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Abstract. Liquefaction-induced hazards such as sand boils,
ground cracks, settlement, and lateral spreading are responsi-
ble for considerable damage to engineering structures during
major earthquakes. Presently, there is no effective empirical
approach that can assess different liquefaction-induced haz-
ards in one model. This is because of the uncertainties and
complexity of the factors related to seismic liquefaction and
liquefaction-induced hazards. In this study, Bayesian net-
works (BNs) are used to integrate multiple factors related to
seismic liquefaction, sand boils, ground cracks, settlement,
and lateral spreading into a model based on standard penetra-
tion test data. The constructed BN model can assess four dif-
ferent liquefaction-induced hazards together. In a case study,
the BN method outperforms an artificial neural network and
Ishihara and Yoshimine’s simplified method in terms of accu-
racy, Brier score, recall, precision, and area under the curve
(AUC) of the receiver operating characteristic (ROC). This
demonstrates that the BN method is a good alternative tool
for the risk assessment of liquefaction-induced hazards. Fur-
thermore, the performance of the BN model in estimating
liquefaction-induced hazards in Japan’s 2011 Tōhoku earth-
quake confirms its correctness and reliability compared with
the liquefaction potential index approach. The proposed BN
model can also predict whether the soil becomes liquefied
after an earthquake and can deduce the chain reaction pro-
cess of liquefaction-induced hazards and perform backward
reasoning. The assessment results from the proposed model
provide informative guidelines for decision-makers to detect
the damage state of a field following liquefaction.

1 Introduction

The prediction of liquefaction potential (LP) and assess-
ment of liquefaction-induced hazards are two significant
and closely related problems. The former aims to deter-
mine whether the soil becomes liquefied after an earth-
quake, whereas the latter needs to not only predict whether
liquefaction-induced hazards occur after soil liquefaction but
also assess the severity of different hazards induced by liq-
uefaction. The prediction of LP in foundation soils is only
the first step in assessing liquefaction hazards. This has been
well studied in recent decades, such as by simplified meth-
ods (Seed and Idriss, 1971, 1982; Starks and Olsen, 1995;
Stokoe and Nazarian, 1985) based on standard penetration
test (SPT), cone penetration test (CPT), and shear wave ve-
locity measurements, laboratory testing, numerical methods,
and empirical liquefaction models (Goh, 1994; Zhang and
Goh, 2013, 2016; Pal, 2006; Toprak et al., 1999; Zhang et
al., 2015) based on historical data. What is more impor-
tant to engineers is the effect of liquefaction-induced haz-
ards on foundations or superstructures after seismic lique-
faction, although relatively few studies have focused on this
issue (Juang et al., 2005).

Field evidence of liquefaction-induced hazards during
historical earthquakes mainly consists of sand boils (SB),
ground cracks (GC), the settlement and tilting of structures,
and lateral spreading (LS) failures. Several methods have
been proposed to quantify these hazards, including numerical
simulations, laboratory tests, and field testing. Although re-
cent advances in physical model experiments and the compu-
tational modelling of liquefaction-induced ground deforma-
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tion are quite promising, there are some critical unresolved
problems. For instance, without a perfect physical numeri-
cal model for totally describing the complicated mechanic
characteristics of soils, it is expensive and difficult to ob-
tain and test high-quality undisturbed samples of loose sandy
soils. Therefore, empirical liquefaction models based on his-
torical earthquake databases are best suited to providing a
simple, reliable, and direct means of assessing liquefaction-
induced hazards in the field of geotechnical earthquake engi-
neering (Zhang et al., 2002). In terms of empirical liquefac-
tion methods, the liquefaction potential index (LPI) has been
used to characterize liquefaction-induced hazards worldwide
(Iwasaki et al., 1982). Several subsequent approaches built
on the LPI, such as the damage severity index (DSI) (Juang
et al., 2005), the Ishihara-inspired LPIISH (Maurer et al.,
2015), and the liquefaction severity number (LSN) (Tonkin
& Taylor Ltd., 2013). In addition, generalized analytical or
empirical techniques for estimating a single type of ground
failure (e.g. settlement or lateral spreading) induced by liq-
uefaction have been proposed in recent decades (Youd and
Perkins, 1987; Youd et al., 2002; Goh and Zhang, 2014;
Ishihara and Yoshimine, 1992; Zhang et al., 2002; Wu and
Seed, 2004; Cetin et al., 2009; Juang et al., 2013). With
the rapid development of computer technology and mathe-
matical techniques, many new artificial intelligence methods
for assessing liquefaction-induced ground deformation have
been developed based on historical data (Wang and Rahman,
1999; Baziar and Ghorbani, 2005; Javadi et al., 2006; Gar-
cia et al., 2008; Rezania et al., 2011). However, the assess-
ment of liquefaction-induced hazards is a complex engineer-
ing problem because of the heterogeneous nature of soils, a
large number of factors involved, and the uncertainties asso-
ciated with these factors. The existing methods were either
developed statistically or could only assess one type of haz-
ards, such as settlement or lateral spreading. Additionally,
they do not consider the effects of uncertainties on the model
performance, especially the purely data-driven approaches,
which ignore the effects of empirical knowledge or domain
knowledge on the assessment of liquefaction-induced haz-
ards. Because there is no generic model for calculating or
assessing sand boils, ground cracks, lateral spreading, and
settlement simultaneously and then evaluating the overall
severity of hazards induced by liquefaction after an earth-
quake, it is necessary to develop a framework for assessing
all types of liquefaction-induced hazards at a given site fol-
lowing an earthquake. The latest developments in BN tech-
nology provide new opportunities to develop better tools for
complex problems in probabilistic terms, such as the problem
of liquefaction-induced hazards. The primary objective of
this paper is to use Bayesian network (BN) methods to inte-
grate soil liquefaction, LPI, the four types of hazards (ground
cracks, sand boils, lateral spreading, and settlement) induced
by liquefaction, and the severity of liquefaction-induced haz-
ards (SLH, describing the overall situation of a site) into one
model based on historical SPT data. This would allow us to

deduce the chain reaction process of hazards, from an earth-
quake event to seismic liquefaction to liquefaction-induced
hazards, thus enhancing the existing simplified methods that
only assess one single liquefaction-induced hazard. The BN
model is trained and tested separately using two different
real-world datasets. The results given by the BN model for
the evaluation of liquefaction-induced hazards are compared
with those from an artificial neural network (ANN) model
to verify the effectiveness and robustness of the proposed
approach. Afterward, the BN model is applied to evaluate
the hazards induced by liquefaction during the 2011 Tōhoku
earthquake in Japan.

2 BN model for liquefaction-induced hazards

2.1 Why Bayesian network?

BNs are one of the most effective theoretical models for
knowledge representation and reasoning under the influence
of uncertainty and highly non-linear relationships among
variables (Pearl, 1988). Firstly, BNs offer a rational and co-
herent theory under the condition of various uncertainties
(e.g. uncertainties in parameters, models, and domain knowl-
edge) and complexities that are described in terms of subjec-
tive beliefs or probabilities to reflect the interdependent rela-
tionship between variables. Moreover, they can integrate dif-
ferent types of domain knowledge and multi-source informa-
tion or various quantitative and qualitative factors into a con-
sistent system and facilitate multiple hazards and their inter-
dependencies within a single model. In particular, this allows
not only sequential inference (from causes to results) but also
reverse inference (from results to causes) under conditions of
complete and even incomplete data and provides an efficient
framework for the probabilistic updating and assessment of
component performance when new evidence emerges.

In recent decades, BNs have been widely applied for risk
analysis in the field of engineering, such as for catastrophic
risk (Li et al., 2010a, b, 2012), earthquake risk damage
(Bayraktarli et al., 2005; Bayraktarli and Faber, 2011; Bensi
et al., 2009, 2014), embankment dam risk (Zhang et al., 2011;
Xu et al., 2011; Peng and Zhang, 2012), landslide hazards
(Song et al., 2012; Liang et al., 2012), and soil liquefaction
(Bayraktarli, 2006; Hu et al., 2015). However, the applica-
tion of BNs in assessing liquefaction-induced damage has
never been reported. An important sign is that the number
of relevant publications in this field over the period 2001–
2015 (obtained by querying “BN” and “risk analysis” in the
Web of Science database) increased from 3 to 50 (as shown
in Fig. 1). In the past 5 years, BN technology has become
popular with engineers and researchers for the assessment of
risk. BN techniques are known to be a robust method for risk
analysis.
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Figure 1. Increasing application of BN in risk analysis (update of
Weber et al., 2012).

2.2 Probabilistic reasoning of BNs

BNs combine graph theory and statistics using arcs or links
with conditional probabilities. The inference algorithms are
based on the Bayesian rule, chain rule, and conditional inde-
pendence rule as follows:

P(X|Y )=
P(Y |X) ·P(X)

P (Y )
, (1)

P(x1, · · ·,xn)=

P(x1)P (x2|x1)· · ·P(xn|x1,x2, · · ·,xn−1), (2)

P(x1, · · ·,xn)=

n∏
i=1
P (xi |π(xi)) , (3)

where P(Y ) is the prior probability, P(X|Y ) is one’s belief in
hypothesis X upon observing evidence Y , which is known as
the posterior probability, and P(Y |X) is the likelihood that Y
is observed ifX is true. π(xi) is a set of values for the parents
of Xi .

A generic BN model for liquefaction-induced hazards (as
shown in Fig. 2) is constructed with domain knowledge to
illustrate how to reason in the assessment of liquefaction-
induced hazards. There are three types of nodes in the BN
model: (1) input nodes, i.e. soil parameters (SP), earthquake
parameters (EP), and site conditions (SC), which are fac-
tors in seismic liquefaction; (2) state nodes, i.e. LP and LPI,
which show whether the soil is liquefied and express the de-
gree of soil liquefaction, respectively; and (3) output nodes,
i.e. liquefaction-induced hazards, such as lateral spreading,
settlement, ground cracks, and sand boils, which express the
SLH. The nodes are connected by 12 arcs or links. In the
risk assessment of liquefaction-induced hazards, if evidence
comes from input nodes, the posteriori probability or belief
that the target variable (liquefaction-induced hazards, here
LH) is in a certain state (e.g. severe) can be derived by the
following formulas:

Figure 2. A generic BN for liquefaction-induced hazards.

P(LH= severe|SP,EP,SC)

=
P(LH= severe,SP,EP,SC)

P (SP,EP,SC)

=
P(SP,EP,SC|LH= severe)P (LH= severe)

P (SP,EP,SC)

=

∑
P(SP,EP,SC,LP,LPI|LH= severe)

∑
P(LH= severe)∑

P(LH,LP,LPI,SP,EP,SC)
P (LH,LP,LPI,SP,EP,SC)= P(SP) ·P(SC) ·P(EP|SP,SC)

·P(LP|SP,EP,SC) ·P(LPI|LP,SC)

·P(LH|SP,EP,SC,LP,LPI).

2.3 Construction of a BN model for
liquefaction-induced hazards

Strong earthquakes can cause liquefaction and therewith
ground failures in the form of sand boils, ground cracks,
settlement-induced tilting of structures, and lateral spread-
ing. Table 1 lists some factors related to the LP, LPI, four
types of hazards induced by liquefaction, and SLH. LP and
LPI are used to describe the state of soil liquefaction, the
four types of liquefaction-induced hazards are used to iden-
tify different types of damage and their severity after seismic
liquefaction, and SLH is a comprehensive index intergrading
indexes of the four types of hazards to describe the overall
severity of disasters after liquefaction. Additionally, Table 1
lists some empirical modelling methods that can be used as
domain knowledge to construct a BN model of liquefaction-
induced hazards. Hu et al. (2016) constructed a BN model
for liquefaction potential (as shown in Fig. 3) that considered
12 factors: the magnitude of the earthquake (ME), epicentral
distance (ED), duration of the earthquake (DE), peak ground
acceleration (PGA), fine content (FC), soil type (ST), aver-
age particle size (D50), SPT number (SPTN), vertical effec-
tive stress (σ ′v), groundwater table (GT), depth of soil deposit
(DSD), and the thickness of the soil layer (TSL). In terms of
seismic parameters, the liquefaction potential will increase
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Table 1. Factors of liquefaction and its induced hazards and empirical modelling methods.

Category Liquefaction and its
induced hazards

Factors Empirical methods

Liquefaction state Liquefaction potential (LP) Magnitude of earthquake, epicentral
distance, duration of earthquake, peak
ground acceleration (PGA), fine con-
tent, soil type, average particle size
(D50), SPT number (SPTN), vertical ef-
fective stress (σ ′v), groundwater table,
depth of soil deposit, and thickness of
soil layer

Hu et al. (2016)

Liquefaction potential
index (LPI)

LP, depth of soil deposit, and thickness
of soil layer

Iwasaki et al. (1982), Mau-
rer et al. (2015)

Liquefaction-
induced hazards

Sand boils (SB) LP, LPI, depth of soil deposit, thickness
of soil layer, and groundwater table

Bardet and Kapuskar
(1993)

Ground cracks (GC) LP, LPI, D50, depth of soil deposit,
thickness of soil layer, and ground slope
(θ )

Youd (1984)

Lateral spreading (LS) LP, LPI, PGA, magnitude of earth-
quake, epicentral distance, depth of soil
deposit, thickness of soil layer, D50,
and θ

Bartlett and Youd (1995),
Wang and Rahman (1999),
Goh and Zhang (2014)

Settlement (S) LP, LPI, PGA, depth of soil deposit,
thickness of soil layer, soil type, LS, SB

Zhang et al. (2002), Cetin
et al. (2009), Juang et
al. (2013)

Comprehensive
index

Severity of liquefaction-
induced hazards (SLH)

LP, LPI, SB, GC, LS, S –

Figure 3. A BN model of seismic liquefaction (Hu et al., 2016).
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Figure 4. A BN model of seismic liquefaction-induced hazards.

with increases in ME, DE, and PGA and lower values of ED.
In terms of soil parameters, the anti-liquefaction behaviour
of the soil is strongly related to the FC value: as FC increases
up to 30 %, the liquefaction strength decreases, but when FC
exceeds 30 %, the liquefaction strength increases with FC;
when FC > 50 % (silt and sandy silt), the soil is hardly liq-
uefied. In addition, the FC value determines the type of soil.
Normally, purified clay and silt cannot be liquefied, whereas
poorly graded sand and silty sand are easily liquefied. The
bigger the average particle size, and the bigger the SPTN,
the smaller the probability of soil liquefaction. In terms of
field conditions, deeper soil deposits have greater vertical ef-
fective stress. This is more difficult for the increase in pore
water pressure to overcome, so soil liquefaction cannot eas-
ily occur. In addition, a shallow GT and thin soil can partly
reduce the probability of soil liquefaction. Thus, a state node
(LPI) and output nodes (sand boils, ground cracks, lateral
spreading, settlement, and SLH) should be added to the ex-
isting BN model of liquefaction potential (shown in Fig. 3)
based on the generic BN model in Fig. 2. A new BN model
for liquefaction-induced hazards (shown in Fig. 4) was con-
structed according to domain knowledge of the hazards in
Table 1. The ground slope, which affects GC and LS, was
not considered in the BN model of liquefaction-induced haz-
ards because associated data were not collected in the present
study.

Earthquake liquefaction-induced hazards are a chain reac-
tion, originating with the earthquake event and proceeding
to soil liquefaction and its pertinent hazards. Different input
values result in different liquefaction states and different de-
grees of liquefaction. The outputs of the former system (e.g.
LP) are used as input information for the latter system, result-
ing in different hazard events (e.g. sand boils, lateral spread-
ing). The whole process of earthquake liquefaction-induced
hazards can be described as follows: at the beginning of an
earthquake, the earthquake parameters, soil characteristics,
and field conditions are considered as control variables, and
their prior probabilities are calculated by parameter learning.
The posterior probability of the output variable (e.g. LP) can
then be inferred to estimate whether an event could be trig-
gered. If the event occurs, its conditional probability is re-
placed by the posterior probability, which is considered as the
evidence variable for input. Finally, a posterior probability of
the latter event (e.g. LP) is calculated using the new condi-
tional probability of the former event to estimate its grade.
The above process is repeated until the grades of all hazard
events have been identified.

www.nat-hazards-earth-syst-sci.net/18/1451/2018/ Nat. Hazards Earth Syst. Sci., 18, 1451–1468, 2018
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Figure 5. Proportions of data size of all influence factors.
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3 Case study

3.1 Dataset

In this study, the dataset shown in Fig. 5a consists of
442 SPT borings from post-earthquake in situ tests at lique-
fied (245 SPT borings; shown in Fig. 5b) and non-liquefied
(197 SPT borings) sites in Taiwan, Japan, and the USA. Of
these, 332 SPT borings (184 liquefied sites and 148 non-
liquefied sites) were used to train the BN model, and the
remaining 110 SPT borings were used to test the effec-
tiveness and robustness of the BN model. Only four earth-
quakes above are considered in this study, “medium magni-
tude” data from the 1957 Daly City (California, USA) earth-
quake (Mw = 5.3) and the 1987 Whittier Narrows (USA)
earthquake (Mw = 5.9) were taken from Cetin et al. (2000).
“Big magnitude” data from the 1999 Chi-Chi earthquake
in Taiwan (Mw = 7.6) were downloaded from http://www.
ces.clemson.edu/chichi/TW-LIQ/In-situ-Test.htm (last ac-
cess: 21 October 2016) and http://peer.berkeley.edu/lifelines/
research_projects/3A02/ (last access: 21 October 2016). “Su-
per magnitude” data from the 2011 Tōhoku earthquake in
Japan (Mw = 9.0) were provided by the Research Centre
for the Management of Disasters and the Environment at
Tokushima University, Japan. “Strong magnitude” (6Mw < 7)
is not included. The collected data of these four earthquakes
covers not only different duration and PGA but also several
soil parameters and field conditions, none of which are lo-
cated within 10 km (defined as “near” epicentral distances)
from earthquake sources. The grading standard of all 12 in-
fluence factors of liquefaction potential in Fig. 5 is shown
in Table 2, from Hu et al. (2016). The observed liquefac-
tion effects induced by these earthquakes include sand boils,
settlement of ground, ground cracks, and lateral spreading
(as shown in Fig. 6), resulting in the destruction of cropland,
blocking of channels, and severe damage or collapse of many
buildings, highways, bridges, harbour facilities, and other in-
frastructure components.

The liquefied sites of the collected data in this study are
mainly from the Chi-Chi earthquake and Tōhoku earthquake.
The characteristics of liquefied soils are predominantly loose
and clean sands or silty sands (SPT values less than 10) that
deposit within 10 m in the liquefaction data of the two earth-
quakes shown in Fig. 5b. It is worth noting that duration of
ground motion was very long within 100–200 s, and the liq-
uefied sites were very far from the epicentre of about 300–
450 km, which experienced PGAs of approximately 150–
300 cm s−2 during the Tōhoku earthquake, whereas serious
damage induced by soil liquefaction occurred in a wide area
of the Tōhoku and the Kanto regions along with a wide
range of sand boils, cracks, and severe uneven settlement
of pavements due to long-lasting cycle shear actions. How-
ever, during the Chi-Chi earthquake, durations of the strong
motions were short, but PGA values were very big due to
near a source earthquake proximal to a fault (approximately

Figure 6. Photos showing liquefaction-induced hazards dur-
ing the Chi-Chi earthquake and the 2011 Tōhoku earthquake:
(a) sand boils in Chikusei; (b) ground cracks at Arakawa River in
Toda; (c) settlement at Taichung Port (http://www.ces.clemson.edu/
chichi/TW-LIQ/Liq-Album/Settlement-7.htm, last access: 10 De-
cember 2016); (d) lateral spread induced failure of a dike in
Nantou (http://www.ces.clemson.edu/chichi/TW-LIQ/Liq-Album/
LatSpread-3.htm, last access: 10 December 2016). Images © 2016
Clemson University.

1.0 km), e.g. in the Nantou and Wufeng regions as high as
0.7–1.0 g, that caused widespread liquefaction in the form of
sand boils, lateral spreads, and settlement of grounds in the
towns of Yuanlin, Nantou, and Wufeng, Taiwan. Figure 5c
shows proportions of all influence factors for the severe sta-
tus of the SLH. It is clear that the most severe damage sites
were the result of big or super earthquakes (Mw > 7 or 8) with
long loading (duration more than 60 s); some epicentral dis-
tances were close to the earthquake sources, e.g. the nearest
liquefied sites in Nantou are about 14 km away from the epi-
centre, and thus their PGA was sufficiently high. As for soil
characteristics, pure sand or silty sand with moderate fine
content (30 % < FC≤ 50 %) and moderate average grain di-
ameter (0.075≤D50 < 0.425) values result in severe damage,
unlike sites with gravelly soil and sandy silt. The damage
phenomena also indicate that, even though gravel and sandy
silt are not easily liquefied when the earthquake is sufficiently
strong to cause liquefaction, severe damage can be expected,
as shown in Fig. 5b and c. The small SPTN (0 < SPTN≤ 10)
means that the sandy soil is so loose that settlement and lat-
eral spreading are more likely triggered after liquefaction be-
cause loose sand is more easily compressed and flows dur-
ing seismic liquefaction. As for field conditions, the shallow-
buried sandy soil layer has low effective stress (σ ′v < 50 kpa)
and the GT is near to the ground surface. Such zones are
likely to suffer from severe damage. The above laws fit well
with practical engineering experience. The sum of the data
size of these 12 variables is not consistent in Fig. 5a, b, and
c, respectively, such as ED, DE, D50, σ ′v, and the TSL due
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Table 2. Grading standards for the factors (Hu et al., 2016).

Category Factor Number of Grade Range
grades

Seismic parameter ME: the magnitude of the earthquake Mw 4 Super 8≤Mw
Big 7≤Mw < 8
Strong 6≤Mw < 7
Medium 4.5≤Mw < 6

ED: epicentral distance r (km) 4 Super 100 < r
Far 50 < r ≤ 100
Medium 10 < r ≤ 50
Near 0 < r ≤ 10

DE: duration of the earthquake t (s) 3 Long 60≤ t
Medium 30 < t < 60
Short 0 < t ≤ 30

PGA: peak ground acceleration (g) 4 Super 0.40≤PGA
High 0.30≤PGA < 0.40
Medium 0.15≤PGA < 0.30
Low 0≤PGA < 0.15

Soil parameter FC: fine content (%) 3 Many 50 < FC
Medium 30 < FC≤ 50
Less 0≤FC≤ 30

ST: soil type 4 SP –
SM –
SC –
GM –

D50: average particle size (mm) 4 Super 2≤D50
Big 0.425≤D50 < 2
Medium 0.075≤D50 < 0.425
Small 0≤D50 < 0.075

SPTN: SPT number 4 Dense 30 < SPTN≤ 0
Medium 15 < SPTN≤< 30
Slight 10 < SPTN≤ 15
Loose 0 < SPTN≤ 10

Field condition σ ′v: vertical effective stress (KN m−1) 4 Super 150≤ σ ′v
Big 100≤ σ ′v < 150
Medium 50≤ σ ′v < 100
Small 0≤ σ ′v < 50

GT: groundwater table Dw (m) 3 Deep 4.0≤Dw
Medium 2.0≤Dw≤ 4.0
Shallow Dw≤ 2.0

DSD: depth of soil deposit Ds (m) 4 Deeper 20≤Ds
Deep 10≤Ds < 20
Medium 5≤Ds < 10
Shallow 0≤Ds < 5

TSL: thickness of soil layer Ts (m) 3 Thick 10≤ Ts
Medium 5≤ Ts < 10
Thin 0≤ Ts < 5

to the missing data. The proportion of missing data for ED,
DE, D50, vertical effective stress, and the thickness of soil
layer is ∼ 5, ∼ 9.7, ∼ 15.2, ∼ 29.4, and ∼ 38.9 %, respec-
tively. An expectation–maximization (EM) algorithm (Lau-
ritzen, 1995) was used to train the 332 SPT data to obtain
a conditional probability table for the BN model because

of incomplete data. EM was used as it is more robust than
other algorithms and is suitable for datasets with many miss-
ing values. Briefly, the EM method is an iterative algorithm
for determining the maximum likelihood estimation or max-
imum a posteriori estimation of parameters. A Bayesian net
is iteratively applied to obtain a better one by conducting an
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expectation (E) step followed by a maximization (M) step
until the algorithm has converged. In the E step, the regular
Bayesian net inference is used with the existing Bayesian net
to compute the expected value of all the missing data, and
then the M step finds the maximum likelihood Bayesian net,
given the now extended data (e.g. original data plus expected
values of missing data).

The grading standard of liquefaction potential index and
liquefaction-induced hazards according to domain knowl-
edge is presented in Table 3; e.g. LPI is divided into four
grades according to Iwasaki et al. (1982): non-liquefaction
(LPI= 0), slight liquefaction (0 < LPI≤ 5), moderate lique-
faction (5 < LPI≤ 15), and serious liquefaction (LPI > 15).
SLH is divided into four grades according to disaster experi-
ence in the field of engineering, as described in Table 4. Ac-
cording to the descriptions of SLH, a statistical summary of
liquefaction-induced hazard data is presented in Fig. 7. It can
be seen that (1) liquefaction does not have to induce hazards,
but the occurrence of liquefaction-induced hazards is based
on liquefaction. (2) LPI is not a good index for describing the
severity of liquefaction-induced hazards because the efficacy
of the LPI framework and accuracy of derivative liquefaction
hazards are uncertain; e.g. serious liquefaction according to
LPI occurs in the absence of SLH (see Fig. 7a) and slight liq-
uefaction according to LPI occurs when severe SLH are ob-
served (see Fig. 7d). As a rule, the bigger the LPI, the greater
the severity of the corresponding liquefaction-induced haz-
ards. (3) SB, S, GC, and LS are macroscopic phenomena
of liquefaction-induced hazards, and there is a trend that the
bigger the values of these indexes are, the more severe the
SLH. (4) The classifications for the four different types of
hazards in Fig. 6 almost accord with the descriptions of the
field ground damage status in Table 4.

3.2 Performance indexes

In this section, to comprehensively evaluate the perfor-
mances of the two probabilistic models for liquefaction-
induced hazards, several performance indexes are intro-
duced. These are the accuracy, prediction, recall, area un-
der the curve (AUC) of the receiver operating characteristic
(ROC), and Brier score. The details of these indexes are de-
scribed in the following.

The accuracy is a measure of the percentage of correctly
classified instances for each class. This metric is widely used
for measuring the overall performance of a classifier. For in-
stance, an accuracy of 0.9 indicates that 90 % of the data can
be correctly classified. However, it does not mean that the ac-
curacy of each class is 90 %; the accuracy of one class may
be high, whereas that of the others may be very low. There-
fore, evaluations of predictive capability based on accuracy
alone can be misleading when a class imbalance exists in a
dataset. Indexes such as the precision, recall, and AUC of
ROC should be used to further measure the performance of
each class for a model or classifier.

The recall refers to the probability of detection of a class
and measures the proportion of correctly predicted positive
instances among all actual positive cases. If a classifier can
achieve a higher recall for a class, then it can detect more pos-
itive instances of the class. The precision refers to the propor-
tion of true positives among the instances predicted as posi-
tive for a single class, but it cannot measure how the classifier
detects the actual positive instances. A classifier with high
precision but lower recall is less useful because it cannot de-
tect significant positive instances, especially in terms of risk
assessment, where security and warning are major concerns.
A good classifier should detect more positive instances with
relatively high prediction accuracy and have high recall and
acceptable precision.

The ROC curve is a graphical plot given by the false pos-
itive rate (the proportion of all negatives that still yield posi-
tive test outcomes) on the x axis and the true positive rate or
recall on the y axis, which can present an overly optimistic
view of an algorithm’s performance. The AUC of ROC is the
area between the horizontal axis and the ROC curve, which
is a comprehensive scalar value representing a classifier’s ex-
pected performance. The AUC of ROC ranges from 0.5 to 1,
with values closer to 1.0 indicating better precision. There-
fore, the bigger the AUC of ROC value, the better the predic-
tion performance of the classifier.

The Brier score (Brier, 1950) is used to measure the qual-
ity of probabilistic forecasts for discrete events. Suppose that
on each of n occasions, an event can occur in only one of
r possible classes. On the ith occasion, the forecast proba-
bilities that the event will occur in classes 1,2,3, · · ·, r are
fi1,fi2, · · ·,fir , respectively. The Brier score (B) is then de-
fined by

B =
1
n

r∑
j=1

n∑
i=1

(
fij −Eij

)2
, (4)

where
r∑
i=1
fij = 1, i = 1,2,3, · · ·,n. Eij takes a value of 1

or 0 according to whether the event occurred in class j or
not. For instance, in the case study described in this paper,
110 SPT borings are used for testing (n= 110), SLH has
four classes (none, minor, medium, and severe; r = 4), and
a probability or confidence statement (fij ) is given for each
SPT boring instance. The Brier score ranges from 0 to 2,
where B = 0 denotes a perfect prediction and B = 2 denotes
the worst possible prediction.

4 Results

4.1 Comparison of predictive results

Table 5 compares the predictive results given by the BN
model (see Fig. 4) and the ANN model using the same pa-
rameters. In terms of accuracy, except for LS, the BN model
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Table 3. Grading standard for liquefaction and liquefaction-induced hazards.

Factor No. of Grade Data Range
grades number

Liquefaction potential 2 None 197 –
Yes 245 –

Liquefaction potential index 4 Non-liquefaction 145 0
Slight liquefaction 97 0 < LPI≤ 5
Moderate liquefaction 106 5 < LPI≤ 15
Serious liquefaction 94 15 < LPI

Settlement (m) 4 None 238 0
Small 23 0 < S≤ 0.1
Medium 54 0.1 < S≤ 0.3
Big 127 0.3 < S

Sand boils 4 None 275 –
Less 21 –
Medium 11 –
Many 135 –

Ground crack 2 None 106 –
Yes 336 –

Lateral spreading (m) 4 None 437 0
Small 0 0 < LS≤ 0.1
Medium 0 0.1 < LS≤ 0.3
Big 5 0.3 < LS

Severity of liquefaction- 4 Little to None 238 –
induced hazards Minor 28 –

Medium 46 –
Severe 130 –

Table 4. Description of the severity of liquefaction-induced hazards.

Severity of liquefaction-
induced hazard

Description of field ground status

Little to none Non-liquefaction. There is no sand boils phenomenon and no ground failure.

Minor Slight liquefaction. The phenomenon of the sand boil is sporadic, but there is
no ground failure.

Medium Moderate liquefaction. There is a medium sand boil phenomenon, which has a
short duration, small gushing quantity and small scale, the quantity of surface
subsidence is less than 3 % of the sand layer thickness that can cause structural
damage, and tiny cracks in the ground occur, but there is no lateral spreading.

Severe Serious liquefaction. There is a serious sand boil phenomenon, which has a
long duration, large gushing quantity and wide scale, surface largely crazes, and
lateral spreading and severe subsidence affect structures’ services. The quantity
of surface subsidence is more than 3 % of the sand layer thickness.

scores higher than the ANN model for the other types of haz-
ards and SLH and comparing the Brier score, the BN model
scores lower than the ANN, except for LS and SLH. These
results indicate that the overall performance of the BN model
is better than that of the ANN model. As for each type of haz-
ard induced by liquefaction and SLH, the recall, precision,
and AUC of ROC scores obtained by the BN model for each
class are generally higher than those of the ANN, which also

suggests that the BN model is better than the ANN model.
Therefore, the proposed BN approach is better than the ANN
technology, and its performance is acceptable for monitoring
and forecasting seismic liquefaction-induced hazards. In ad-
dition, in terms of the computation time, the BN model (using
the EM algorithm) outperforms the ANN model (containing
20 hidden layers and using a radial basis function), requiring
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Figure 7. Statistical summary of seismic liquefaction-induced hazard data.

36 iterations (about 19.8 CPU s) to converge to a stable state.
This convergence rate is faster than that of the ANN model.

Furthermore, there are no effective simplified methods
for estimating ground cracks and sand boils, and simplified
methods for calculating lateral spreading (Bartlett and Youd,
1995; Wang and Rahman, 1999; Goh and Zhang, 2014) re-
quire the free face ratio or ground slope, which were not in-
cluded in the data collected for this study. Therefore, ground
cracks, sand boils, and lateral spreading cannot be estimated
by simplified methods. However, settlement can be calcu-
lated by the simplified method proposed by Ishihara and
Yoshimine (1992), hereafter referred to as the I&Y method.
Table 5 clearly indicates that the predictive results of data-
driven methods such as BN and ANN are better than those
of the simplified I&Y method, but the simplified approach
gives a constant value (as shown in Fig. 8) rather than an in-
terval value or probability. In addition, the simplified method
is constructed using only the relationships among the relative
density, the factor of safety against liquefaction (FL), and the
volumetric strain (εv). The factor of safety against liquefac-
tion is obtained by integrating the earthquake intensity and
SPTN using empirical formulas or empirical coefficients and

thus may introduce calculation errors that result in consider-
able prediction errors, such as the small settlement predicted
in Table 5, where the precision of the simplified method is
only 0.069. However, the data-driven methods integrate mul-
tiple factors of liquefaction-induced hazards into a model,
thus providing better predictive performance than the simpli-
fied method.

4.2 Causal reasoning using the BN model

Based on the developed BN model, the probabilities of the
liquefaction-induced hazards were inferred through causal
reasoning. The third column in Table 6 lists the posterior
probabilities of all grades of LP, LPI, and its induced hazards.
It can be seen that when the input variables regarding earth-
quake parameters, soil characteristics, and field conditions
are unknown, the probabilities of all grades of each output
variable are similar, except for LS and SB, which have a seri-
ous imbalance in the data of different grades. However, when
a site is determined to be liquefied and the probability of a
positive LP status becomes 100 %, the fourth column shows
that the probabilities of LPI being “none” and all hazards
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Table 5. Comparison of predictive performance of liquefaction-induced hazards.

Category Method Accuracy Brier Damage Recall Precision AUC of
score state ROC

Ground cracks BN 0.909 0.070 Yes 0.742 0.920 0.780
None 0.975 0.920 0.962

ANN 0.873 0.091 Yes 0.581 0.947 0.641
None 0.987 0.857 0.949

Sand boils BN 0.918 0.106 Many 0.932 0.911 0.558
Medium – – –
Less 0.857 0.857 0.667
None 0.932 0.948 0.982

ANN 0.736 0.130 Many 0.591 0.813 0.652
Medium – – –
Less 0.000 0.000 0.000
None 0.932 0.733 0.973

Settlement BN 0.836 0.110 Big 0.867 0.703 0.845
Medium 0.815 0.957 0.745
Small 1.000 0.600 1.000
None 0.840 0.933 1.000

ANN 0.745 0.130 Big 0.667 0.741 0.815
Medium 0.444 0.857 0.542
Small 0.000 0.000 0.000
None 1.000 0.735 1.000

]I&Y Simplified 0.727 – Big 0.862 1.000 –
Method Medium 0.778 0.840 –

Small 0.667 0.069 –
None 0.600 1.000 –

Lateral spreading BN 0.955 0.024 Big 1.000 0.286 1.000
Medium – – –
Small – – –
None 0.954 1.000 1.000

ANN 0.982 0.018 Big 0.000 – 0.000
Medium – – –
Small – – –
None 1.000 0.982 1.000

Severity of liquefaction- BN 0.936 0.124 Severe 0.935 0.967 0.879
induced hazards Medium 0.857 0.900 0.626

Minor 0.875 0.700 1.000
None 0.980 0.980 0.980

ANN 0.718 0.117 Severe 0.710 0.710 0.785
Medium 0.333 0.636 0.776
Minor 0.000 0.000 0.000
None 1.000 0.746 1.000

decrease to some extent while the probabilities of other LPI
states and all hazards increase significantly. Furthermore, if
the site is seriously liquefied, the probability of LP being
“yes” and LPI being “serious” becomes 100 %, as seen in
the fifth column of Table 6. The probabilities of all grades
(except “none”) for all hazards continue increasing, with GC
occurring with 66.1 % probability, serious sand boils occur-
ring with 69.6 % probability, big LS occurring with 9.5 %
probability, big settlement occurring with 49.8 % probabil-

ity, and severe SLH occurring with 64.1 % probability. This
shows that liquefaction-induced hazards are much more se-
vere at seriously liquefied sites. Macro-liquefaction phenom-
ena, such as GC and serious SB, are also observed, and the
probabilities of the “big” status in other hazards continue
to increase slightly, as seen in the sixth column of Table 6.
Thus, the predictive results are close to the actual situation.
Therefore, according to the above deduction process, the BN
model can calculate the posterior probability of LP based on
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Table 6. Posterior probabilities of partial output variables.

Output variable Grade Risk Risk Risk Risk
probability 1 probability 2 probability 3 probability 4

Liquefaction potential Yes 0.572 1 1 1
None 0.428 0 0 0

Liquefaction potential index Serious 0.220 0.385 1 1
Moderate 0.257 0.450 0 0
Slight 0.207 0.136 0 0
None 0.316 0.286 0 0

Ground cracks Yes 0.239 0.408 0.661 1
None 0.761 0.592 0.339 0

Sand boils Many 0.304 0.515 0.696 1
Medium 0.0554 0.0809 0.0676 0
Less 0.0506 0.0725 0.0355 0
None 0.590 0.331 0.201 0

Lateral spreading Big 0.076 0.0811 0.095 0.093
Medium 0.0698 0.0702 0.0764 0.078
Small 0.0698 0.0702 0.0764 0.078
None 0.784 0.778 0.748 0.751

Settlement Big 0.255 0.362 0.498 0.523
Medium 0.179 0.229 0.140 0.120
Small 0.162 0.198 0.212 0.240
None 0.404 0.212 0.150 0.116

SLH Severe 0.277 0.416 0.641 0.746
Medium 0.168 0.225 0.0966 0.697
Minor 0.140 0.174 0.147 0.114
None 0.415 0.185 0.116 0.697

Figure 8. Soil profile and estimate of settlement.

the conditional probabilities of input variables for estimating
whether a site is liquefied or not. If it is liquefied, its posterior
probability will be considered as input information for pre-
dicting the latter variable. Such reasoning gives all predictive

results of liquefaction-induced hazards. In addition, when the
prior probabilities of all input variables, such as the earth-
quake parameters, soil characteristics, and field conditions,
have been determined in advance, the predictive performance
for all hazards will improve significantly. For instance, con-
sider a site that suffered a long-duration super earthquake.
Surveys show that the SLH is severe with a big settlement,
no lateral spreading, serious sand boils, and ground cracks.
The input variables of the site indicate that the ED is near,
the PGA is higher, the SE is sand with some fine particles,
the D50 value is medium, the sand is loose according to the
SPTN, the σv′ value is small, the GT is shallow, and both the
depth and thickness of the sand layer are moderate. The rea-
soning probability value of LP is 99.9 %, LPI is identified as
serious with 43.8 % probability, and GC has a 51.4 % prob-
ability of not occurring, which does not match the survey
results. According to the input information, SB is identified
as “many” with 76.5 % probability, LS is identified as “none”
with 85.0 % probability, the settlement is identified as “big”
with 53.1 % probability, and SLH is identified as “severe”
with 52.6 % probability. The site is then determined to be a
liquefied area with serious liquefaction degree, so LP should
be 100 % and the probability of LPI being serious should also
be 100 %. The probabilities of all hazards will also change.
GC occurs with 100 % probability, which matches the sur-
vey results; LS is identified as “none” with 100 % probabil-
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ity (an increase of 15 %); settlement is identified as “big”
with 100 % probability (an increase of 46.9 %); and SLH is
identified as “severe” with 100 % probability (an increase of
47.4 %).

4.3 Diagnostic reasoning using the BN model

To detect situations that are more likely to result in severe
damage, the most probable explanations of LP (yes), LPI
(serious), GC (yes), SB (many), LS (big), and S (big) are in-
ferred using the diagnostic reasoning capabilities of the BN
model. The results are presented in Table 7. It can be seen
that loose silty sand (medium D50) containing moderately
fine particles deposited shallowly (small σ ′v) on a site with
a low underground water level is more likely to suffer from
liquefaction following a super earthquake of moderate du-
ration and moderate epicentral distance. The most probable
explanations for GC and “many” SB are the same as those for
LP under conditions of serious or moderate soil liquefaction,
but the most probable explanations for “big” LS and “big” S
are slightly different from those of LP in terms of PGA and
SE. The reason is that both LS and S being “big” requires
more seismic intensity than occurrences of sand boils and
ground cracks, and sand flows more easily and undergoes
greater compression after liquefaction than sand containing
fine particles. In addition, LS and S being “big” is often ac-
companied by many sand boils, whereas ground cracks may
or may not occur. The above results agree with the analysis
results in Fig. 7. In addition, if the soil characteristics, field
conditions, and hazards are known, the earthquake intensity
(ME, DE, PGA, and ED) resulting in liquefaction-induced
hazards can be estimated using the backward inference abil-
ity of the BN method, which provides some references for
aseismatic design.

4.4 Sensitivity analysis of liquefaction-induced hazards

Sensitivity analysis detects how much each factor impacts the
target variable. In this section, mutual information is used
to assess the sensibility, which is a measure of the mutual
dependence between two variables. The mutual information
results for different liquefaction-induced hazards were com-
puted separately in the BN model; the results are presented
in Table 8. The TSL is the most sensitive variable for GC,
and the relatively important factors are the depth of the soil
layer, D50, and the DE. For SB, the GT is the most sen-
sitive variable, and the relatively important factors are the
TSL, SPTN, DE, PGA, depth of soil layer, and σ ′v. For S,
PGA is the most sensitive variable, and the relatively im-
portant factors are SPTN, the DE, and the depth of the soil
layer. For LS, PGA is again the most sensitive variable, and
the relatively important factors are D50, the TSL, the depth
of the soil layer, and the soil type. These results are highly
consistent with the domain knowledge in Table 1. Compar-
ing the most sensitive factors and relatively important factors

of the four types of liquefaction-induced hazards and SLH,
the DE, PGA, SPTN, DSD, and the TSL are more important
than the other factors because they are present for more than
three items; the findings are in agreement with the descrip-
tion of characteristics of earthquake- and soil-induced lique-
faction hazards in Sect. 3.1. For these five factors, a combi-
nation of SPTN and the earthquake intensity (described by
the DE and PGA) can detect the degree of soil liquefaction.
The depth of the soil deposit and the TSL combine with the
relative density (determined by SPTN) based on the degree
of soil liquefaction to give the soil volumetric strain. Con-
sequently, liquefaction-induced hazards, e.g. settlement and
lateral spreading, can be estimated. Therefore, to mitigate
seismic liquefaction-induced hazards, we can neglect the rel-
ative density of sandy soil, as the depth of the sandy soil de-
posit and the thickness of the sandy soil layer are the crucial
factors.

5 Application of the BN model

The BN model described above was applied to assess the
liquefaction-induced hazards during Japan’s Tōhoku earth-
quake on 11 March 2011. The research regions are Ibaraki
Prefecture, Chiba Prefecture, Saitama Prefecture, Kanagawa
Prefecture, and Tokyo, which contain 196 investigation sites.
In the 196 real fields, the prediction accuracies of the
four types of liquefaction-induced hazards are 99.50 % (lat-
eral spreading), 81.63 % (sand boils), 80.61 % (settlement),
89.8 % (ground cracks), and 84.1 % (SLH). In addition, the
prediction accuracies of the four different levels of SLH (lit-
tle to none, minor, medium, and severe) are 79.83, 84.62,
81.25, and 79.83 %, respectively, which demonstrate the va-
lidity of the BN model in general. The prediction accuracies
of the LPI approach (Iwasaki et al., 1982) for the four dif-
ferent levels of SLH were found to be 36.96, 8.82, 68, and
42.22 %, respectively, which are much worse than the pre-
diction results of the BN model.

During this earthquake, areas with greater losses and a
larger number of liquefaction sites are located in Ibaraki Pre-
fecture and Tokyo, which are closer to the sea than the other
places. These two regions contain 78 sites with different de-
grees of hazards, including approximately 50 sites where
medium or severe disasters occurred. In Table 4, it is ap-
parent that sites suffering medium or severe disasters were
subject to sand boils, ground cracks, lateral spreading, and
settlement, resulting in foundation failure. These foundation
failures caused further damage to buildings and bridges to
collapse. Therefore, the BN model of assessing liquefaction-
induced hazards not only accurately assesses the range of
lateral spreading and settlement, the quantity of sand boils
scale, and the likelihood of ground cracks but also accurately
predicts the severity of hazards induced by liquefaction. It
then qualitatively assesses damage that may occur to build-
ings or other structures according to engineering experience
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Table 7. Most probable explanation of LP, serious LPI, GC, many SB, big LS, and big S in the BN model.

Factor LP LPI GC SB LS S

Earthquake magnitude Super Super Super Super Super Super
Epicentral distance Medium Medium Medium Medium Medium Medium
Duration of earthquake Medium Medium Medium Medium Medium Medium
PGA Medium Medium Medium Medium Higher Higher
Fine content Medium Medium Medium Medium Medium Medium
Soil type SM SM SM SM SP SP
D50 Medium Medium Medium Medium Medium Medium
SPT No. Loose Loose Loose Loose Loose Loose
σ ′ Small Small Small Small Small Small
Groundwater table Shallow Shallow Shallow Shallow Shallow Shallow
Depth of soil layer Shallow Shallow Shallow Shallow Shallow Shallow
Thickness of soil layer Thin Medium Medium Thin Medium Thin

LP – Yes Yes Yes Yes Yes
LPI – – Serious Moderate Serious Moderate
GC – – – None Yes None
SB – – – – Many Many
LS – – – – – None

Table 8. Sensitivity analysis of seismic liquefaction-induced haz-
ards.

Factor Mutual information

GC SB S LS SLH

Magnitude of earthquake 0.002 0.003 0.002 0.001 0.002
Epicentral distance 0.004 0.007 0.007 0.002 0.008
Duration of earthquake 0.008 0.016 0.013 0.002 0.015
PGA 0.004 0.011 0.029 0.123 0.026
Fine content 0.001 0.001 0.001 0.003 0.001
Soil type 0.001 0.002 0.006 0.013 0.005
D50 0.009 0.001 0.002 0.029 0.003
SPTN 0.004 0.017 0.017 0.003 0.019
σ ′v 0.001 0.010 0.007 0.006 0.008
Groundwater table 0.000 0.054 0.003 0.002 0.004
Depth of soil deposit 0.013 0.010 0.009 0.014 0.010
Thickness of soil layer 0.035 0.023 0.006 0.028 0.005

regarding foundation damage and structural collapse. These
results provide engineering guidelines for the prevention and
mitigation of structural issues following natural disasters.

6 Discussion

This paper described a probability model for liquefaction-
induced hazards using BN technology. As a means of proba-
bilistic inference, BNs offer several specific advantages over
other methods in the evaluation of catastrophes and can sup-
port a good platform for integrating different kinds of haz-
ards and their interdependencies into a consistent system (Li
et al., 2010b). However, existing empirical methods for es-
timating hazards induced by seismic liquefaction can only
assess a single type of ground failure and cannot predict

ground cracks and sand boils (e.g. the empirical formulas
constructed by Youd and Perkins, 1987; Youd et al., 2002,
the multivariate adaptive regression splines (MARS) model
constructed by Goh and Zhang, 2014, for estimating lateral
spreading, and the different simplified procedures for esti-
mating the settlement proposed by Ishihara and Yoshimine,
1992; Zhang et al., 2002; Wu and Seed, 2004; and Juang et
al., 2013). The LPI approach can quantify the liquefaction
severity of a site by providing a unique value for the entire
soil column instead of several safety factors per layer. How-
ever, calibrating LPI to determine the liquefaction severity
is difficult, and the efficacy of the LPI framework and accu-
racy of derivative liquefaction-induced hazards are uncertain
(Maurer et al., 2014). When the LPI value is big (LPI > 15),
the phenomena of settlement and ground cracks may not oc-
cur, but when the LPI value is small (LPI < 5), serious, long-
duration sand boils and wide-scale lateral spreading with se-
vere subsidence occur. Thus, the real SLH are largely incon-
sistent with the prediction results of the LPI approach, as
demonstrated by Fig. 6 and the prediction results in Sect. 6.
In fact, LPI only reflects the degree of liquefaction at a site
and cannot detect real situations of ground damage. As the
relation between LPI and the types of liquefaction-induced
hazards has not been examined systematically, it is possible
that there may be a qualitative relation to some extent.

Comparing the BN method with the ANN method, al-
though both use supervised learning, the BN method is a
generative model, whereas the ANN method is a discrimi-
native model. Therefore, the BN method can obtain the joint
probability distribution of the parameters, enabling it to de-
scribe distributions of data in statistical terms and drawing
on a strong probabilistic theory. This results in an objective
interpretation and faster computation times than discrimina-
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tive models such as the ANN method. Even when the sample
size increases, the BN method gives rapid convergence to the
true model. When the data contain hidden parameters, the
BN method can still develop a robust model, but the ANN
method cannot (Correa et al., 2009). In the BN model, each
node denotes a random variable that has actual meaning and
the link between two nodes implies causation; in contrast, the
nodes in the ANN model are not random variables and have
no actual meaning, with the links between nodes simply de-
noting a weighted functional relationship, such as causation
or a logistical relationship. This makes it difficult to explain
the results given by the ANN model. In addition, except for
predicting the different hazards induced by liquefaction, the
constructed BN model can predict the liquefaction potential:
the accuracy of liquefaction potential using the test data in
this study was 0.80. Using the ANN technology, a new model
should be constructed by studying the training data to predict
the accuracy of liquefaction potential, whereas the BN model
can make direct predictions without retraining. In particular,
the BN method can reason forward and backward to assess
the hazards induced by liquefaction with given earthquake
parameters, soil parameters, and field conditions or to deter-
mine the likely soil properties and field conditions once the
hazards are known after an earthquake; the ANN method of-
fers only forward reasoning.

In addition, both the BN method and the empirical prob-
ability methods, such as MARS method (Goh and Zhang,
2014), are probability models which can possess inter-
pretability in mathematics, unlike the ANN method with
“black-box” technology. They can easily develop compre-
hensive models that take into consideration all the indepen-
dent variables with highly non-linear. However, The MARS
model reflects the function relationship between the output
parameter and the independent variables, and its equation
form should be known at first before constructing the model.
Additionally, the MARS model can only predict a single out-
put (e.g. liquefaction potential or lateral spreading) at one
time, whereas the BN model can reflect causalities or logical
relationships among all the variables in graphically without
any mathematical expression. The BN model can also pre-
dict several outputs (e.g. liquefaction potential, settlement,
and lateral spreading) simultaneously and can construct a
model and make predictions using the EM algorithm even
though some variables are missing. It is worth noting that
the main difference between the two models is that the BN
model can skillfully combine the prior knowledge and ev-
idence (e.g. liquefaction data) by Bayes’ formula that can
improve the prediction accuracy of the BN model, but the
prediction of the MARS model only depends on collected
data. Even though the BN method possesses serval advan-
tages, the limitations of the method are that (1) it needs a
mass of data when constructing a BN model to guarantee a
certain accuracy (if a relatively small amount of data are col-
lected, it easily results in a non-robust BN model structure)
and (2) the causality or the logical relationship between two

variables in a BN model obtained only by data-driven algo-
rithm is sometimes acceptable in mathematics, but not true
in physics.

7 Conclusion and future work

Given the uncertainty and complexity of liquefaction-
induced hazards, this paper described a generic BN model
for estimating the risk of different hazards induced by seis-
mic liquefaction based on historical disaster data. This model
provides a platform for integrating a variety of information
sources from different fields and combines the different haz-
ards induced by liquefaction into a single model. The find-
ings reported in this paper are as follows:

1. Compared with ANN technology using several perfor-
mance indexes, the BN model achieves better accuracy
and a better Brier score for overall performance and
gives better recall, precision, and AUC of ROC for each
damage state (e.g. sand boils, settlement). The computa-
tion time of the BN model is faster than that of the ANN
method. This illustrates that the BN method is suitable
for risk assessment of liquefaction-induced hazards in-
fluenced by multiple complex factors. Compared with
the simplified I&Y method for estimating settlement,
the data-driven methods (BN and ANN) were found
to be superior. Furthermore, the performance of the
BN model in estimating liquefaction-induced hazards in
Japan’s Tōhoku earthquake demonstrates its correctness
and reliability compared with the LPI approach.

2. The BN model can deduce the process of a chain
reaction of liquefaction-induced hazards and perform
backward reasoning, such as inference from input vari-
ables (earthquake parameters, soil characteristics, and
field conditions) to soil liquefaction to different haz-
ard events or from soil liquefaction to different hazard
events to input variables. In addition, the most prob-
able explanations for LP, serious LPI, GC, many SB,
big LS, and big S in the BN model were determined.
This analysis showed that loose silty sand or sandy soil
(medium D50) containing moderated fine particles de-
posited shallowly (small σ ′v) on a site with a low under-
ground water level is more likely to suffer liquefaction
and the resulting hazards in the event of a super earth-
quake of moderate duration and epicentral distance.

3. A sensitivity analysis of the various liquefaction-
induced hazards indicates that the most sensitive factors
are specific to hazard. The DE, PGA, SPTN, DSD, and
TSL are more important than other factors; these factors
contribute to the soil volumetric strain.

Because the occurrence of liquefaction may cause no dam-
age, little damage, or severe damage to the ground surface or
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infrastructure, the BN model constructed in this study repre-
sents an important solution in terms of accurately assessing
the severity of hazards after seismic liquefaction. The model
results provide guidelines as to which sites should be prior-
itized rather than dealing with all sites at which liquefaction
has occurred, thus reducing the costs of disaster response. In
future work, more historical data will be collected to update
the conditional probability table and improve the BN model,
especially historical data containing instances of small and
medium lateral spreading, as there is a lack of such data in the
present study. Additionally, utility and decision action nodes
will be added to the BN model, enabling us to test how dif-
ferent actions will result in different hazards and different
expected utilities of loss. The results may provide significant
information for decision-making in terms of earthquake re-
sistance and hazard reduction.
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