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Abstract. This supporting material provides additional analyses that addresses some of the assump-

tions made in the main paper. It also explains the strategy that we chose and to emphasise this has

been structured as questions and answers. The analysis presented here was carried out with the open

source R-package ’esd’ (Benestad et al., 2015). An R-markdown script with the step-by-step code

of the analysis is available from figshare.com for the sake of traceability and replicability (DOI:5

10.6084/m9.figshare.4476419)

1 Is the wet-day frequency stationary?

In this paper, we estimate future return-values of precipitation based on temperature projections, but

neglect to evaluate changes in the wet-day frequency (fw) and simply assume it to be stationary.

How does this assumption hold up? Has the wet-day frequency varied significantly in the past and10

do we expect large changes in the future? To answer these questions we have studied the seasonal

cycle and past trends of the wet-day frequency.

Changes in the wet-day frequency affect the probability for heavy precipitation amounts in the

future according to Pr(X > x) = fw e−x/µ, and hence influence future return-values according

to x1yr = µ ln(365.25× fw). This goes for both long-term changes (trends) as well as interannual15

to decadal variations. Historical precipitation observations can be used to estimate the interannual

variability of fw and its effect on x1yr, but short records mean that the sample size is limited and

may preclude a complete account of the effect of decadal changes.

The wet-day frequency responds weakly to the seasonally varying conditions (Figure S3; grey

curve), which suggests that it is not too sensitive to systematic changes in the state of the local envi-20

ronment. We can also make use of some information from past trends in the wet-day frequency, as

climate change is already happening (Figures S8 and S9). Historical data suggest different tenden-

cies in different regions (Figure S9), and previous analysis indicates that the wet-day frequency is
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strongly influenced by the circulation patterns (Benestad and Mezghani, 2015). The analysis of his-

torical precipitation records over the period 1961-2014 show little trend in fw when taking the mean25

over all locations (Figure S8), and the only clear spatial pattern is an increase over southern Norway

(Figure S9). This should be compared to the wet-day mean precipitation µ which for most of the

sites increased during the same period, typically by the order of 0.1 mm/day per decade (Figures S6

and S7).

2 Does variation in the wet-day mean precipitation really correspond to changing probabili-30

ties?

The probability framework adopted here can be formulated as Pr(X < x|µ), meaning that it is con-

ditional on the sample mean of µ and that the distribution is exponential. Previous studies have

found that the wet-day daily precipitation is approximately exponentially distributed (Benestad and

Mezghani, 2015; Benestad et al., 2012b; Benestad, 2007; Benestad et al., 2012a), albeit with a sys-35

tematic bias connected to the location. The assumption can be assessed by comparing the actual

percentiles with quantiles estimated for different samples with different annual mean µ using the

formula for exponentially distributed data:

qp =−ln(1− p)µ. (SM1)

The exponential distribution implies a similar proportional change for all percentiles, which is40

roughly consistent with a near-constant ratio of increase in daily precipitation percentiles above the

90th percentage (Pall et al., 2007). The two quantities should be similar (as Figure S1 indicates) and

the data scattered along the diagonal in a scatter plot, indicating that a high percentile associated

with a low wet-day mean µ is consistent with a more moderate percentile for a sample with a higher

wet-day mean value.45

3 Why use the 100◦W − 30◦E/0◦N − 40◦N region of the North Atlantic as predictor?

The choice of predictor region (Figure S2) in this study was motivated by the idea that the North

Atlantic ocean is an important moisture source for precipitation over Europe and prevailing winds

suggest that the moisture is transported from the west. Also, the sea surface temperature is highest

at low latitudes, which suggest the highest evaporation closer to the equator. The analysis presented50

here suggests a good match between the seasonal variations of the temperature averaged over this

region and the local wet-day mean (see Figure 1 of the main manuscript). The predictor was defined

as the area mean saturation vapour pressure and the domain was set after some trials for a few

stations, but this crude trial did not involve any systematic study nor any type of fitting/tuning.
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4 Why use the saturation vapour pressure as predictor and not the temperature?55

It is often wise to make use of terms with similar physical dimensions when calibrating statistical

models (Benestad et al., 2008). The saturation vapour pressure is proportional to the vapour density

(ideal gas law: es = ρRsT ), and the total mass is the product between volume and density. The

saturation vapour pressure is expected to be more linearly related to the wet-day mean precipitation

than temperature because their physical dimensions both involve a measure of the water mass. If60

temperature was used, on the other hand, then the relationship would be expected to be nonlinear due

to the Clausius-Clapeyron equation (es = 10(11.40−2353/T ) where T is the temperature in Kelvin).

How representative is the exponential distribution for the probabilities associated with heavy

precipitation? The exponential distribution is a simple form for the gamma distribution and has

only one parameter µ determining its shape as opposed two (location and scale) which gives more65

freedom in the data-fit. None of these, however, are normally used for the estimation of return-

periods and general extreme value (GEV) or generalized Pareto distributions usually used to fit the

upper tail of the distribution for stationary data where the shape of the PDF does not change. In

the non-stationary case, the small sample represented by the upper tail may not provide the best

information in terms of the calibration of a changing PDF over time. Since the area under the curve70

is always unity (probabilities always add up to one), the upper tail is constrained by the rest of the

PDF. An approximate way to tackle the changes is therefore to make use of the bulk of the PDF

(Benestad and Mezghani, 2015).

5 Why use the seasonal cycle for model calibration?

Precipitation is generated by different atmospheric processes and depends on many factors. Hence75

the signal-to-noise ratio is often low for traditional model calibration based on chronological match-

ing between the amount and some large scale variable such as regional temperature.

One technique commonly used in physics and electronics for optimising the information from

systems and measurements with low signal-to-noise ratio involves cycles with well-established fre-

quencies (eg. FM in radio, phase-locking), and in meteorology/climatology seasonal variations is80

the most pronounced cycle. There has also been some analysis of tropical cyclone frequencies based

on the seasonal variations (Benestad, 2009), but there is an important caveat associated with such

studies: the seasonal variations in the local insolation may affect both the large scale conditions and

the local variable under investigation, and their correlation may reflect the common dependency on

this forcing rather than common link. Thus, the assumption that the seasonal cycle in the tempera-85

ture over the North Atlantic is linked with the seasonal precipitation statistics is the weakest point

of this study if one interprets the results as the most likely estimate of the wet-day mean precip-

itation. Nevertheless, from a physics perspective, it is expected that higher temperatures result in

higher evaporation and higher humidity, hence, an increased capacity for greater rainfall amounts.
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We use the link between the seasonal cycles of µ and es to estimate an upper limit of the effect of a90

change in temperature on the precipitation, rather than the most likely estimate of the wet-day mean

precipitation itself. Calculating a climatological seasonal cycle gives a larger sample size compared

to analyses applied on individual years, and gives a value that is based on a sample stretching over

longer time periods. Calibration on larger sample sizes stretching over longer time periods puts more

weight on slow processes with long time scales.95

The link between the seasonal cycles of local µ and the mean es over the predictor domain (Fig-

ure S2) was first assessed by theR2 of the regression. Figure S5 shows a histogram of theR2 scores,

most of which have an explained variance of over 60%. The majority of the stations with poor fits are

found in the mountainous parts of western Norway and the Alps (the size of the markers in Figure 3

of the main manuscript are proportional to R2), which indicates that the method proposed here does100

not work in regions with predominantly orographic precipitation.

A second level of validation was to compare trends of historical observations of µ to predicted

trends of µ̂ (the seasonal cycle downscaling model applied to the annual mean es calculated from

NCEP reanalysis temperature data). Figure S6 shows that there is a more pronounced scatter in the

observed trends than the predicted trends, which indicates that factors other than the sea surface105

temperature, that are not captured by the climatological downscaling model, also have influenced

the long-term changes.

The link between the wet-day mean precipitation and temperature is also assessed by extending

the analysis to the spatial as well as the temporal dimension. The fact that this relationship exists in

two different dimensions is a stronger indicator of a physical link than if it were to be limited to only110

one. Figure S10 shows a scatter plot between es and µ calculated based on the local mean daily max-

imum temperature and precipitation, respectively. The fitted line shows the regression between the

local seasonal cycles of µ and the temperature for 1420 locations (CLARIS data) in South America,

Europe (stations selected for the COST-VALUE experiment 1), and the US (GDCN). The analysis

indicates that the wet-day mean (y-axis) increases by 0.4 mm/day per degree C (x-axis) increase of115

the local temperature if the elevation is accounted for. The coefficient of the spatial regression is gen-

erally consistent with the coefficients from the regressions based on the seasonal cycles, within the

range of estimated error margins (Figure S11). An exception was seen in stations located in western

Norway and south of the Alps, where the seasonal cycle regression also showed a weak relation-

ship between µ and es. It is not expected that the results should be identical, as the climatological120

temperature involves the mean of the local daily maximum temperature from the stations, whereas

the seasonal temperatures were taken from a large region of the ocean and represented daily mean

temperature. Nevertheless, similar values for the regression coefficients between es and µ supports

the hypothesis that the precipitation amounts are linked to temperature in a way that gives similar

changes through the seasonal variations as in spatial variations.125
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6 Is the model ensemble spread a good proxy for probabilities?

Model ensembles do not really provide estimates of probabilities because they cannot be considered

as a random sample of data and because they do not give a perfect reproduction of the observed

quantities. According to the IPCC “Ensemble members may not represent estimates of the climate

system behaviour (trajectory) entirely independent of one another. This is likely true of members that130

simply represent different versions of the same model or use the same initial conditions. But even

different models may share components and choices of parameterisations of processes and may

have been calibrated using the same data sets. There is currently no ‘best practice’ approach to the

characterization and combination of inter-dependent ensemble members, in fact there is no straight

forward or unique way to characterize model dependence” (Knutti et al., 2010). Nevertheless, the135

spread of downscaled annual mean temperature from ensemble experiments such as CMIP5 is often

comparable to the magnitude of the observed year-to-year temperature variations(Benestad et al.,

2016), and the 95th percentile has been used as an approximate estimate of a one-in-twenty year

hot summer season (Benestad, 2011). For all intents and purposes, we have used the interval of the

ensembles (see, e.g., Figure S4) as a measure of the variations of the climate system (Deser et al.,140

2012).
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Figure S1. Test for assessing the consistency between the percentiles taken from observations and estimated

values using qp =− ln(1−p) µ where the values of qp are estimated using different values of p to compensate

for variations in annual mean µ. A critical threshold x can correspond to different percentiles according to

x= qp1 =− ln(1− p1) µ1 = qp2 =− ln(1− p2) µ2.
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Figure S2. The mean air temperature at 2m of the NCEP reanalysis data set over the chosen predictor domain

100◦W -30◦E/0◦N -40◦N .
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Figure SM3

Figure S3. A comparison between the seasonal cycle in the mean precipitation, the wet-day mean precipitation,

the wet-day frequency, as well as the wet and dry spell lengths for a single selected station. The most pronounced

seasonal variations tends to be associated with the wet-day mean rather than the mean precipitation or the wet-

day frequency.
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Figure S4. An example of projected annual wet-day mean precipitation µ for the three different emission

scenarios RCP 4.5 (grey), RCP2.6 (green) and RCP8.5 (red), expressed as the relative change in comparison to

the 2010 values (see Table 1).
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Figure S5. The statistics of the R2 from the regression between the seasonal cycles in the the local wet-

day mean µ and the regionally averaged saturation vapour pressure es, estimated from the temperature over

the seasonal cycles of the surface temperature over the North Atlantic domain (100◦W -30◦E/0◦N -40◦N ;

Figure S2). There is a portion of stations with very low R2 scores, but most stations suggest an explained

variance exceeding 60%.
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Figure S6. A comparison between the long-term linear trends estimated from the observed annual mean µ and

µ̂ values estimated with Equation 1 (see main manuscript) using the saturation water vapor es calculated from

the NCEP temperature over the North Atlantic domain (100◦W -30◦E/0◦N -40◦N ; Figure S2). The scatter in

the observed trends is greater than in the predicted ones, which is consistent with the wet-day mean also being

affected by factors other than es.
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Figure S7. Map of the historical trends in the wet-day mean µ in the period 1961-2014. The trend is generally

increasing, but there are a few stations showing a decrease. These outliers are probably spurious, as they do not

match the bulk of the data.
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Trend in wet−day frequency (1961−2014)
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Figure S8. Trend estimates of the wet-day frequency fw for the 1032 locations for the period 1961-2014

suggests values scattered around zero. The cluster of trend values around zero is consistent with the annual

wet-day frequency being stationary, but there are regions with significant trends (Figure S9).
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Figure S9. Map of the historical trends in the wet-day frequency fw for the period 1961-2014. There has been

a general increase in the number of wet-days in southern Scandinavia but otherwise no coherent pattern.
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Figure S10. Scatter plot showing the correlation between the climatological mean daily maximum temperature

(converted to saturation vapour pressure) and the wet-day mean µ. The size of the symbols is proportional to

the number of rainy days. The inset shows locations of stations used to compare the climatological mean wet-

day mean against the mean surface temperature. The colours of symbols in the scatter plot match those in the

map. The data included CLARIS data set from South America, a subset of the ECA&D in Europe used in the

COST-VALUE experiment 1, and a subset of station data from GDCN as in Smith et al. (2015) but selecting

the stations with the longest records. The selection of location was also limited to sites where both temperature

and precipitation had been recorded. Only stations with more than 20000 valid data points were selected, and

only the 1945–2015 period was used.
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Figure S11. Comparison between the regression coefficients estimated for each location based on the seasonal

cycles in µ and es (blue) and based on the regression analysis of the mean climatology of µ and es at various

stations in Europe, South America and North America as in Figure S10 (grey). Error bars represent two standard

errors. The size of the symbols is proportional to the R2 statistics from the regression analysis between the two

mean seasonal cycles. The comparison between the results from the two types of analyses suggests a consistency

within the margin of error for the locations where the mean seasonal cycle in µ matched that of the regionally

averaged es in the predictor domain (Figure S2).
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