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Abstract. Feedback via simulation tools is likely to help
people improve their decision-making against natural dis-
asters. However, little is known on how differing strengths
of experiential feedback and feedback’s availability in sim-
ulation tools influence people’s decisions against landslides.
We tested the influence of differing strengths of experiential
feedback and feedback’s availability on people’s decisions
against landslides in Mandi, Himachal Pradesh, India. Ex-
periential feedback (high or low) and feedback’s availability
(present or absent) were varied across four between-subject
conditions in a tool called the Interactive Landslide Simula-
tion (ILS): high damage with feedback present, high damage
with feedback absent, low damage with feedback present,
and low damage with feedback absent. In high-damage con-
ditions, the probabilities of damages to life and property due
to landslides were 10 times higher than those in the low-
damage conditions. In feedback-present conditions, experi-
ential feedback was provided in numeric, text, and graphical
formats in ILS. In feedback-absent conditions, the probabili-
ties of damages were described; however, there was no expe-
riential feedback present. Investments were greater in condi-
tions where experiential feedback was present and damages
were high compared to conditions where experiential feed-
back was absent and damages were low. Furthermore, only
high-damage feedback produced learning in ILS. Simulation
tools like ILS seem appropriate for landslide risk communi-
cation and for performing what-if analyses.

1 Introduction

Landslides cause massive damages to life and property
worldwide (Chaturvedi et al., 2014; Chaturvedi and Dutt,
2015; Margottini et al., 2011). Imparting knowledge about
landslide causes and consequences and spreading awareness
about landslide disaster mitigation are likely to be effective
ways of managing landslide risks. The former approach sup-
ports structural protection measures that are likely to help
people take mitigation actions and reduce the probability of
landslides (Becker et al., 2013; Osuret et al., 2016; Webb and
Ronan, 2014). In contrast, the latter approach likely reduces
people’s and assets’ perceived vulnerability to risk. However,
it does not influence the physical processes. One needs effec-
tive landslide risk communication systems (RCSs) to educate
people about cause-and-effect relationships concerning land-
slides (Glade et al., 2005). To be effective, these RCSs should
possess five main components (Rogers and Tsirkunov, 2011):
monitoring, analysing, risk communication, warning dissem-
ination, and capacity building.

Among these components, prior research has focused on
monitoring and analysing the occurrence of landslide events
(Dai et al., 2002; Montrasio et al., 2011). For example, there
exist various statistical and process-based models for pre-
dicting landslides (Dai et al., 2002; Montrasio et al., 2011;
Reder et al., 2018; Segoni et al., 2018; Vaz et al., 2018).
Several satellite-based and sensor-based landslide monitor-
ing systems are being used in landslide RCSs (Hong et al.,
2006; Quanshah et al., 2010; Rogers et al., 2011; Frodella
et al., 2017; Intrieri et al., 2017). To be effective, however,
landslide RCSs need not only be based upon sound scien-
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tific models, but they also need to consider human factors,
i.e. the knowledge and understanding of people residing in
landslide-prone areas (Meissen and Voisard, 2008). Thus,
there is an urgent need to focus on the development, evalua-
tion, and improvement of risk communication, warning dis-
semination, and capacity-building measures in RCSs.

Improvements in risk communication strategies are likely
to help people understand the cause-and-effect processes
concerning landslides and help them improve their decision-
making against these natural disasters (Grasso and Singh,
2009). However, surveys conducted among communities in
landslide-prone areas (including those in northern India)
have shown a lack of awareness and understanding among
people about landslide risks (Chaturvedi and Dutt, 2015;
Oven, 2009; Wanasolo, 2012). In a survey conducted in
Mandi, India, Chaturvedi and Dutt (2015) found that 60 %
of people surveyed were not able to answer questions on
landslide susceptibility maps, which were prepared by ex-
perts. Also, Chaturvedi and Dutt (2015) found that a sizeable
population reported landslides to be “acts of God” (39 %)
and attributed activities like “shifting of temple” as causing
landslides (17 %). These results are surprising as the literacy
rate in Mandi and surrounding areas is quite high (81.5 %)
(Census, 2011), and these results show numerous miscon-
ceptions about landslides among people in landslide-prone
areas. Overall, urgent measures need to be taken that im-
prove public understanding and awareness about landslides
in affected areas.

Promising recent research has shown that experiential
feedback in simulation tools likely helps improve public un-
derstanding about dynamics of physical systems (Chaturvedi
et al., 2017; Dutt and Gonzalez, 2010; 2011; 2012; Fischer,
2008). Dutt and Gonzalez (2012) developed a dynamic cli-
mate change simulator (DCCS) tool, which was based upon
a more generic stock-and-flow task (Gonzalez and Dutt,
2011a). The authors provided frequent feedback on cause-
and-effect relationships concerning Earth’s climate in DCCS,
and this experiential feedback helped people reduce their cli-
mate misconceptions compared to a no-DCCS intervention.
Although the prior literature has investigated the role of fre-
quency of feedback about inputs and outputs in physical sys-
tems, little is known on how differing strengths of experi-
ential feedback (i.e. differing probabilities of damages due
to landslides) influence people’s decisions over time. Also,
little is known on how experiential feedback’s availability
(presence or absence) in simulation tools influences people’s
decisions.

The primary goal of this research is to evaluate how differ-
ing strengths of experiential feedback and feedback’s avail-
ability influence people’s mitigation decisions against land-
slides. A study of how the strength of experiential feedback
influences people’s decisions against landslides is important
because people’s experience of landslide consequences due
to differing probabilities of landslide damages could range
from no damages at all to large damages involving several

injuries, infrastructure damages, and deaths. Thus, due to dif-
fering probabilities of landslide damages, some people may
experience severe landslide damages and consider landslides
to be a serious problem requiring immediate actions, whereas
other people may experience no damages and consider land-
slides to be a trivial problem requiring very little attention.

In addition, the availability of feedback in simulation tools
is also likely to influence people’s decisions against land-
slides. When feedback is absent, people are only likely to ac-
quire descriptive knowledge about the cause-and-effect rela-
tionships governing the landslide dynamics (Dutt and Gonza-
lez, 2010). However, when feedback is present, people get to
repeatedly experience the positive or negative consequences
of their decisions against landslide risks (Dutt and Gonzalez,
2010, 2011). This repeated experience will likely help peo-
ple understand the cause-and-effect relationships governing
the landslide dynamics.

Chaturvedi et al. (2017) proposed a computer-simulation
tool, called the Interactive Landslide Simulator (ILS). The
ILS tool is based upon a landslide model that considers the
influence of both human factors and physical factors on land-
slide dynamics. Thus, in ILS, both physical factors (e.g. spa-
tial geology and rainfall) and human factors (e.g. monetary
contributions to mitigate landslides) influence the probabil-
ity of catastrophic landslides. In a preliminary investigation
involving the ILS tool, Chaturvedi et al. (2017) varied the
probability of damages due to landslides at two levels: low
probability and high probability. The high probability was set
about 10 times higher than the low probability. People were
asked to make monetary investment decisions, where peo-
ple’s monetary payments would be used for mitigating land-
slides (e.g. by building a retaining wall, planned road con-
struction, provision of proper drainage or by planting crops
with long roots in landslide-prone areas; please see Patra and
Devi (2015) for a review of such mitigation measures). Peo-
ple’s investments were significantly greater when the dam-
age probability was high than when this probability was low.
However, Chaturvedi et al. (2017) did not fully evaluate the
effectiveness of experiential feedback of damages in the ILS
tool against control conditions where this experiential feed-
back was not present. Also, Chaturvedi et al. (2017) did not
investigate people’s investment decisions over time and cer-
tain strategies in ILS, where these decisions and strategies
would be indicative of learning of landslide dynamics in the
tool.

The prior literature on learning from experiential feedback
(Baumeister et al., 2007; Dutt and Gonzalez, 2012; Finu-
cane et al., 2000; Knutti, 2005; Reis and Judd, 2013; Wag-
ner, 2007) suggests that increasing the strength of damage
feedback by increasing the probabilities of landslide dam-
ages in simulation tools would likely increase people’s miti-
gation decisions. That is because a high probability of land-
slide damages will make people suffer monetary losses, and
people would tend to minimize these losses by increasing
their mitigation actions over time. It is also expected that the
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presence of experiential feedback about damages in simula-
tion tools is likely to increase people’s landslide mitigation
actions over time (Dutt and Gonzalez, 2010, 2011, 2012).
That is because the experiential feedback about damages will
likely enable people to make decisions and see the conse-
quences of their decisions; however, the absence of this feed-
back will not allow people to observe the consequences of
their decisions once these decisions have been made (Dutt
and Gonzalez, 2012). At first glance, these explanations may
seem to assume people to be economically rational individu-
als while facing landslide disasters (Bossaerts and Murawski,
2015; von Neumann and Morgenstern, 1947), where one dis-
regards people’s bounded rationality, risk perceptions, atti-
tudes, and behaviours (De Martino et al., 2006; Gigeren-
zer and Selten, 2002; Kahneman and Tversky, 1979; Simon,
1959; Slovic et al., 2005; Thaler and Sunstein, 2008; Tversky
and Kahneman, 1992). However, in this paper, we consider
people to be bounded rational agents (Gigerenzer and Sel-
ten, 2002; Simon, 1959), who tend to minimize their losses
against landslides slowly over time via a trial-and-error learn-
ing process driven by personal experience in an uncertain en-
vironment (Dutt and Gonzalez, 2010; Slovic et al., 2005).

In this paper, we evaluate the influence of differing
strengths of experiential feedback about landslide-related
damages and the experiential feedback’s availability in the
ILS tool. More specifically, we test whether people increase
their mitigation actions in the presence of experiential dam-
age feedback compared to in the absence of this feedback. In
addition, we evaluate how different probabilities of damages
influence people’s mitigation actions in the ILS tool. Further-
more, we also analyse people’s mitigation actions over time
across different conditions.

In what follows, first, we detail the characteristics of the
study area and then a computational model on landslide risks
that considers the role of both human factors and physical
factors. Next, we detail the working of the ILS tool, i.e. based
on the landslide model. Furthermore, we use the ILS tool in
an experiment to evaluate the influence of differing strengths
of experiential feedback and feedback’s availability on peo-
ple’s decisions. Finally, we close this paper by discussing our
results and detailing the benefits of using tools like ILS for
communicating landslide risks in the real world.

2 Study area

In this paper, the study area was one involving the local
communities living in Mandi (31.58◦ N, 76.91◦ E), a town-
ship located in the state of Himachal Pradesh, India (see
Fig. 1). Mandi has an average elevation of 850 m a.m.s.l.
(above mean-sea level), 23 km2 area, and a population of
26 422 people (Census, 2011). Literacy rate in Mandi is
81.5 %, and most of the population are Hindus by religion.
Mandi is a highly religious place with a huge number of
Hindu temples all around the town (Census, 2011). Geologi-

cally, Mandi is located on the folds of the Lesser Himalayas,
and it lies in the earthquake Zone IV and V, the highest earth-
quake zones in the world (Hpsdma, 2017). Apart from in-
herent geological weaknesses that may cause landslides in
Mandi, other anthropogenic activities such as road construc-
tion, deforestation of hill slopes, building construction on
slopes, and debris dumping may also trigger landslides in the
area surrounding the town (Hpsdma, 2017). As per Kahlon
et al. (2014), around 90 % of Mandi is prone to landslides,
where 25 % of this area falls under the severe landslide haz-
ard risk category. Of the 919 landslide events that occurred
in Himachal Pradesh during the past 39 years (from 1971
to 2009), 99 of them (11 %) were in Mandi, making it the
fourth-highest-ranked district in terms of number of land-
slides, behind Shimla, Solan, and Kinnaur (Kahlon et al.,
2014). The problem of landslides is accelerated in the mon-
soon season (mid-June to mid-September) in the town. The
per-capita income of people in Mandi is close to INR 292
(∼USD 4.48 or EUR 3.63) per day (Census, 2011). In addi-
tion, as per the tenancy laws of Himachal Pradesh, most peo-
ple own land, which cannot be sold to people from outside
the state (Himachal, 2012). The average per-capita property
value in the state would be close to INR 20 million (Census,
2011). These values of per-capita daily income and property
wealth were used in the ILS tool, and these values are de-
tailed ahead in this paper. Furthermore, the prevailing rain-
fall pattern and the landslide hazard zonation (LHZ) map of
Mandi, which were used in the ILS tool, are also detailed
ahead in this paper.

3 Computational model of landslide risk

Chaturvedi et al. (2017) proposed a computational model for
simulating landslide risks that was based upon the integra-
tion of human and physical factors (see Fig. 2). Here, we
briefly detail this model and use it in the ILS tool for our
experiment (reported ahead). As seen in Fig. 2, the proba-
bility of landslides due to human factors in the ILS tool is
adapted from a model suggested by Hasson et al. (2010) (see
box 1.1 in Fig. 2). In the model of Hasson et al. (2010), the
probability of a disaster (e.g. landslide) due to human fac-
tors (e.g. investment) was a function of the cumulative mon-
etary contributions made by participants to avert the disaster
from the total endowment available to participants. Thus, in-
vesting against disaster in mitigation measures reduces the
probability of disaster, and not investing in mitigation mea-
sures increases the probability of disaster. However, by re-
ducing the landslide risk, people also have less ability to en-
gage in other profitable investments due to loss in revenue.
Although we assume this model to incorporate human miti-
gation actions in the ILS tool, there may also be other model
assumptions possible where certain detrimental human ac-
tions (e.g. deforestation) may increase the probability of
landslides or the risk of landslides (where risk= probability
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Figure 1. 3-D satellite view of Mandi and adjoining areas. The town is located in a valley around the Beas River with high mountains that
are prone to landslides on both sides. Source: Google Maps.

(hazard)× consequence). We plan to consider such model as-
sumptions as part of our future research. In addition, there
may be contributions made by the national, regional, and lo-
cal governments to provide protection measures against land-
slides in addition to the investments made by people residing
in the area (Hpsdma, 2017). Such investments may be made
based upon the past occurrences of landslides in the study
area. Furthermore, people may also be able to buy insurance
that covers the damages caused by landslides. However, in
India, in the absence of assistance from the government, peo-
ple tend to rely on their own wealth for adaptation to land-
slide occurrence. Thus, purchasing insurance against disas-
ters is less common and unpopular as insurance companies
mostly do not pay insured amounts in the event of natural dis-
asters like landslides (ICICI, 2018). In this paper, we restrict
our analyses to only people’s own investments influencing
landslides. We plan to consider the role of government con-
tributions to mitigation and adaptation (mostly after landslide
events) and partial insurance payments as part of our future
research.

Furthermore, in the landslide model, the probability of
landslides due to physical (natural) factors (see box 1.2 in
Fig. 2) is a function of the prevailing rainfall conditions and
the nature of geology in the area (Mathew et al., 2013). In
this paper, we restrict our focus to considering only weather
(rainfall)-induced landslides. As shown in Fig. 2, the ILS
model focuses on calculation of total probability of land-
slide (due to physical and human factors) (box 1.3 in Fig. 2).
This total probability of landslide is calculated as a weighted

Figure 2. Probabilistic model of the Interactive Landslide Simulator
tool. Figure adapted from Chaturvedi et al. (2017).

sum of probability of landslide due to physical factors and
probability of landslide due to human factors. Furthermore,
the model simulates different types of damages caused by
landslides and their effects on people’s earnings (box 1.4 in
Fig. 2).

3.1 Total probability of landslides

As described by Chaturvedi et al. (2017), the total probability
of landslides is a function of landslide probabilities due to
human factors and physical factors. This total probability of
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landslides can be represented as the following:

P (T )= (W ·P (I)+ (1−W) ·P (E)) (1)

Where W is a free weight parameter in [0, 1]. The total
probability formula involves calculation of two probabilities,
probability of landslide due to human investments (P(I))
and probability of landslide due to physical factors (P(E)).
These probabilities have been defined below. According to
Eq. (1), the total probability of landslides will change based
upon both human decisions and environmental factors over
time. In the ILS model, we simulate the total probability
of landslides P(T ), where a landslide occurs when a uni-
formly distributed random number (∼ U(0,1)) is less than
or equal to P(T ) on a certain day. If a uniformly distributed
random number in [0, 1] (U(0,1)) is less than or equal to a
point probability value, then it simulates this point probabil-
ity value. For example, if U(0,1)≤ 30 %, then U(0,1) will
be less than or equal to the 30 % value exactly 30 % of the to-
tal number of times it is simulated; thus this random process
will simulate a 30 % probability value.

3.1.1 Probability of landslide due to human
investments (P(I))

As suggested by Chaturvedi et al. (2017), the probability
P(I) is calculated using the probability model suggested by
Hasson et al. (2010). In this model, P(I) is directly propor-
tional to the amount of money invested by participants for
landslide mitigation. The probability of landslide due to hu-
man investments is

P (I)= 1−
M ·

∑n
i=1xi

n ·B
. (2)

B represents the budget available towards addressing land-
slides for a day (if a person earns an income or salary, then B
is the same as this income or salary earned in a day). n repre-
sents the number of days. xi represents the investments made
by a person for each day i to mitigate landslides; xi ≤ B.
M represents return to mitigation, which is a free parame-
ter and captures the lower bound probability of P(I); i.e.
P(I)= 1−M when a person puts her entire budget B into
landslide mitigation (

∑n
i=1xi = n ·B); 0≤M ≤ 1.

People’s monetary investments (xi) are for mitigation
measures like building retaining walls or planting long-root
crops.

3.1.2 Probability of landslide due to physical factors
(P(E))

Some of the physical factors impacting landslides include
rainfall, soil types, and slope profiles (Chaturvedi et al., 2017;
Dai et al., 2002). These factors can be categorized into two
categories:

1. probability of landslide due to rainfall (P(R)),

2. probability of landslide due to soil types and slope pro-
files (spatial probability, P(S)).

For the sake of simplicity, we have assumed that P(S) is in-
dependent of P(R). Thus, given P(R) and P(S), the prob-
ability of landslide due to physical factors, P(E), is defined
as

P (E)= P (R) ·P (S) . (3)

In the first step, P(R) is calculated based upon a logistic-
regression model (Mathew et al., 2013) as follows:

P(R)=
1

1+ e−z
, (4a)

z=−3.817 + (DR) · 0.077 + (3DCR) · 0.058
+ (30DAR) · 0.009 z : (−∞, +∞), (4b)

where DR, 3DCR, and 30DAR are the daily rainfall, the 3-
day cumulative rainfall, and the 30-day antecedent rainfall in
the study area, respectively. This model in Eqs. (4a) and (4b)
was developed for the study area by Mathew et al. (2013),
and we have used the same model in this paper. The rainfall
parameters in the model were calculated from the daily rain
data from the Indian Metrological Department (IMD). We
compared the shape of the P(R) distribution by averaging
rainfall data over the past 5 years with the shape of the P(R)
distribution by averaging rainfall data over the past 30 years.
This comparison revealed that there were no statistical dif-
ferences between these two distributions. Thus, we used the
daily rainfall data averaged over the past 5 years (2010–2014)
to find the average rainfall values on each day out of the
365 days in a year. Next, these averaged rainfall values were
put into Eqs. (4a) and (4b) to generate the landslide probabil-
ity due to rainfall (P(R)) over an entire year. Figure 3 shows
the resulting shape of P(R) distribution as a function of days
in the year for the study area. Due to the monsoon period
in India during mid-June–mid-September, there is a peak in
the P(R) distribution curve during these months. Depending
upon the start date in the ILS tool, one could read P(R) val-
ues from Fig. 3 as the probability of landslides due to rainfall
on a certain day in the year. This P(R) function was assumed
to possess the same shape across all participants in the ILS
tool.

The second step is to evaluate the spatial probability of
landslides, P(S). The determination of P(S) is done from
the LHZ map of the study area (see Fig. 4a; Anbalagan, 1992;
Chaturvedi et al., 2017; Clerici et al., 2002), which provides
the landslide susceptibility of the area and is based on various
landslide causative factors in the study area (e.g. geology, ge-
ometry, and geomorphology). As shown in Fig. 4a, we com-
puted the spatial probability of landslides in the study area
based upon the total estimated hazard (THED) rating of dif-
ferent locations on a LHZ map (see legend) and their surface
area of coverage (the maximum possible value of THED is
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Figure 3. Probability of landslide due to rainfall over days for
the study area. The probability was generated by using Eqs. (4a)
and (4b).

11.0, and its minimum possible value is 0.0). Table 1 pro-
vides the THED scale to report the susceptibility of an area
to landslides (Anbalagan, 1992).

First, from Table 1, the critical THED values (e.g. 3.5, 5.0,
6.5, and 8.0) were converted into a probability value by di-
viding by the highest THED value (= 11.0). Next, we used
the LHZ map of the study area (Fig. 4a) to find the surface
area that was in a hazard class (very low, low, moderate, high,
and very high) and used this area to determine the cumula-
tive probability density function for P(S). For example, if a
THED of 3.5 (low hazard class) has a 20 % coverage area
on LHZ (Fig. 4a), then the spatial probability is less than
equal to 0.32 (= 3.5/11.0) with a 20 % chance. Similarly, if
a THED of 5.0 (moderate hazard class) has a 30 % coverage
area on LHZ, then the spatial probability is less than equal to
0.45 (= 5.0/11.0) with a 50 % chance (30 %+ 20 %). Such
calculations enabled us to develop a cumulative density func-
tion for P(S) (see Fig. 4b). As shown in Fig. 4b (the cu-
mulative density function of P(S)), 1.94 % of area belonged
to the very low hazard class (P(S) from 0/11 to 3.5/11),
46.61 % of area belonged to the low hazard class (P(S) from
3.5/11 to 5.0/11), 30.28 % of area belonged to the moder-
ate hazard class (P(S) from 5.0/11 to 6.5/11), 13.71 % of
area belonged to the high hazard class (P(S) from 6.5/11 to
8.0/11), and 7.43 % of area belonged to the very high hazard
class (P(S) from 8.0/11 to 11/11).

In the ILS tool, using Fig. 4b, we used a randomly deter-
mined point value of the P(S) from its cumulative density
function for each participant in the ILS tool (see Fig. 4b).
This P(S) value stayed the same for participants across their
performance in the ILS tool. Please note that this exercise
was not meant to accurately determine the spatial probabil-
ity of landslide in the area of interest, where more accurate
and advanced methods could be used. Rather, the primary ob-
jective of this exercise was to develop an approximate model

Table 1. Total estimated hazard (THED) scale for evaluating
the susceptibility of an area to landslides across different hazard
classes.

Hazard Range of Hazard class
zone corrected THED

I THED < 3.5 Very low hazard (VLH) zone
II 3.5≤THED < 5.0 Low hazard (LH) zone
III 5.0≤THED≤ 6.5 Moderate hazard (MH) zone
IV 6.5 < THED≤ 8.0 High hazard (HH) zone
V THED > 8.0 Very high hazard (VHH) zone

that could account for the spatial probability in the ILS based
upon the LHZ map and THED scale (the ILS tool was pri-
marily meant to improve people’s understanding about land-
slide risks and not for physical modelling of landslides).

3.1.3 Damages due to landslides

As suggested by Chaturvedi et al. (2017), the damages
caused by landslides were classified into three independent
categories: property loss, injury, and fatality. These cate-
gories have their own damage probabilities. When a land-
slide occurs, it can be harmless or catastrophic. A landslide
becomes catastrophic with damage probability value of prop-
erty loss, injury, and fatality. Thus, once a uniformly dis-
tributed random number is less than or equal to the probabil-
ity of the corresponding damage, the corresponding damage
is assumed to occur in the ILS tool. Landslide damages have
different effects on the player’s wealth and income, where
damage to property affects one’s property wealth and dam-
ages concerning injury and fatality affect one’s income level.
When the landslide is harmless, then there is no injury, no
fatality, and no damages to one’s property. For calculation of
the damage probabilities due to landslides, data of 371 land-
slide events in India over a period of about 300 years were
used (Parkash, 2011). If we consider the entire 300-year pe-
riod, then one could expect very different socio-economic
conditions to prevail over this period. However, it is to be
noted that, in this paper, we vary this probability in the ex-
periment. Thus, the exact value of the probability from the
literature is not required in the simulation. The exact assump-
tions about damages are detailed ahead in this paper.

4 Interactive Landslide Simulator (ILS) tool

The ILS tool (Chaturvedi et al., 2017) is a Web-based tool,
and it is based upon the ILS model described above. The ILS
tool was coded in open-source programming languages PHP
and MySQL and is freely available for use at the following
URL: https://goo.gl/aRJ7sH, last access: 8 June 2018. The
ILS tool allows participants to make repeated monetary in-
vestment decisions for landslide risk-mitigation, observe the
consequences of their decisions via feedback, and try new in-
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Figure 4. (a) Landslide hazard map of study area. (b) The cumulative density function of the spatial probability of landslides (P(S)). The
P(S) is shaped by geological and other causative factors in the study area.

vestment decisions. This way, ILS helps to improve people’s
understanding about the causes and consequences of land-
slides. The ILS tool can run for different time periods, which
could be from days to months to years. This feature can be
customized in the ILS tool. However, in this paper, we have
assumed a daily timescale to make it match the daily proba-
bility of landslides computed in Eqs. (4a) and (4b).

The goal in the ILS tool is to maximize one’s total wealth,
where this wealth is influenced by one’s income, property
wealth, and losses experienced due to landslides. Landslides
and corresponding losses are influenced by physical factors
(spatial and temporal probabilities of landslides) and hu-
man factors (i.e. the past contributions made by a participant
for landslide mitigation). The total wealth may decrease (by
damages caused by landslides, like injury, death, and prop-
erty damage) or increase (due to daily income). While inter-
acting with the tool, the repeated feedback on the positive or
negative consequences of their decisions on their income and
property wealth enables participants to revise their decisions
and learn landslide risks and dynamics over time.

Figure 5 represents the graphical user interface of the
ILS tool’s investment screen. On this screen, participants
are asked to make monetary mitigation decisions up to their
daily income upper bound (see panel a). The total wealth is a
sum of income not invested for landslide mitigation, property
wealth, and total damages due to landslides (see panel b). As
shown in panel b, participants are also shown the different
probabilities of landslide due to human and physical factors
as well as the probability weight used to combine these prob-
abilities into the total probability. Furthermore, as shown in
panel c, participants are graphically shown the history of to-
tal probability of landslide, total income not invested in land-

slides, and their remaining property wealth across different
days. As part of the instructions, the players are told that the
mitigation measures will be taken close to the places where
they reside in the district in the ILS tool.

As described above, participants, i.e. common people re-
siding in the study area, could invest between zero (mini-
mum) and player’s current daily income (maximum). Once
the investment is made, participants need to click the “in-
vest” button. Upon clicking the invest button, participants
enter the experiential feedback screen, where they can ob-
serve whether a landslide occurred or not and whether there
were changes in the daily income, property wealth, and dam-
ages due to the landslide (see Fig. 6). As discussed above, the
landslide occurrence was determined by the comparison of a
uniformly distributed random number in [0, 1] with P(T ).
If a uniformly distributed random number in [0, 1] was less
than or equal to P(T ), then a landslide occurred; otherwise,
the landslide did not occur. Furthermore, if the landslide oc-
curred, then three uniformly distributed random numbers in
[0, 1] were compared with the probability of injury, fatality,
and property damage. If the values of any of these random
numbers were less than or equal to the corresponding in-
jury, fatality, or property-damage probabilities, then the land-
slide was catastrophic (i.e. causing injury, fatality, or prop-
erty damage; all three events could occur simultaneously).
In contrast, if the random numbers were more than the cor-
responding injury, fatality, or property-damage probabilities,
then the landslide was harmless (i.e. it did not cause injury,
fatality, and property damage). As shown in Fig. 6a, feedback
information is presented in three formats: monetary informa-
tion about total wealth, messages about different losses, and
imagery corresponding to losses. Injury and fatality due to
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Figure 5. The ILS tool’s investment screen. (a) The text box where participants made investments against landslides. (b) The tool’s different
parameters and their values. (c) Line graphs showing the total probability of landslide, the total income not invested in landslides, and the
property wealth over days. Horizontal axes in these graphs represents number of days. The goal was to maximize total wealth across a number
of days of performance in the ILS tool. This figure is adapted from Chaturvedi et al. (2017).

landslides cause a decrease in the daily income, and damage
to property causes a loss of property wealth (the exact loss
proportions are detailed ahead). If a landslide does not occur
in a certain trial, a positive feedback screen is shown to the
decision maker (see Fig. 6b). The user can get back to the in-
vestment decision screen by clicking on the “return to game”
button on the feedback screen.

5 Methods

To test the effectiveness of strength and availability of feed-
back, we performed a laboratory experiment involving hu-
man participants where we compared performance in the
ILS tool in the presence or absence of experiential feed-
back about different damage probabilities. Based upon the
prior literature (Baumeister et al., 2007; Dutt and Gonzalez,
2012; Finucane et al., 2000; Knutti, 2005; Reis and Judd,
2013; Wagner, 2007), we expected the proportion of invest-
ments to be higher in the presence of experiential feedback
compared to those in the absence of experiential feedback.
Furthermore, we expected higher investments against land-
slides when feedback was more damaging in ILS compared
to when it was less damaging (Chaturvedi et al., 2017; Dutt
and Gonzalez, 2011; Gonzalez and Dutt, 2011a).

5.1 Experimental design

Eighty-three participants were randomly assigned across
four between-subject conditions in the ILS tool, where the
conditions differed in the strength of experiential feedback
(high damage (N = 40) or low damage (N = 43)) and avail-
ability of feedback (feedback present (N = 43) or feedback
absent (N = 40)) provided after every mitigation decision.
An experiment involving high-damage, feedback-present
conditions (N = 20) and low-damage, feedback-present con-
ditions (N = 23) in the ILS tool was reported by Chaturvedi
et al. (2017). These data have been included in this pa-
per with two more conditions: the high damage with feed-
back absent (N = 20) and low damage with feedback absent
(N = 20). Data in all four conditions were collected simulta-
neously. They were asked to invest repeatedly against land-
slides over 30 days. In feedback-present conditions, partici-
pants made investment decisions on the investment screen,
and then they received feedback about the occurrence of
landslides or not on the feedback screen. Participants were
also provided graphical displays showing the total proba-
bility of landslides, the total income not invested in land-
slides, and the property wealth over days. Figures 5 and 6
show the investment screen and feedback screen that were
shown to participants in the feedback-present conditions. In
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Figure 6. The ILS tool’s feedback screens. (a) Negative feedback when a landslide occurred, with the loss in terms of magnitude and
messages, as well as associated imagery. (b) Positive feedback when a landslide did not occur.

feedback-absent conditions, participants were given a text
description, and they made an investment decision; however,
they were shown neither the feedback screen nor the graphi-
cal displays on the investment screen. Thus, in the feedback-
absent conditions, although participants were provided with
the probability of damages due to landslides and the results
of 0 and 100 % investments as a text description, they were
not shown the feedback screen or the graphical displays on
the investment screen. The text description and investment
screen shown to participants in the feedback-absent condi-
tions is given as Appendix A. In high-damage conditions,
the probability of property damage, fatality, and injury in any
trial were set at 30, 9, and 90 %, respectively, over 30 days. In
low-damage conditions, the probability of property damage,
fatality and injury in any trial were set at 3, 1, and 10 %, re-

spectively, over 30 days (i.e. about 1/10th of its values in the
high-damage conditions). Across all conditions, participants
made one investment decision per trial over 30 days (this end
point was unknown to participants). Participants’ goal was
to maximize their total wealth over 30 days. Across all con-
ditions, only one landslide could occur on a particular day.
The nature of functional forms used for calculating different
probabilities in ILS was unknown to participants.

The proportion of damage (in terms of daily income and
property wealth) that occurred in the event of fatality, in-
jury, or property damage was kept constant over 30 days.
The property wealth decreased to half of its value every time
property damage occurred in the event of a landslide. The
daily income was reduced by 10 % of its latest value due to
a landslide-induced injury and 20 % of its latest value due to
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a landslide-induced fatality. The initial property wealth was
fixed to EC 20 million, which is the expected property wealth
in the Mandi area. To avoid the effects of currency units
on people’s decisions, we converted Indian National Rupees
(INR) to a fictitious currency called “Electronic Currency
(EC)”, where EC 1= INR 1. The initial per-trial income was
kept at EC 292 (taking into account the GDP and per-capita
income of Himachal state, where Mandi is located). Over-
all, there was a large difference between the initial income
earned by a participant and the participant’s initial property
wealth. In this scenario, the optimal strategy dictates that
participants invest their entire income in landslide protec-
tion measures, since participants’ goal was to maximize to-
tal wealth. The weight (W ) parameter in Eq. (1) of the ILS
model was fixed at 0.7 across all conditions. This high value
of the W parameter ensured that participants’ investment de-
cisions played a dominant role in influencing the total land-
slide probability as per Eq. (1). To understand the effect of
theW parameter on the total probability of landslide in ILS, a
Monte Carlo simulation was performed in the ILS model for
different investment conditions over time (see Fig. 7a and b).
It can be seen from both Figs. 7a and b, in both the extreme
investment conditions over 30 days (i.e. zero investments and
full investments from human players), that the value of W
determined the range of possible values of the total probabil-
ity of landslides, P(T ). For example, with a W = 1.0, zero
human investments over a 30-day period caused P(T )= 1.0
(a sure landslide) and full investments caused P(T ) ∼ 0.20
(landslides have a 20 % likelihood of occurring). Thus, by
keeping a higher W value, we could ensure that there was
a large possible change in the P(T ) due to human actions,
giving human participants salient feedback on how their de-
cisions changed P(T ). TheW value was set to be 0.70 in the
ILS tool, and it was shown to participants through the invest-
ment screen on the ILS tool’s interface (see Fig. 5). Further-
more, the free return-to-mitigation parameter (M) was set at
0.8. Again the value of the M parameter ensured that prob-
ability of landslides reduced to 20 % (= 1−M from Eq. 2)
when participants invested their daily income in full. Partic-
ipants took part in the ILS for 30 days, starting in mid-July
and ending in mid-August. This period coincided with the
period of heavy monsoon rainfall in the Mandi area (see the
P(R) peaks in Fig. 3). Thus, participants performing in ILS
experienced an increasing probability of landslides due to en-
vironmental factors (due to an increasing amount of rainfall
over days). We used the investment ratio as a dependent vari-
able for the purpose of data analyses. The investment ratio
was defined as the ratio of investment made in a trial to total
investment that could have been made up to the same trial.
This investment ratio was averaged across all participants in
one case and averaged over all participants and days in an-
other case. We expected the average investment ratio to be
higher in the feedback-present and high-damage conditions
compared to feedback-absent and low-damage conditions.

We took the alpha level (the probability of rejecting the null
hypothesis when it is true) to be 0.05 (or 5 %).

5.2 Participants

Participants were recruited from Mandi via an online adver-
tisement. The research was approved by the Ethics Commit-
tee at the Indian Institute of Technology Mandi. Informed
consent was obtained from each participant, and participa-
tion was completely voluntary. All participants were from
science, technology, engineering, and mathematics (STEM)
backgrounds, and their ages ranged between 21 and 28 years
(mean= 22 years; standard deviation= 2.19 years). The fol-
lowing percentage of participants were pursuing or had com-
pleted different degrees: 6.0 % high school degrees; 54.3 %,
undergraduate degrees; 33.7 %, master’s degrees; and 6.0 %,
PhD degrees. The Mandi area is prone to landslides, and
most participants self-reported to be knowledgeable or pos-
sess basic understanding about landslides. The literacy rate
in Mandi and the surrounding area is quite high (81.5 %)
(Census, 2011), and our sample was representative of the
population residing in this area. When asked about their
previous knowledge about landslides, 2.4 % claimed to be
highly knowledgeable, 16.8 % claimed to be knowledgeable,
57.8 % claimed to have basic understanding, 18.2 % claimed
to have little understanding, and 4.8 % claimed to have no
idea. All participants received a base payment of INR 50
(∼USD 1). In addition, there was a performance incentive
based upon a lucky draw. The top-10-performing participants
based upon total wealth remaining at the end of the study
were put in a lucky draw, and one of the participants was
randomly selected and awarded a cash prize of INR 500. Par-
ticipants were told about this performance incentive before
they started the experiment.

5.3 Procedure

Experimental sessions were about 30 min long per partici-
pant. Participants were given instructions on the computer
screen and were encouraged to ask questions before starting
their study (see Appendix A for text of instructions used).
Once participants had finished their study, they were asked
questions related to what information and decision strategy
they used on the investment screen and the feedback screen
to make their decisions. Once participants ended their study,
they were thanked and paid for their participation.

6 Results

6.1 Investment ratio across conditions

The data were subjected to a 2× 2 repeated-measures anal-
ysis of variance. As shown in Fig. 8a, there was a signifi-
cant main effect of feedback’s availability: the average in-
vestment ratio was higher in feedback-present conditions
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Figure 7. Simulation of total probability of landslides in ILS for different values of W in zero-investment scenario (a) and full-investment
scenario (b).

(0.53) compared to that in feedback-absent conditions (0.37)
(F(1,79)= 8.86, p < 0.01, η2

= 0.10). We performed anal-
ysis of variance statistical tests for evaluating our expecta-
tions. The F statistics are the ratio of between-group variance
and within-group variance. The numbers in brackets after the
F statistics are the degrees of freedom (K−1,N−K), where
K is the total number of groups compared and N is the over-
all sample size. The p value indicates the evidence in favour
of the null hypothesis when it is true. We reject the null hy-
pothesis when the p value is less than the alpha level (0.05).
The η2 is the proportion of variance associated with one or
more main effects. It is a number between 0 and 1; a value of
0.02, 0.13, and 0.26 measures a small, medium, or large cor-
relation, respectively, between the dependent and indepen-
dent variables given a population size. The bracketed values
are indicative of the F value, its significance and the size
of its effect. This result is as per our expectation and shows
that the presence of experiential feedback in the ILS tool
helped participants increase their investments against land-
slides compared to investments in the absence of this feed-
back.

As shown in Fig. 8b, there was a significant main effect of
strength of feedback: the average investment ratio was sig-
nificantly higher in high-damage conditions (0.51) compared
to that in low-damage conditions (0.38) (F(1,79)= 5.46,
p < 0.05, η2

= 0.07). Again, this result is as per our expec-
tation and shows that high-damage feedback helped partici-
pants increase their investments against landslides compared
low-damage feedback.

Furthermore, as shown in Fig. 8c, the interaction between
the strength of feedback and feedback’s availability was sig-
nificant (F(1,79)= 8.98, p < 0.01, η2

= 0.10). There was no
difference in the investment ratio between the high-damage
conditions (0.35) and low-damage conditions (0.38) when
experiential feedback in ILS was absent; however, the invest-
ment ratio was much higher in the high-damage conditions
(0.67) than in the low-damage conditions (0.38) when experi-

ential feedback in ILS was present (Chaturvedi et al., 2017).
Thus, feedback needed to be damaging in ILS to cause an
increase in investments in mitigation measures against land-
slides.

6.2 Investment ratio over days

The average investment ratio increased significantly over
30 days (see Fig. 9a; F(8.18,646.1)= 8.35, p < 0.001,
η2
= 0.10). As shown in Fig. 9b, the average investment ra-

tio increased rapidly over 30 days in feedback-present condi-
tions; however, the increase was marginal in feedback-absent
conditions (F(8.18,646.1)= 3.98, p < 0.001, η2

= 0.05).
Furthermore, in feedback-present conditions, the average in-
vestment ratio increased rapidly over 30 days in high-damage
conditions; however, the increase was again marginal in the
low-damage conditions (see Fig. 9c; F(8.18,646.1)= 6.56,
p < 0.001, η2

= 0.08). Lastly, as seen in Fig. 9d, although
there were differences in the increase in average invest-
ment ratio between low-damage and high-damage conditions
when experiential feedback was present, such differences
were non-existent between the two damage conditions when
experiential feedback was absent (F(8.18,646.1)= 4.16,
p < 0.001, η2

= 0.05). Overall, ILS performance helped par-
ticipants increase their investments for mitigating landslides
when damage feedback was high compared to low in ILS.

However, in feedback’s absence in ILS, participants did
not increase their investments for mitigating landslides, even
when damages were high compared to low.

6.3 Participant strategies

We analysed whether an “invest-all” strategy (i.e. invest-
ing the entire daily income in mitigating landslides) was re-
ported by participants across different conditions. As men-
tioned above, the invest-all strategy was an optimal strategy,
and this strategy’s use indicated learning in the ILS tool. Fig-
ure 10 shows the proportion of participants reporting the use
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Figure 8. (a) Average investment ratio in feedback-present and feedback-absent conditions. (b) Average investment ratio in low- and high-
damage conditions. (c) Average investment ratio in low- and high-damage conditions with feedback present and absent. The error bars show
95 % confidence interval (CI) around the point estimate.

of the invest-all strategy. Thus, many participants learnt to
follow the invest-all strategy in conditions where experien-
tial feedback was present and damage was high, as opposed
to participants in the other conditions.

7 Discussion

In this paper, we used an existing ILS tool for evaluating the
effectiveness of feedback in influencing people’s decisions
against landslide risks. We used the ILS tool in an experiment
involving human participants and tested how the strength
and availability of experiential feedback in ILS helped in-
crease people’s investment decisions against landslides. Our
results agree with our expectations: experience gained in
ILS enabled improved understanding of processes governing
landslides and helped participants improve their investments
against landslides.

First, the high-damage feedback helped increase people’s
investments against landslides over time compared to the
low-damage feedback. Furthermore, the feedback’s presence
helped participants increase their investments against land-
slides over time compared to feedback’s absence. These re-

sults can be explained by the previous lab-based research on
use of repeated feedback or experience (Chaturvedi et al.,
2017; Dutt and Gonzalez, 2010, 2011; Finucane et al., 2000;
Gonzalez and Dutt, 2011a). Repeated experiential feedback
likely enables learning by repeated trial-and-error proce-
dures, where bounded-rational individuals (Simon, 1959) try
different investment values in ILS and observe their effects
on the occurrence of landslides and their associated conse-
quences. The negative consequences due to landslides are
higher in conditions where the damages are more compared
to conditions where the damages are less. This difference in
landslide consequences influences participants’ investments
against landslides. According to Slovic et al. (2005), loss-
averse individuals tend to increase their contribution against
a risk over time. In our case, similar to Slovic et al. (2005),
participants started contributing slowly against landslides
and, with the experience of landslide losses over time, they
started contributing larger amounts to reduce landslide risks.

We also found that the reliance on invest-all strategy was
higher in the high-damage and feedback-present conditions
than in the low-damage and feedback-absent conditions. The
invest-all strategy was the optimal strategy in the ILS tool.
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Figure 9. (a) Average investment ratio over days. (b) Average investment ratio over days in feedback-present and feedback-absent condi-
tions. (c) Average investment ratio over days in low- and high-damage conditions. (d) Average investment ratio over days in low- and high-
damage conditions with feedback present or absent. The error bars show 95 % CI around the point estimate.

Figure 10. The proportion of reliance on the invest-all strategy
across different conditions.

This result shows that participants learned the underlying
system dynamics (i.e. how their actions influenced the prob-
ability of landslides) in ILS better in the feedback-rich con-
ditions compared to the feedback-poor conditions. As partic-
ipants were not provided with exact equations governing the
ILS tool and they had to only learn from trial-and-error feed-
back, the saliency of the feedback due to messages and im-
ages likely helped participants’ learning in the tool. In fact,
we observed that the use of the optimal invest-all strategy
was maximized when the experiential feedback was highly

damaging. One likely reason for this observation could be the
high educational levels of participants residing in the study
area, where the literacy rate was more than 80 %. Thus, it
seems that participants’ education levels helped them make
the best use of damaging feedback.

We believe that the ILS tool can be integrated in teach-
ing courses on sustainable landslide practices in schools from
kindergarten to standard 12th. These courses could make use
of the ILS tool and focus on educating students about causes,
consequences, and risks of hazardous landslides. We believe
that the use of the ILS tool will make teaching more effective
as ILS will help incorporate experiential feedback and other
factors in teaching in interactive ways. The ILS tool’s param-
eter settings could be customized to a certain geographical
area over a certain time period of play. In addition, the ILS
tool could be used to show participants the investment ac-
tions of other participants (e.g. society or neighbours). The
presence of investment decisions of opponents in addition to
one’s own decisions will likely enable social norms to influ-
ence people’s investments and learning in the tool (Schultz
et al., 2007). These features make the ILS tool very attractive
for landslide education in communities in the future.

Furthermore, the ILS tool holds a great promise for pol-
icy research against landslides. For example, in future, re-
searchers may vary different system-response parameters in
ILS (e.g. weight of one’s decisions and return to mitigation
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actions) and feedback (e.g. numbers, text messages and im-
ages for damage) in order to study their effects on people’s
decisions against landslides. Here, researchers could evalu-
ate differences in ILS’s ability to increase public contribu-
tions in the face of other system-response parameters and
feedback. In addition, researchers can use the ILS tool to do
“what-if” analyses related to landslides for certain time peri-
ods and for certain geographical locations. The ILS tool has
the ability to be customized to a certain geographical area as
well as certain time periods, where spatial parameters (e.g.
soil type and geology) as well as temporal parameters (e.g.
daily rainfall) can be defined for the study area. Once the en-
vironmental factors have been accounted for, the ILS tool
enables researchers to account for assumptions on human
factors (contribution against landslides) with real-world con-
sequences (injury, fatality, and infrastructure damage). Such
assumptions may help researchers model human decisions in
computational cognitive models, which are based upon influ-
ential theories of how people make decisions from feedback
(Dutt and Gonzalez, 2012; Gonzalez and Dutt, 2011b). In
summary, these features make the ILS tool apt for policy re-
search, especially for areas that are prone to landslides. This
research will also help test the ILS tool and its applicability
in different real-world settings.

8 Limitations

Although the ILS tool causes the use of optimal invest-all
strategies among people in conditions where experiential
feedback is highly damaging, more research is needed on in-
vestigating the nature of learning that the tool imparts among
people. As people’s investments for mitigating landslides in
ILS directly influences the risk of landslides due to human
and environmental factors, investments indeed have the po-
tential of educating people about landslide risks. Still, it is
important to investigate how investing money in the ILS tool
truly educates people about landslides. We would like to in-
vestigate this research question as part of our future research.

Currently, in the ILS model, we have assumed that dam-
ages from fatality and injury to influence participants’ daily-
income levels. The reduced income levels do create adverse
consequences, but one could also argue that they would be
much less of concern for most people compared to the in-
jury and fatality itself. Furthermore, people could also choose
to migrate from an area when the landslide mitigation costs
are too high, and adaptation becomes impossible, especially
due to the differences between the landslide hazard and other
hazards such as flood, drought, and general climate risks. As
part of our future research, we plan to investigate the influ-
ence of feedback that causes only injuries or fatalities in ILS
compared to the feedback that causes economic losses due
to injuries and fatalities. Also, as part of our future research
in the ILS tool, we plan to investigate people’s migration de-

cisions when the landslide mitigation costs are too high and
adaptation to landslides is not possible.

In this paper, our primary objective was not to accurately
predict rainfall or other landslide parameters; rather, it was
to educate people about landslide disasters. Thus, we have
used approximate models of real landslide phenomena in
the ILS simulation tool. The use of approximate models
is in line with a large body of literature on using simula-
tion tools for improving people’s understanding about nat-
ural processes like climate change and other natural disas-
ters (Dutt and Gonzalez, 2010, 2011; Finucane et al., 2000).
As part of our abstraction, we may have missed certain as-
pects related to the sensitivity of the different social classes
to their economic and cultural resources. In future, we would
like to compare the proportion of investments in different ex-
perimental conditions to people’s likely socio-economic cost
thresholds given that people may need to spend their wealth
in other areas beyond landslide mitigation.

Furthermore, we used a linear model to compute the prob-
ability of landslides due to human factors in the ILS tool.
Also, the probabilistic equations governing the physical fac-
tors in the ILS model were not disclosed to participants, who
seemed to possess high education levels. One could argue
that there are several other linear and non-linear models that
could help compute the probability of landslides due to hu-
man factors. Some of these models may also influence the
probability of landslides and the severity of consequences
(damages) caused by landslides. Also, other more generic
models could account for the physical factors in the ILS tool.
We plan to try these possibilities as part of our future work in
the ILS tool. Specifically, we plan to assume different models
of investments in the ILS tool and we plan to test them with
participants possessing different education levels.

In the current experiment, we assumed a large disparity
between a participant’s property wealth and his/her daily in-
come. In addition, as part of the ILS model, we did not
consider support from governments or insurance companies
against landslide damages. In India, people mostly use their
own finances to overcome the challenges put by natural dis-
asters as insurance or other public methods have only shown
limited success (ICICI, 2018). However, in certain cases, es-
pecially in developing countries, mitigation of landslide risks
may often be financed by the government or international
agencies. As part of our future work, we plan to extend the
ILS model to include assumptions of contributions from gov-
ernment and other international agencies. Such assumptions
will help us determine the willingness of common people to
contribute against landslide disasters, which is important as
the developing world becomes more developed over time.

To test our hypotheses, we presented participants with a
high-damage scenario and a low-damage scenario, where the
probabilities of property damage, injury, and fatality were
high and low, respectively. However, such scenarios may
not be realistic, where people may want to migrate from
both low- and high-damage areas in even the least developed
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countries. In future research with ILS, we plan to calibrate
the probability of damages, injury, and fatality to realistic
values and then test the effectiveness of ILS in improving
decision-making.

Furthermore, in our experiment, when a landslide did not
occur and experiential feedback was present, people were
presented with a smiling face followed by a message. The
message and emoticon were provided to connect the cause-
and-effect relationships for participants in the ILS tool. How-
ever, it could also be that a landslide did not occur in a certain
trial due to the stochasticity in the simulation rather than par-
ticipants’ investment actions. Although such situations are
possible over shorter time periods, over longer time periods
increased investments from people will only reduce the prob-
ability of landslides. Also, there is a possibility that the par-
ticipant demographics in the experiment may not be repre-
sentative of the study area. Thus, as part of future research,
we plan to control the participant sample in different ways
and test the effects that demographics have on people’s in-
vestments.

In this paper, the experiment used a daily investment set-
ting in the ILS tool. However, the ILS tool can easily be
customized to different time periods ranging from seconds
to minutes, hours, days, months, and years. As part of our
future research, we plan to extend the daily assumption by
considering people making decisions on longer timescales
ranging from months to years. In addition, in the experiment,
we assumed a value of 0.7 and 0.8 for the weight (W ) and
return-to-mitigation (M) parameters, respectively. These W
and M values indicated that landslide risks could largely be
mitigated by human actions. However, this assumption may
not be the case always, especially for mitigation measures
like tree plantations. For example, afforestation alone may
not help in reducing deep-seated landslides in hilly areas
(Forbes, 2013). Thus, it would be worthwhile to investigate,
as part of future research, how people’s decision-making
evolves in conditions where investments likely influence the
landslide probability (higher values ofW andM parameters)
compared to conditions where investments unlikely influence
the landslide probability (lower values of W and M parame-
ters). Some of these ideas form the immediate next steps in
our ongoing research programme on landslide risk commu-
nication.

9 Conclusions

It can be concluded from this preliminary research that sim-
ulation tools like ILS that provide feedback about the out-
comes of landslide disasters influence people’s investment
decisions against landslides. Given our results, we believe
that ILS could potentially be used as a landslide-education
tool for increasing public understanding about landslides
among the adult population.

This work forms a good preliminary example for re-
searchers involved in gamification and participative pro-
cesses in the case of landslide disasters. However, this re-
search work is preliminary in nature, and we plan to deepen
it in the near future. To examine the full potential of
ILS in influencing people’s perceptions of landslide risk, a
lot of experiments manipulating system variables, feedback
strengths, and severity of damages need to be conducted on
a bigger population across several study areas. Another line
of research could be to understand the people’s behaviour or
decision-making style in landslide scenarios by fitting com-
putational cognitive models to the human data. The ILS tool
can also be used by policymakers to do what-if analyses in
different scenarios concerning landslides. However, the as-
sumptions in the ILS tool should be evaluated in the study
area before it is released for policy research.

Data availability. Data used in this article have not been deposited
to respect the privacy of users. The data can be provided to readers
upon request.
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Appendix A: Instructions of the experiment

Welcome!
You are a resident of Mandi district of Himachal Pradesh, In-
dia, a township in the lap of the Himalayas. You live in an
area that is highly prone to landslides due to a number of en-
vironmental factors (e.g. the prevailing geological conditions
and rainfall). During the monsoon season, due to high inten-
sity and a prolonged period of rainfall, a number of landslides
may occur in the Mandi district. These landslides may cause
fatalities and injuries to you, your family, and your friends
who reside in the same area. In addition, landslides may also
damage your property and cause loss to your property wealth.

This study consists of a task where you will be making
repetitive decisions to invest money in order to mitigate land-
slides. Every trial, you will earn certain money between 0 and
10 points. This money is available to you to invest against
landslides. You may invest a certain amount from the money
available to you; however, if you do not wish to invest any-
thing, you may invest 0.0 against landslides in a particular
trial. Based upon your investment against landslides, you will
get feedback on whether a landslide occurred and whether
there was an associated loss of life, injury, or property dam-
age (all three events are independent and can occur at the
same time).

Your total wealth at any point in the game is the fol-
lowing: sum of the amounts you did not invest against
landslides over days+ your property wealth – damages to
you, your family, your friends, and your property due to
landslides. Your property wealth is assumed to be 100 points
at the start of the game. The amount of money not invested
against landslides increases your total wealth. Your goal is
to maximize your total wealth in the game.

Whenever a landslide occurs, if it causes fatality, then your
daily earnings will be reduced by 5 % of its present value
at that time; if landslide causes injury to someone, then the
daily earnings will be reduced by 2.5 % of its present value at
that time. Thus, the amount available to you to invest against
landslides will reduce with each fatality and injury due to
landslides. Furthermore, if a landslide occurs and it causes
property damage, then your property wealth will be reduced
by 80 % of its present value at that time; however, the money
available to you to invest against landslides due to your daily
earnings will remain unaffected.

Generally, landslides are triggered by two main factors:
environmental factors (e.g. rainfall – outside one’s control)
and investment factors (money invested against landslides –
within one’s own control). The total probability of landslide
is a weighted average of probability of landslide due to en-
vironment factors and probability of landslide due to invest-
ment factors. The money you invest against landslides re-
duces the probability of landslide due to investment factors
and also reduces the total probability of landslides. However,
the money invested against landslides is lost and cannot be-
come a part of your total wealth.

At the end of the game, we will convert your total wealth
into INR and pay you for your effort. For this conversion, a
ratio of 100 total wealth points to INR 1 will be followed.
In addition, you will be paid INR 30 as base payment for
your effort in the task. Please remember that your goal is to
maximize your total wealth in the game.
Starting Game Parameters
Your wealth: 20 Million
When a landslide occurs:
If a death occurs, your daily income will be reduced by 50 %
of its current value.
If an injury takes place, your daily income will be reduced
by 25 % of its current value.
If a property damage occurs, your wealth will be reduced
by 50 % of your property wealth.
Best of luck!
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