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Abstract. We present estimates of future 20-year return val-
ues for 24 h precipitation based on multi-model ensembles
of temperature projections and a crude method to quantify
how warmer conditions may influence precipitation intensity.
Our results suggest an increase by as much as 40–50 % pro-
jected for 2100 for a number of locations in Europe, assum-
ing the high Representative Concentration Pathway (RCP)
8.5 emission scenario. The new strategy was based on com-
bining physical understandings with the limited information
available, and it utilised the covariance between the mean
seasonal variations in precipitation intensity and the North
Atlantic saturation vapour pressure. Rather than estimating
the expected values and interannual variability, we tried to
estimate an “upper bound” for the response in the precip-
itation intensity based on the assumption that the seasonal
variations in the precipitation intensity are caused by the
seasonal variations in temperature. Return values were sub-
sequently derived from the estimated precipitation intensity
through a simple and approximate scheme that combined the
1-year 24 h precipitation return values and downscaled an-
nual wet-day mean precipitation for a 20-year event. The lat-
ter was based on the 95th percentile of a multi-model ensem-
ble spread of downscaled climate model results. We found
geographical variations in the shape of the seasonal cycle of
the wet-day mean precipitation which suggest that different
rain-producing mechanisms dominate in different regions.
These differences indicate that the simple method used here
to estimate the response of precipitation intensity to temper-
ature was more appropriate for convective precipitation than
for orographic rainfall.

1 Introduction

Extreme precipitation is associated with flooding and land-
slides and can have detrimental effects on infrastructure
and society (Trenberth et al., 2003), as for example during
the unusually intense cloudburst in central Copenhagen on
2 July 2011 which caused massive flooding, and the 2002
floods in central and eastern Europe (Hov et al., 2013). Re-
turn values are commonly used in planning and design of
weather-resilient infrastructure by quantifying the magnitude
of a typical extreme event. However, the return values are not
stationary, and according to the reinsurance company Mu-
nich Re (Hov et al., 2013), there has been an increase in
the annual number of loss events related to weather. Assess-
ments carried out by the Intergovernmental Panel on Climate
Change (IPCC) indicate that heavy precipitation will become
more severe in already wet areas in the future (Stocker et al.,
2013; Field et al., 2012). These assessments have largely
been based on global climate model (GCM) output and have
not made use of additional local information such as mete-
orological observations. One of the difficulties of using ob-
servational data is the patchy character of the information be-
cause of missing data and short records. Global climate mod-
els are not designed to represent local precipitation statistics
corresponding to rain gauge data, but are expected to repro-
duce the nature of large-scale (regional and global) phenom-
ena and processes seen in the atmosphere and oceans. Also,
some elements are reproduced with higher skill than others.
In other words, GCMs provide a more reliable picture of
the temperature aggregated over larger spatial scales than of
grid-box precipitation estimates (Takayabu et al., 2015), and
their ability to simulate large-scale features can be utilised
for inferring changes to local precipitation through down-
scaling (Benestad et al., 2008). This caveat also applies to
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regional climate models (RCMs), which also have a mini-
mum skillful scale (Takayabu et al., 2015) and have a lim-
ited ability to reproduce the observed precipitation statistics
(Orskaug et al., 2011; Benestad and Haugen, 2007). Nev-
ertheless, RCMs have been used to study precipitation ex-
tremes (e.g. Frei et al., 2006), although the heavy compu-
tational demands have limited analysis to a small number of
GCMs which means that the ensembles do not provide a real-
istic range of possible outcomes associated with natural vari-
ability and model uncertainty (Deser et al., 2012).

Traditional methods of estimating return values that make
use of extreme value theory (EVT) are sensitive to sampling
fluctuations and require long data records to avoid extrap-
olation of extreme characteristics (Coles, 2001; Papalexiou
and Koutsoyiannis, 2013). Extreme precipitation modelled
through EVT usually describes amounts that are far out in the
tail of the distribution and associated with low probability,
and the estimates may change when new extremes are sam-
pled. Most uses of EVT also assume stationarity, although
there are ways to account for trends (Cheng et al., 2014).

Local precipitation has been notoriously difficult to predict
(Stocker et al., 2013; Field et al., 2012; Arkin et al., 1994);
one reason may be that it has involved quantities such as the
monthly mean precipitation that are calculated from a blend
of different (both dry- and wet-day) conditions and phenom-
ena without accounting for these differences. There are many
different types of phenomena that generate precipitation, e.g.
the formation of nimbostratus, mid-latitude cyclones, fronts,
atmospheric rivers, convection and warm and cold initiation
of rain (Fleagle and Businger, 1980; Berg et al., 2013; Tren-
berth et al., 2003). Some of these have a stronger presence in
certain regions and seasons. For instance, convective precip-
itation is typically a summer phenomenon at mid-to-high lat-
itudes, whereas mid-latitude cyclones are more pronounced
in autumn, winter and spring. Another reason for the limited
success may be the small sample size in calculations of the
mean precipitation for locations and seasons where it rains
rarely. For example, if it rains less than 30 % of the total
number of days in a month, the monthly average precipita-
tion is based on less than 10 values. The quantification of
future extreme precipitation is associated with uncertainties
from a number of sources (e.g. model imperfections, spar-
sity of data, sensitivity to random variations in small samples
constituting the tail of the distribution, non-stationarity and
the representation of natural variability). Large multi-model
ensembles can be used to explore the natural variability of the
climate system, although the range of the ensembles also in-
cludes other sources of uncertainty and variability, and some
ensemble members may be inter-dependent (Sanderson et al.,
2015).

Moderate extremes in 24 h precipitation amounts (X) can
be approximated with an exponential distribution (Benestad
et al., 2012a, b; Benestad, 2013), which is described with one
parameter – the wet-day mean µ – and its percentile (qp) can
be estimated as qp =− ln(1−p)µ. The exponential distri-

●
●

●

●

●

●

●
●

●

●

●

●

2600 2800 3000 3200 3400

3
4

5
6

7

"Worst−case" fit based on seasonal variations

es (Pa)
VELIKIE LUKI (30.62° E/56.35° N; 97 m a.s.l.)

µ
(m

m
 d

ay
-1

) 

●
●

●

●

●

●

●
●

●

●

●

●

Correlation = 0.97 ( p−value = 0 %)

Regression: y = −7.2397 + 0.0041 x (R2 = 0.95 )

Jan Mar May Jul Sep Nov

Figure 1. A comparison between the mean seasonal cycle in the
saturation vapour pressure (x axis) and the wet-day mean (y axis)
for the site Velikie Luki, Russia. The error bars indicate 2 standard
deviations of the year-to-year variations in the two variables. An
inset shows the standardised seasonal cycles, both variables peaking
in July–August (red line= es, blue line= µ).

bution can be used to estimate changes in the moderate up-
per tail of the statistical distribution, assuming that these fol-
low changes in the bulk characteristics where the probability
adds up to unity (Benestad and Mezghani, 2015). This ap-
proximation has been tested against daily rain-gauge records
from around the world, confirming that the exponential dis-
tribution (qp =− ln(1−p)µ) predicts the observed precipi-
tation percentiles with high accuracy for low-to-moderately
heavy precipitation amounts (Fig. S1 in the Supplement).
This means that µ is useful for risk analysis to estimate upper
percentiles of 24 h precipitation amounts because the 95th
percentile q95 is expected to change proportionally with µ
(Benestad, 2013; Benestad and Mezghani, 2015).

2 Data and methods

Our objective was to get estimates of future extreme precip-
itation that were robust to outliers in situations when local
observations are limited and to avoid some of the caveats de-
scribed above. We therefore explored a method of extracting
information about extreme precipitation from the multitude
of data sources available while reducing the uncertainty as-
sociated with small sample sizes and blended conditions. Our
analysis drew on available and relevant information concern-
ing precipitation, for instance geographical variations, sea-
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sonal variations, ensemble spread and different physical pro-
cesses present during wet and dry days.

The estimated precipitation change was based on the
change in temperature and did not explicitly take atmo-
spheric circulation changes or feedback processes into con-
sideration. This change can, for all intents and purposes, be
interpreted as a zeroth-order measure of an “upper bound”
of change in precipitation intensity associated with increased
temperature, rather than the most likely value. Attributing all
of the seasonal variations in the precipitation intensity to its
covariance with temperature may inflate the role of the tem-
perature, as other factors exhibit a similar mean seasonal cy-
cle and may have an influence on the precipitation intensity.
For this reason, we use the terms upper bound and potential
sensitivity. It is also true that other unaccounted-for processes
possibly may influence precipitation intensity in a nonlinear
fashion and possibly result in even higher intensities if they
also change in the future. However, as long as (a) such fac-
tors have an approximately linear dependency on the tem-
perature and (b) the temperature may be taken as a proxy
for climate change, then this simple assumption may provide
a reasonable figure. This simple method differs from tradi-
tional methods in that rather than attempting to specify the
most likely value, it estimates a kind of upper bound of the
systematic response of extreme precipitation to changes in
temperature. We henceforth describe this relation as the po-
tential sensitivity (PS) since the calibration used the covari-
ance of the mean annual variation that may exaggerate the
effect of the temperature. This is described in more details
below.

Our approach was based on empirical–statistical down-
scaling (ESD) applied to a large multi-model ensemble to
provide estimates of return values for heavy precipitation,
and is an alternative to EVT-based approaches. It provided
an estimate that was more approximate and crude, but less
sensitive to outliers because a larger portion of the data sam-
ple is used.

The Supplement provides more details and explanations
of the strategy, as well as the R scripts used to perform the
analysis. The calculations and graphics were produced with
the open-source R package “esd” (Benestad et al., 2015). The
data used in this analysis are available from the reference
provided in Benestad (2017).

2.1 Data

Precipitation observations were obtained from the daily Eu-
ropean Climate Assessment, ECA&D, data set (Klein Tank
et al., 2002) for 1032 stations in northern Europe with data
available for the time period 1961–2014 (Fig. 2). Surface
temperature data from the National Centers for Environ-
mental Prediction/National Center for Atmospheric Research
(NCEP/NCAR) Reanalysis 1 (Kalnay et al., 1996) over a
selected North Atlantic domain (100◦W–30◦ E/0◦ N–40◦ N;
see Fig. S2) were used to calculate the predictors for the

Table 1. Summary of the CMIP5 experiments. RCP4.5 was used
as default here, whereas RCP2.6 and 8.5 were taken as lower and
upper limits based on different emission scenarios.

Ensemble Total ensemble size
(with duplicated models)

RCP4.5 108 runs
RCP2.6 81 runs
RCP8.5 65 runs

downscaling, and corresponding projections from the CMIP5
ensembles of GCMs assuming the Representative Concen-
tration Pathway (RCP) 2.6, 4.5 and 8.5 scenarios (Taylor et
al., 2012) were used for the projections of future change (Ta-
ble 1). We used the NCEP/NCAR Reanalysis 1 because the
data covered the 1961–2014 period and because it provided
a representation for the surface temperature that was compa-
rable to that of the CMIP5 GCMs.

2.2 Downscaling method

2.2.1 Predictand: annual wet-day mean precipitation

A traditional approach for modelling and analysing precipi-
tation typically involves the monthly mean precipitation (X),
but in this study, we instead downscaled the wet-day mean,
µ. In this analysis we used µ to represent the wet-day mean
precipitation in general, reflecting both the annual wet-day
mean precipitation and the mean seasonal variations in the
wet-day mean precipitation estimated for the 12 calendar
months. The mean precipitation was not the optimal quantity
for describing precipitation statistics because in most places
it does not rain every day, and the proportion of wet days
to total number of days in a monthly sample can have im-
plications for the estimation of the statistical parameters de-
scribing the distribution. The mean precipitation can be ex-
pressed as the product of the wet-day frequency (fw) and µ
according to X = fwµ. A comparison between the seasonal
dependence of X, µ and wet-day frequency fw indicated a
stronger seasonal cycle in µ than in fw and X (see Fig. S3).
The weaker seasonal cycle in X was due to the blending of
different types of weather conditions in the mean precipita-
tion. The strong seasonal cycle of µ indicated a sensitivity to
climatological variations, which is an important requirement
for the statistical downscaling strategy proposed here.

2.2.2 Predictor: the saturation vapour pressure

We assumed that the vapour saturation pressure, es, is more
linearly related to the atmospheric water content and precip-
itation than the temperature, and hence we used es as a pre-
dictor in the downscaling of the annual wet-day mean pre-
cipitation µ (Fujibe, 2013; Pall et al., 2007; Benestad and
Mezghani, 2015). The saturation vapour pressure was esti-
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(a) Annual cycle in PC 1 with variance of 54 %
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Figure 2. The weights for the two leading principal compo-
nents (a, b) of the seasonal cycle of the wet-day mean precipita-
tion µ in the 1032 rain gauge records. The colour of the symbols
indicates how strongly the shape is present in the local seasonal cy-
cle, and the size reflects R2 from the regression analysis between
es and µ (see Fig. S5). Filled circles were used for locations with
R2 > 0.6, hollow circles for 0.6≥ R2 > 0.4 and crosses indicate
locations with R2 < 0.4. The shape of the seasonal cycle principal
component for µ is shown in the inset (top left of each panel).

mated from the surface temperature (0.995 σ level), T .

es = 10(11.40−2353/T ) (1)

This approximation was based on integration of the
Clausius–Clapeyron equation, assuming a constant latent
heat of vaporisation (see Eq. 2.89 in Fleagle and Businger,
1980). The mean seasonal variations in the regional aver-
age es over the North Atlantic domain was used as predic-
tor for µ, based on its mean seasonal variation (Fig. 1); our
reasoning was that it can be considered as the source region
for humidity in Europe. The domain was set after some tri-
als for a few test stations, but no systematic study or tuning
of the predictor domain was conducted. The predictor index
was calculated from gridded temperature data from reanaly-
ses and global climate models (GCMs) and was then spatially
and temporally aggregated where monthly gridded es values
were estimated according to Eq. (1) and surface temperatures
from the multi-model ensemble, and were used to downscale
an ensemble of local results of annual wet-day mean precip-
itation µ̂ (here µ̂ is used for predicted annual mean).

2.2.3 The empirical–statistical model

A model for predicting the annual wet-day mean precipi-
tation µ̂ can be constructed as a sum of a constant, β0, a
term depending on the saturation vapour pressure, βT es, and
a Gaussian noise term, N(0,σ ), assuming that factors other
than temperature that are affecting wet-day precipitation are
stochastic and stationary:

µ̂= β0+βT es+N(0,σ ). (2)

The assumptions about other factors being stationary and
stochastic is partly based on the heuristic notion of physical
interdependencies between various aspects of the planetary
atmosphere in general and that the temperature is a proxy for
such influences. One example may be the cloud top height
which is expected to be influenced by the convective avail-
able potential energy (CAPE) that is sensitive to tempera-
tures. We used the observed standard deviation of µ in the
month with the highest interannual variability as an estimate
of the standard deviation σ of the noise termN , which in this
case was August. We calculated the coefficients β0 and βT
using linear regression analysis between the mean seasonal
cycle of the observed monthly mean µ and the correspond-
ing seasonal cycle of the regionally averaged es calculated
from reanalysis temperature data from the Atlantic domain,
as described in Sect. 2.2.2. The coefficient βT is the scaling
ratio which we refer to as the potential sensitivity.

Annual mean time series of µ̂ were then derived by ap-
plying the downscaling models to annual mean es time se-
ries obtained from reanalysis or GCM temperature data from
the same domain. The GCM results were not bias-adjusted;
however, the use of large-scale (100◦W–30◦ E/0–40◦ N) spa-
tially and annually aggregated mean helped mitigating the ef-
fects from systematic model biases. The model represented
an approximation of the systematic effect that temperature
changes can have on µ, rather than a most likely value. It
is possible that other factors that play a role in precipitation

Nat. Hazards Earth Syst. Sci., 17, 993–1001, 2017 www.nat-hazards-earth-syst-sci.net/17/993/2017/



R. E. Benestad et al.: Approximate estimation of future precipitation 997

also exhibit a seasonal cycle and interfere with the regression
analysis so that the coefficient is weaker or stronger than the
true influence of temperature on precipitation.

A 90 % uncertainty range for µ̂ was estimated for the
projections based on the ensembles of downscaled results,
taken as the limit between the 5th and 95th percentiles (see,
e.g., Fig. S4). This interval included the noise term N(0,σ ),
and captured the observed year-to-year variations as well
as model differences (Deser et al., 2012). We assumed that
the multi-model ensemble spread for any given year could
approximately represent the typical year-to-year variance,
which meant that the 95th percentile for µ̂, which we hence-
forth refer to as µ̂95, could be used as a proxy for the value to
be exceeded once in 20 years (Benestad, 2016) (the 20-year
event has a probability of 0.05 (1/20) of occurring in a given
year, and the 95th percentile represents a limit that only 5 %
(1 in 20) of the distribution exceeds).

2.3 Return value probabilities

To estimate future return values based on the downscaled
µ̂, we again assumed that the wet-day precipitation amount
was exponentially distributed and that the probability for 24 h
precipitation exceeding a critical threshold x could be calcu-
lated as follows:

Pr(X > x)≈ fwe
−x/µ, (3)

where fw was the wet-day frequency (Benestad and
Mezghani, 2015). Previous analysis suggest that the expo-
nential distribution gives a reasonable description of the
probabilities for moderate precipitation events such as the
95-percentile, but is not expected to be suitable for rare
extremes much beyond the 20-year return level (Benestad,
2013).

The probability associated with the 1-year return value of
24 h precipitation is approximately Pr(X > x)= 1/365.25,
and the corresponding threshold value was approximated ac-
cording to

x1 year ≈ µ ln(365.25 fw). (4)

Previous comparison between the return values based on
Eq. (4) and general extreme value theory, has suggested that
they give roughly similar results (Benestad and Mezghani,
2015). A test of Eq. (4) indicated that the return values scale
with µ: values of x1 year that were associated with high per-
centiles and low values of µ̂ approximately corresponded to
x1 year with low percentiles and high values of µ̂ (Fig. S1).
Based on Eq. (4), we made a rough estimate of the 20-year
return value for the 24 h precipitation amount (x20 year) by
replacing µ with the 20-year return value of the annual wet-
day mean. The estimate for x̂20 year was calculated based on
the downscaled annual wet-day mean precipitation, using the
95th percentile µ̂95 as a proxy for the 20-year return values:

x̂20 year = µ̂95 ln(365.25fw). (5)

In calculating future return values, we neglected changes
in fw and simply assumed that it will remain constant. Pre-
vious analysis has indicated that the wet-day frequency is
strongly influenced by circulation patterns (Benestad and
Mezghani, 2015), and that it is closely connected to slow nat-
ural variations such as the North Atlantic Oscillation (NAO)
(Hurrell, 1995). Such natural variations are difficult to pre-
dict and there is little evidence of a systematic shift in the
frequency of different circulation patterns.

2.4 Principle component analysis of the seasonal cycle

Principal component analysis (PCA) was used to extract the
most dominant shapes of the seasonal cycle in µ amongst the
observation sites (Fig. 2). The mean seasonal cycle was esti-
mated for each site and used to construct a data matrix X with
12 columns (one for each month) and n rows (one for each
site). Singular value decomposition (SVD) was then used to
compute the principal components: U6VT = X, where U is
the left inverse, V the right inverse and 6 is a diagonal ma-
trix holding the eigenvalues (Press et al., 1989; Strang, 1988).
The procedure deconstructed the data into a set of shapes of
the seasonal cycle, corresponding eigenvalues that described
the explained variance and a spatial matrix that described the
relative strength of each shape at the different locations.

3 Results and discussion

3.1 Potential sensitivity and the seasonal cycles in µ
and es

The mean seasonal cycles of µ at many European locations
co-varied with the mean seasonal cycle of es in the North At-
lantic domain. This can be seen as a validation of the assump-
tions underlying the empirical model, because the downscal-
ing models were based on the regression between the sea-
sonal cycles of es and µ (Eq. 2). Figure 1 provides an ex-
ample of a scatter plot between the mean seasonal variations
in es (x axis) and the corresponding cycle in µ (y axis) for
one location (Velikie Luki, Russia). The example in Fig. 1
was not unique: there was a high and statistically significant
correlation (R2 > 0.6; Fig. S5) between the seasonal cycle
of these two quantities for many of the rain gauge records
(612 of the 1032 stations). The majority of the locations with
a poor fit (R2 < 0.6) were found along the western coast of
Norway and south-east of the Alps, while inland sites and
locations in central Europe had higher R2 values (see Fig. 2
where the size of the markers is proportional to R2). This in-
dicated that a linear relationship between µ and es could not
be expected in regions where orographic precipitation was
dominant. Downscaled projections were carried out only for
the locations with a good fit (R2 > 0.6).

It was also evident that there were pronounced year-to-
year variations in the wet-day mean (vertical error bars in
Fig. 1) which were not related to the temperature, suggesting
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that factors other than temperature also played a role in pre-
cipitation variations. The downscaling strategy adopted here
was designed to evaluate the maximum potential effect of
temperature changes on the wet-day mean precipitation, and
the scaling factor between the two is described as the poten-
tial sensitivity. Since other processes also influenced precip-
itation, the method could not be expected to reproduce past
interannual variability, but it could be used to obtain a rough
estimate of the effect of temperature changes on precipita-
tion.

Figure 2 presents maps showing the two major compo-
nents of the mean seasonal cycle in µ, which together ac-
counted for 94 % of the variability for the 1032 locations
examined. The spatial patterns in the principle components
(PC) revealed different seasonal cycles of precipitation along
the mountainous western coast of Norway and close to the
Alps compared to the rest of Europe, probably related to oro-
graphic effects. There was a gradient in the shape of the mean
seasonal cycle in µ with the distance from the coast that was
particularly visible over the Netherlands. Inland sites indi-
cated higher precipitation intensities during July and August,
which could be associated with convective rainfall. We found
a positive correlation between the spatial vector of the lead-
ing PCs and R2 of the seasonal cycles of es and µ: 0.82 (with
a 90 % uncertainty range of 0.80, 0.84), but negative corre-
lation for mode 2 (−0.84; −0.86, −0.82) and no significant
correlation for mode 3 (0.00; −0.06, 0.06). This indicated
that the dominant shapes of the seasonal cycle of µ in Eu-
rope were associated with a strong connection to the North
Atlantic temperature.

3.2 Projections of future precipitation

Projected values of the annual mean wet-day mean, µ̂, based
on the downscaling model (Eq. 2) applied to the CMIP5 en-
semble, are shown in Fig. 3. The downscaled results sug-
gested an increase of up to 13 % in the wet-day mean
from 2010 to 2100, assuming the RCP4.5 emission scenario
(Stocker et al., 2013), and as much as 38 % at many of the lo-
cations given the high emission scenario RCP8.5. The most
extreme estimate was an 85 % increase at Sihccajavri (Nor-
way). Since the wet-day precipitation amount approximately
followed an exponential distribution, the proportional change
in any percentile was the same as for µ. The inset in Fig. 3
shows estimated changes for the emission scenarios RCP4.5,
2.6 and 8.5 for both the ensemble mean and 95th percentile.

An analysis of historical observations provided some in-
dication of skill of the downscaling models in terms of pre-
dicting trends of µ based on the North Atlantic temperature
(Fig. S6). The historical trends exhibited a more pronounced
scatter than the predicted trends, suggesting that factors other
than the sea-surface temperature also had influenced the
long-term changes. For most locations, there was an increase
in µ between 1961 and 2014, typically 0.1 mm day−1 per
decade (Fig. S6–S7).

Table 2. Summary of the projected change from 2010 to 2100 in
the 20-year return value for 24 h precipitation under the assump-
tion of stationary wet-day frequency. The sample comprises the 615
locations shown in Fig. 3. The numbers represent the change in per-
centage with respect to year 2010.

Ensemble Min. q25 Median Mean q75 Max.

RCP2.6 4 % 5 % 6 % 6 % 7 % 14 %
RCP4.5 7 % 10 % 11 % 13 % 15 % 28 %
RCP8.5 22 % 28 % 33 % 38 % 44 % 85 %
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Figure 3. Projected local change from 2010 to 2100 in the ensem-
ble mean and 95th percentile annual mean µ for the RCP4.5 emis-
sion scenario. The colour of the inner part of the symbols indicates
changes in the ensemble mean and the outer part the 95th percentile
in terms of percentages since 2010. The inset shows a boxplot of
the projected change in µ, both for the ensemble mean (left) and
the 95th percentile (right) of emission scenarios RCP4.5, 2.6 and
8.5.

Estimates of future 20-year return values (Eq. 5) based
on µ̂95 and assuming a constant value of the wet-day fre-
quency, fw, are shown in Table 2. Based on downscaling of
the RCP4.5 scenario, the 20-year return values may increase
by between 7 and 28 % by 2100 (ensemble median: 11 %),
or assuming the high emission scenario RCP8.5, between 22
and 85 % (ensemble median: 33 %). Nevertheless, changes in
fw may also influence return values, and an increase in the
number of rainy days would imply an even stronger change
in return values.

The historical fw trends at the stations tend to cluster
roughly around zero (Fig. S8). However, studying the ge-
ographical pattern of trends, we saw a general increase in
southern Scandinavia and the Netherlands for the period
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1961–2014, but a less coherent pattern elsewhere (Fig. S9).
This implied that factors other than the North Atlantic tem-
perature may also have played a role in past trends and
future precipitation changes. The wet-day frequency was
strongly influenced by the circulation patterns (Benestad and
Mezghani, 2015) and could potentially be predicted based on
the mean sea-level pressure, but here we have focused on the
influence of temperature changes on the precipitation.

3.3 Validation of results

In order to assess the veracity of our results, we performed an
independent test to examine the dependency of µ on temper-
ature, consisting of a regression analysis comparing the spa-
tial variations of the mean of µ and es calculated from local
temperature measurements (Benestad, 2007) (see Figs. S10–
S11). The test was limited to locations where both tempera-
ture and precipitation observations were available and did not
involve the regionally averaged temperature of the North At-
lantic domain. The geographical variations in the relationship
between µ and es were consistent with the regression coeffi-
cients from the downscaling models (Eq. 2, Fig. 3) within the
range of estimated error margins (Fig. S11). An exception
was seen in stations located in western Norway and south-
east of the Alps, where the seasonal cycle regression also
showed a weak relationship between µ and es. The fact that
the link between µ and es was found in both time and space
provided a stronger indicator of a physical link than if it were
limited to only the time dimension.

4 Summary and conclusions

We have proposed a novel and simple method for obtaining
an approximate estimate of changes in the return values for
24 h precipitation caused by a temperature change, taking all
precipitation relevant processes into account. This method
made use of the information embedded in the seasonal cycle,
physical conditions and multi-model ensembles to provide a
rough estimate of the potential sensitivity of precipitation in-
tensity to temperature. The results suggested that the zeroth-
order estimate for an upper bound of the 20-year return value
for many European locations increases by 40–50 % by 2100
for the RCP8.5 scenario, rather than the exact or most likely
value.

One of the benefits of the proposed strategy for downscal-
ing µ is that the description of the seasonal cycle does not
require long data records and hence may provide a means for
estimating a zeroth-order value for the potential sensitivity
and an upper bound to the change in rainfall statistics in re-
gions with limited observations. This strategy can be used for
other mid-latitude locations, but further analysis is needed to
see if it is applicable to the monsoon regions where the tem-
perature is at maximum before the rains start. An alternative
approach could be to estimate future changes in µ based on

downscaled local temperature from GCMs and a similar re-
gression model as used in the test described above.

The approach was based on a set of assumptions: (a) the
maximum seasonal mean response of the wet-day mean pre-
cipitation to the seasonal variations in temperature is repre-
sented by a proportional change, (b) the 95th percentile of the
annual wet-day mean precipitation from large multi-model
ensembles (e.g. CMIP5) can be used to represent a 20-year
event and (c) the wet-day frequency is stationary. On the one
hand, this new strategy is less rigorous than traditional ex-
treme value statistics; on the other hand, it is more robust to
outliers even in cases when the available information is lim-
ited.

Another potential weakness of the study is the use of the
multi-model ensembles as a representation of natural cli-
mate variability. These “ensembles of opportunity” involve
non-independent members and cannot really be considered
a random data sample (Sanderson et al., 2015). However,
internal variability dominates the variance on regional and
local scales and gives a spread that is comparable to the
observed variations even in single-model ensembles (Deser
et al., 2012).

Data availability. Data used in this analysis are available from
figshare (https://doi.org/10.6084/m9.figshare.5047789; see Ben-
estad, 2017). The analysis was based on the esd package
(https://doi.org/10.5281/zenodo.29385; see Benestad et al., 2015).
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