ 0.5∗∗∗ 0.43∗∗∗ 0.47∗∗∗

Street density (tertiary) 0.34∗∗∗ 0.29∗∗∗ 0.37∗∗∗ 0.34∗∗∗ 0.3∗∗∗ 0.21∗∗∗ 0.28∗∗∗

Street density (other) 0.37∗∗∗ 0.29∗∗∗ 0.45∗∗∗ 0.36∗∗∗ 0.31∗∗∗ 0.21∗∗∗ 0.28∗∗∗

Orographic height −0.11∗∗ −0.1∗∗ −0.06 −0.01 −0.14∗∗∗ −0.15∗∗∗ −0.14∗∗∗

Orographic slope 0.02 0.02 −0.02 0.02 0.03 0.04 0.03
AF continuous urban fabric 0.77∗∗∗ 0.71∗∗∗ 0.61∗∗∗ 0.31∗∗∗ 0.81∗∗∗ 0.79∗∗∗ 0.81∗∗∗

AF discontinuous urban fabric 0.25∗∗∗ 0.2∗∗∗ 0.29∗∗∗ 0.58∗∗∗ 0.13∗∗∗ 0.04 0.1∗∗

AF industrial or commercial units −0.03 −0.05 0.1∗∗ −0.11** −0.03 −0.05 −0.06
AF industrial or commercial units 0.04 0.03 0.08* 0.03 0.04 0.02 0.03
AF port areas 0.01 −0.01 0.08∗ 0 −0.01 −0.01 −0.01
AF airports −0.03 −0.02 −0.03 −0.09∗∗ −0.01 0 −0.01
AF dump sites −0.02 −0.02 −0.03 −0.03 −0.02 −0.01 −0.02
AF construction sites 0.06 0.05 0.07∗ 0.03 0.05 0.04 0.08∗

AF green urban areas 0 −0.01 0.02 −0.04 0 −0.01 −0.01
AF sport and leisure facilities −0.1∗∗ −0.1∗∗ −0.06 −0.08∗ −0.1∗∗ −0.09∗∗ −0.09∗∗

AF non-irrigated arable land −0.18∗∗∗ −0.15∗∗∗ −0.2∗∗∗ −0.21∗∗∗ −0.15∗∗∗ −0.11∗∗ −0.13∗∗∗

AF fruit trees and berry plantations −0.02 −0.02 −0.02 −0.02 −0.01 −0.02 −0.02
AF pastures −0.09∗∗ −0.08∗ −0.1∗∗ −0.1∗∗ −0.08∗ −0.06 −0.07∗

AF complex cultivation patterns −0.04 −0.03 −0.04 −0.05 −0.03 −0.02 −0.03
AF agricultural land −0.08∗ −0.06 −0.09∗ −0.11∗∗∗ −0.06 −0.05 −0.06
AF broadleaved forest −0.22∗∗∗ −0.19∗∗∗ −0.25∗∗∗ −0.21∗∗∗ −0.19∗∗∗ −0.14∗∗∗ −0.17∗∗∗

AF coniferous forest −0.29∗∗∗ −0.24∗∗∗ −0.33∗∗∗ −0.37∗∗∗ −0.23∗∗∗ −0.17∗∗∗ −0.21∗∗∗

AF mixed forest −0.15∗∗∗ −0.12∗∗∗ −0.18∗∗∗ −0.16∗∗∗ −0.13∗∗∗ −0.09∗∗ −0.11∗∗∗

AF natural grasslands −0.05 −0.04 −0.04 −0.07∗ −0.04 −0.03 −0.03
AF transitional woodland shrub −0.08∗ −0.06 −0.08∗ −0.11∗∗ −0.06 −0.04 −0.05
AF inland marshes −0.05 −0.04 −0.05 −0.05 −0.04 −0.03 −0.03
AF water courses 0.01 −0.01 0.06 −0.04 0.01 0.01 0.01
AF water bodies −0.17∗∗∗ −0.14∗∗∗ −0.2∗∗∗ −0.2∗∗∗ −0.14∗∗∗ −0.09∗ −0.12∗∗∗

Significance is indicated if p value is below 0.05 (∗), below 0.01 (∗∗) and below 0.001 (∗∗∗).

and indicated by continuous urban fabric areas) plays a major
role in determining highly vulnerable areas. Both variables
can be interpreted as a proxy for the number of “objects” at
harm (e.g. the number of basements or drainage systems in
the case of water-related emergencies). For tree-related oper-
ations, the picture is quite different, however. Operation den-
sities are particularly high in areas of discontinuous urban
fabric and seem to be enhanced in areas of high building den-
sities (i.e. the number of houses per square kilometre). Both
indicate that tree-related operations are more likely in less
densely covered urban areas, where assumedly more road-
side trees or trees as part of recreational areas can be found
in close vicinity to building structures. Considering area frac-
tion of wooded areas (particularly coniferous forests), neg-
ative correlations with operations of all alert keywords are
found. This can be explained by the fact that this variable
is essentially inverted in areas with a high fraction covered
by urban structures. Interestingly, tree-related operations are

also negatively correlated to areas with a high fraction of
wooded areas. This indicated that it is not areas with many
trees which are particularly vulnerable, but instead areas in
which trees are found in the vicinity of man-made structures.
Considering the density of the road network it is found that
positive correlation with the patterns of each individual alert
keyword exists. This holds in particular for the secondary and
tertiary road networks. A simple explanation for this is that
areas in which a high density of secondary and tertiary roads
exists mostly coincide with areas of high building coverage.
Additionally, it can be found that correlations of road den-
sity patterns are highest with respect to operations related to
traffic obstruction. This is due to the fact that traffic obstruc-
tions are more likely to occur in areas with a high density
of roads. All the above-mentioned findings show that even
though there is no complete correspondence between indi-
vidual predictors and the occurrence of operations, numer-
ous predictors can be found explaining a share of the spatial
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Figure 4. Results of the iterative procedure to optimize the regres-
sion model. Increasing the penalty term for additional predictors
leads to a model with smaller sets of predictor variables. For each of
the resulting predictor sets and the corresponding multiple regres-
sion, the mean cross-validation error (MSCVE) is calculated and
plotted here. Blue circles represent validation results using a lin-
ear regression, orange circles represent results using the lognormal
model and red circles represent results using a poisson regression.

variability of weather impacts. This shall be investigated in
the following by building multivariate models to statistically
describe the spatial patterns of operation occurrences.

4.3 Multivariate modelling of the occurrence of fire
brigade operations

The set of predictors described above is used to set up a mul-
tivariate model to be able to predict the local occurrence rate
of operations. As described in Sect. 3, the iterative procedure
consists of the repeated application of a parameter selection
algorithm while iteratively increasing the penalty for addi-
tional model parameters. The optimal model is then chosen
by means of the cross-validation error (to prevent overfitting
and estimate the predictive ability of the resulting model). As
an example, the results of this iterative procedure are shown
in Fig. 4 for water-related operations. For the linear model
the optimal model is identified having 12 predictor variables
(which is the result of choosing k = 1 as the penalty weight).
Choosing a lower weight of 0 obviously results in a model
taking into account all 33 possible predictors featuring severe
overfitting (mean square cross-validation error (MSCVE) is
about 4000 in this case). The procedure is applied to fire
brigade operations associated with individual alert keywords,
as well as all operations together. For the latter, the resulting
optimal model includes a set of 12 predictor variables (listed
in Table 4), explaining 83 % of the variance in the spatial pat-

tern of operations. In accordance to the correlation analysis,
the predictor “building coverage” possesses the highest con-
tribution to the explained variation (EV= 59 %) while lower
contributions are found for other variables (e.g. “area frac-
tion continuous urban fabric” contributes 11 % and “building
density” 6 %). Of course, there is not a direct correspondence
when comparing the EV of individual predictor variables to
the correlations as listed in Table 4, since certain predictor
variables might be strongly correlated (multicollinearity; see
Sect. 3.3). By adding a predictor which is correlated to pre-
dictors already in the model, the increase in model perfor-
mance might be small even though the correlation to the pre-
dictant is high. The results described above apply to a basic
linear model. Alternatively, the predictor selection method-
ology can be applied while using alternative models, i.e. a
log-normal and a Poisson model. Results showed that, in gen-
eral, predictive abilities of the statistical models (in terms of
the cross-validation error) are not increased (not shown). By
means of the MSCVE, the linear models appear to perform
best. However, the linear model suffers from the disadvan-
tage of predicting negative values for the number of emer-
gency calls in some cases, while both log-normal and Pois-
son models do not. It should be noted that the different mod-
els may contain a different set and even different number of
predictors. The comparison of individual regression param-
eters is thus difficult. However, models can be compared in
terms of their predictive skill. In the following, results are
shown using the linear model, performing best in terms of
the predictive skill (assessed by means of the MSCVE).

In comparison with the maps shown in Fig. 2, Fig. 5 shows
model predictions for the average number of operations on a
1× 1 km grid cell. In the case considering all emergency op-
erations (Fig. 5a) or only water related (Fig. 5b), the model
nicely reproduces the concentration of operation occurrences
in central parts of Berlin, while especially forest areas such
as the Grunewald feature very low occurrence rates. In addi-
tion, the amplitude of this variation (ranging from 0 to about
80 operations per km2 per year considering all operations)
is well captured. Individual hotspots of high operation oc-
currence rates, however, are only partly reproduced. This is
particularly the case for a hotspot in the south-east of Berlin
centre (Fig. 2a and b, corresponding to northern parts of the
district Neukölln). In this area particularly, water-related op-
erations are very high. It is possible that this is influenced by
an extraordinarily high population density in these areas, in-
formation which is only partly (and indirectly) covered by
predictor variables such as building coverage. Also, other
factors such as housing conditions or very localized troughs
(potentially leading to water accumulation in the case of se-
vere rain) might also affect the occurrence of emergency op-
erations. Such information, however, was available for this
study and thus cannot be taken into account.

Also in the case of traffic-, and tree-, related operations,
predicted patterns (shown in Fig. 5c, d) reproduce observed
patterns rather well. In both cases occurrence rates are less

www.nat-hazards-earth-syst-sci.net/18/1617/2018/ Nat. Hazards Earth Syst. Sci., 18, 1617–1631, 2018



1628 T. Pardowitz: A statistical model

Table 4. Resulting optimal models. First column indicates the number of predictors as well as the total explained variation (EV) of the chosen
optimal model (according to the cross-validation error). The leading predictors of each model are shown indicating weather a positive (+) or
negative effect (−) is found. In the last column, EV in percent is given for these leading predictors. Within the table, predictors are shown if
they have an EV > 1 %.

Model Predictor Estimate Std. error Significance EV (%)

All operations Building cover 12.7 6.5 ∗∗∗ 58.8
12 predictors; EV: 83 % Area fraction “continuous urban fabric” 31.6 3.0 ∗∗∗ 10.8

Building density −0.0031 0.0009 ∗∗∗ 5.9
Area fraction “industrial or commercial units” −22.8 1.9 ∗∗∗ 2.8
Street density (secondary) 2.01 0.26 ∗∗∗ 2.6
Street density (primary) 1.72 0.34 ∗∗∗ 1.2

Water-related Building cover 62.3 3.8 ∗∗∗ 47.8
7 predictors, EV: 69 % Area fraction “industrial or commercial units” −11.3 1.1 ∗∗∗ 11.3

Building density −0.0017 0.0005 ∗∗∗ 4.2
Area fraction “continuous urban fabric” 12.2 1.8 ∗∗∗ 1.7
Area fraction “discontinuous urban fabric” −11.3 1.1 ∗∗∗ 1.5

Traffic obstruction Building cover 14.1 1.3 ∗∗∗ 53.9
8 predictors, EV: 78 % Street density (primary) 1.65 0.08 ∗∗∗ 9.3

Street density (secondary) 1.03 0.06 ∗∗∗ 7.7
Building density −0.0010 0.0002 ∗∗∗ 2.6

Area fraction “continuous urban fabric” 4.0 0.5 ∗∗∗ 2.1
Street density (motorway) 1.0 0.1 ∗∗∗ 1.5

Tree-related Building cover 11.4 0.6 ∗∗∗ 38.7
4 predictors, EV: 53 % Area fraction “discontinuous urban fabric” 1.4 0.1 ∗∗∗ 9.5

Area fraction “industrial or commercial units” −2.4 0.3 ∗∗∗ 3.8

Construction element Building cover 23.2 1.2 ∗∗∗ 54.3
8 predictors, EV: 81 % Area fraction “industrial or commercial units” −4.2 0.4 ∗∗∗ 12.9

Area fraction “discontinuous urban fabric” −1.6 0.2 ∗∗∗ 5.3
Area fraction “continuous urban fabric” 7.8 0.6 ∗∗∗ 4.0
Building density −0.0005 0.0001 ∗∗ 3.2

Ice and snow Building cover 4.5 0.3 ∗∗∗ 40.4
8 predictors, EV: 72 % Area fraction “continuous urban fabric” 1.9 0.2 ∗∗∗ 24.7

Street density (secondary) 0.05 0.01 ∗∗∗ 2.7
Area fraction “industrial or commercial units” −0.9 0.1 ∗∗∗ 2.3
Street density (all) −0.006 0.002 ∗ 1.6

Others Building cover 14.8 0.9 ∗∗∗ 48.5
6 predictors, EV: 78 % Area fraction “industrial or commercial units” −3.0 0.3 ∗∗∗ 14.2

Area fraction “discontinuous urban fabric” −1.4 0.2 ∗∗∗ 9.0
Area fraction “continuous urban fabric” 5.3 0.4 ∗∗∗ 4.1
Street density (secondary) 0.14 0.03 ∗∗∗ 1.1
Area fraction “sport and leisure facilities” −1.1 0.3 ∗∗∗ 1.1

Significance is indicated if p value is below 0.05 (∗), below 0.01 (∗∗) and below 0.001 (∗∗∗).

concentrated in central parts of Berlin but are more widely
distributed across Berlin. Particularly in the case of tree-
related operations, model predictions show a rather homoge-
neous distribution over large parts of Berlin (Fig. 5d), while
local maxima in the observed operation density (Fig. 2d) are
poorly captured. Considering the EV for the different mod-
els, it is confirmed that for tree-related operations the predic-
tive ability of the model is the worst, with an EV of 53 %. In

comparison, the model for all operations has an EV of 83 %
(Table 4).

5 Conclusions and discussion

A comparison of a new data set containing spatial and tem-
poral information on emergency operations of the Berlin fire
brigade with damage data has been performed. Spatial pat-

Nat. Hazards Earth Syst. Sci., 18, 1617–1631, 2018 www.nat-hazards-earth-syst-sci.net/18/1617/2018/



T. Pardowitz: A statistical model 1629

Figure 5. Modelled mean yearly density of fire brigade operations (units: operations per square kilometre per year). Results are shown for
the model including all operations disregarding their type (a), for water-related operations (b), for traffic obstructions (c) and for tree-related
operations (d).

terns can be derived and correspondences amongst both im-
pact data sets can be found. However, a complex interplay of
meteorological conditions leads to a variety of weather im-
pacts, making it very hard to directly compare the data sets.
Instead, the availability of both data sets might be consid-
ered as particularly valuable for the reconstructing the multi-
faceted impacts of severe weather events.

The relation to predictor variables (i.e. the structure of
settlement as well as characteristics of land use) has been
addressed by means of an analysis of spatial correlations.
Particularly the information on the local building coverage
shows a rather high influence on the occurrence of opera-
tions. Accordingly, areas classified as continuous urban fab-
ric (within the CORINE land cover data set) exhibit high
rates of fire brigade operations. By analysing individual alert
keywords, other variables turn out as valuable predictors. For

example, in the case of traffic-related operation these include
the local density of the road network. In the case of tree-
related operations, the areas classified as discontinuous urban
fabric correlate with high occurrence rates. One interpreta-
tion is that in these areas a higher number of trees are present
in the direct vicinity of man-made structures (e.g. roadside
trees or trees in recreational areas).

Multivariate modelling including an iterative prediction
selection algorithm has been conducted, with resulting mod-
els being able to predict the local vulnerabilities. Evaluation
of models showed moderate model performances for tree-
related operation occurrences (explained variation of 53 %),
while for other types of operations – i.e. water-related, traffic-
related, or all operations combined – model results were bet-
ter (explained variation of 70–80 %). In all cases, spatial pat-
terns of operation occurrences can be reproduced well. Ex-
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cept for tree-related operations, the amplitude of variations
can also be reproduced. However, individual hotspots with
high occurrence rates are only insufficiently predicted, indi-
cating that particular information influencing the local vul-
nerabilities is not included in the predictor variables avail-
able in this study. In the case of water-related operations,
these might include housing conditions. Also, information
on local tree stocks, particularly in the vicinity of vulnerable
structures might be very valuable to better model tree-related
operation occurrences.

Table 4 serves as an overview of the most relevant param-
eters to describe the local vulnerability to severe weather,
which can be the starting point for further investigations.
While many details on individual predictor variables and
their descriptive power with respect to specific types of oper-
ations are available, a common feature is identified, namely
the fact that the building coverage is by far the most dominant
factor to describe the local vulnerability.

The model has been developed and tested for the Berlin
area due to the availability of fire brigade operation records
for Berlin. However, model predictions can be derived for
the whole of Germany. Such model predictions might be par-
ticularly valuable for regions with no systematic records on
weather impacts. However, such extrapolation might suffer
from potentially severe limitations. The occurrence of se-
vere weather conditions is not homogenous over Germany,
with storm frequencies being higher in northern regions and
thunderstorm frequencies being higher in southern regions.
Thus, the distribution of hazards causing local impacts can
differ considerably, which will certainly affect the occurrence
of emergency operations. Such effects are excluded in the
presented modelling approach, which assume a homogenous
distribution of hazards. For the investigation of Berlin this is
certainly a valid assumption. The extraction of model pre-
dictions for other urban areas might suffer from an offset
in terms of absolute number of operations. Such model pre-
dictions can, however, still be very valuable since they can
provide information on spatial variation in operation occur-
rences on a sub-city scale. Still, future work should include
meteorological and climatological information on different
hazards, which will strongly influence local vulnerability and
thus predicted weather impacts.

The presented model to predict the local vulnerability
to severe weather can serve as a basis for a broad range
of tools or applications in emergency management. These
might include tools for the long-term resource planning of lo-
cal emergency management capacities. Also, handling short-
term variations in the demand of local emergency manage-
ment capacities might be supported by such tools when in-
cluding actual weather information. In this study, we fo-
cussed on data sets which are publicly available – partly
open-source community data – for at least the whole of Eu-
rope. This yields great potential for the design of national
or even pan-European tools and applications in emergency
management.

Data availability. The dataset on weather related operations of the
Berlin fire department is not publicly available due to the sensitiv-
ity of data. Inquiries concerning data usage should be directed to
the Berlin fire brigade. The data set on insured losses is property
of the Gesamtverband der Deutschen Versicherungswirtschaft e.V.
(GDV) and not available to the public. Inquiries concerning data
usage should be directed to GDV. Open Street Map data is freely
available for download at: http://www.openstreetmap.org. Techni-
cal details on the CORINE Landcover dataset can be found in Büt-
tner et al. (2012) and data is available at: https://www.eea.europa.eu/
data-and-maps/data/clc-2006-vector-data-version-2. Data from the
digital elevation model dgm200 (GeoBasis-DE/BKG 2016) can be
retrieved from the Geodatenzentrum (http://www.geodatenzentrum.
de/). The GTOPO30 dataset is available at: https://lta.cr.usgs.gov/
GTOPO30.
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