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Abstract. Physically based modelling of slope stability on
a catchment scale is still a challenging task. When apply-
ing a physically based model on such a scale (1 : 10 000 to
1 : 50 000), parameters with a high impact on the model result
should be calibrated to account for (i) the spatial variability
of parameter values, (ii) shortcomings of the selected model,
(iii) uncertainties of laboratory tests and field measurements
or (iv) parameters that cannot be derived experimentally or
measured in the field (e.g. calibration constants). While sys-
tematic parameter calibration is a common task in hydro-
logical modelling, this is rarely done using physically based
slope stability models. In the present study a dynamic, phys-
ically based, coupled hydrological–geomechanical slope sta-
bility model is calibrated based on a limited number of lab-
oratory tests and a detailed multitemporal shallow landslide
inventory covering two landslide-triggering rainfall events in
the Laternser valley, Vorarlberg (Austria). Sensitive param-
eters are identified based on a local one-at-a-time sensitiv-
ity analysis. These parameters (hydraulic conductivity, spe-
cific storage, angle of internal friction for effective stress, co-
hesion for effective stress) are systematically sampled and
calibrated for a landslide-triggering rainfall event in Au-
gust 2005. The identified model ensemble, including 25 “be-
havioural model runs” with the highest portion of correctly

predicted landslides and non-landslides, is then validated
with another landslide-triggering rainfall event in May 1999.
The identified model ensemble correctly predicts the loca-
tion and the supposed triggering timing of 73.0 % of the ob-
served landslides triggered in August 2005 and 91.5 % of
the observed landslides triggered in May 1999. Results of
the model ensemble driven with raised precipitation input re-
veal a slight increase in areas potentially affected by slope
failure. At the same time, the peak run-off increases more
markedly, suggesting that precipitation intensities during the
investigated landslide-triggering rainfall events were already
close to or above the soil’s infiltration capacity.

1 Introduction

Shallow landslides are abundant geomorphological phenom-
ena in mountain regions across the world. The related pro-
cesses are usually understood as translational sliding move-
ments of soil material along a pre-defined slip surface at a
depth of up to 2 m (Cruden and Varnes, 1996; Lateltin et al.,
2005). In Austria, shallow landslides are typically triggered
by heavy rainfalls (Andrecs et al., 2002; Markart et al., 2007;
Zieher et al., 2016), causing damages to residential struc-

Published by Copernicus Publications on behalf of the European Geosciences Union.



972 T. Zieher et al.: Calibration of a dynamic physically based slope stability model

tures and infrastructure, as well as a loss of agricultural land.
To prevent future impacts, it is essential to identify poten-
tially affected areas. For this task, various modelling tech-
niques are currently applied, including (i) expert-based (e.g.
Kienholz, 1977), (ii) statistically based (e.g. Carrara et al.,
1991) and (iii) physically based approaches (e.g. Baum et al.,
2010). The latter ones are typically based on the limit equi-
librium concept and employ physical laws to relate resist-
ing to driving forces. Their result is a dimensionless factor
of safety (FOS), which is a quantitative measure of slope
stability. Many physically based approaches include a hy-
drological and a geomechanical model element and can be
further divided into (i) steady-state (e.g. Dietrich and Mont-
gomery, 1998; Montgomery and Dietrich, 1994) and (ii) dy-
namic models (e.g. Baum et al., 2010; Crosta and Frattini,
2003). In contrast to steady-state models, dynamic models
allow for the spatio-temporal assessment of hillslope hydrol-
ogy and stability. Physically based slope stability models can
be upscaled to medium scale (1 : 10 000 to 1 : 50 000) using a
raster-based geographical information system (GIS). How-
ever, such spatially distributed models require data on the
spatial distribution of the included parameters (van Westen
et al., 2006). To overcome the problem of usually unknown
material characteristics throughout the study area, probabilis-
tic approaches have proven feasible (Hammond et al., 1992;
Raia et al., 2014).

Before applying a spatially distributed physically based
model, parameter values are often calibrated to minimize the
difference between observations and simulation results. One
way of achieving this is to vary the model input parameter
values in order to find optimum values or value ranges which
yield a general agreement between observations and simula-
tions (back calculation). This task is common in hydrologi-
cal modelling involving a high-dimensional parameter space
(e.g. Dobler and Pappenberger, 2013; Tang et al., 2007). The
underlying principles also apply to physically based slope
stability models. Theoretically, calibration is not necessary as
long as the parameter values are based on a sufficient num-
ber of direct measurements or laboratory tests. However, a
calibration is advisable (i) if the spatial distribution and vari-
ability of parameter values is unknown, (ii) to account for
model shortcomings compared to the represented physical
processes, (iii) to account for uncertainties of laboratory tests
and field measurements or (iv) if parameter values cannot be
derived experimentally or measured in the field (e.g. calibra-
tion constants). The calibration procedure should be based
on physical reasoning and only involve sensitive parameters
(i.e. parameters with a distinct impact on the model’s out-
come) (Bathurst et al., 2005; Wagener and Kollat, 2007). To
identify sensitive parameters, a sensitivity analysis is usually
performed. A simple but often applied method is based on
the local assessment (one representative raster cell) of the
impact of systematic variations of one-parameter-at-a-time
(OAT) on the model’s results (e.g. Hammond et al., 1992).
This method is also frequently used for parameter value cali-

bration (e.g. Gioia et al., 2016; Salciarini et al., 2006). How-
ever, the OAT assessment of parameter sensitivity becomes
unreliable with an increasing number of considered param-
eters, correlated parameters and non-linear model behaviour
(Wagener and Kollat, 2007). As an alternative, global meth-
ods which cover the whole parameter space can overcome
this drawback (Dobler and Pappenberger, 2013; Tang et al.,
2007). Their main disadvantage is the high computational ef-
fort, usually requiring a high-performance computing clus-
ter (HPCC). Depending on the sampling technique, a mul-
titude of parameter value combinations is tested and evalu-
ated based on observations. However, instead of identifying
a single parameter set which explains the observations best,
an ensemble of “behavioural model runs” is often used for
the final prediction. These model runs are in general agree-
ment with the observations, while their disagreement reflects
model uncertainty (Bathurst et al., 2005; Wagener and Kol-
lat, 2007).

In the present study, the parameters of a revised form
of the spatially distributed, dynamic, physically based slope
stability model TRIGRS 2.0 (Transient Rainfall Infiltration
and Grid-Based Regional Slope-Stability Analysis; Baum
et al., 2008, 2010) are systematically tested and calibrated.
The four main steps of the analysis are shown in Fig. 1.
First, sensitive parameters of the revised model are identi-
fied with a local OAT sensitivity analysis. The tested param-
eter space is derived from a limited number of laboratory
tests and relevant literature. Then, the four identified sensi-
tive parameters (hydraulic conductivity, specific storage, an-
gle of internal friction for effective stress, cohesion for effec-
tive stress) are systematically sampled from a uniform dis-
tribution. Unlike in probabilistic parameter sampling strate-
gies (e.g. Raia et al., 2014), the parameters are sampled with
defined, constant increments. In the calibration procedure,
the best 25 “behavioural model runs” are identified out of
10 000 conducted simulations considering each sampled pa-
rameter value combination. The ensemble of these 25 model
runs optimally predicts the location and the supposed trigger-
ing timing of observed shallow landslides, triggered during a
rainfall event in August 2005. The predictive performance
of this model ensemble is then tested for another landslide-
triggering rainfall event which occurred in May 1999. Fi-
nally, the model ensemble is re-run with positively scaled
input precipitation maps to give an estimate of potential im-
pacts of increasing precipitation intensities on slope stability.

The objectives of the present study are

– to identify sensitive parameters of the revised dynamic
physically based slope stability model TRIGRS 2.0;

– to present a procedure for a global parameter calibration
(model identification) for a landslide-triggering rainfall
event in August 2005, validated with another rainfall
event in May 1999;
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Figure 1. Workflow with the main steps of the analysis.

– to evaluate the capability of the identified model ensem-
ble for quantifying potential changes in slope stability
associated with increasing precipitation intensity.

2 Study area

The study area is located in the Laternser valley in Vorarl-
berg, the westernmost province of Austria (Fig. 2a). It covers
the catchment area (52.1 km2) of the river Frutz, a tributary
of the Rhine. The valley extends about 13 km in the east–west
direction, following the strike angle of the Bregenzerwald
Mountains. Its highest point is the Hoher Freschen (2004 m)
at the head of the valley. The outlet at approximately 500 m
is characterized by a steeply incised gorge. In the Laternser
valley about half of the catchment area is covered by for-
est (2001: 51.0 %; 2006: 50.9 %). A majority of the forest
stands are composed of fir (Abies alba Miller) and spruce
(Picea abies L. Karsten), with beech (Fagus sylvatica L.) oc-
curring below 1300 m (Amann et al., 2014). Around 1.2 %
of the catchment area is occupied by settlements and infras-
tructure. The remaining area is predominantly used as hay
meadow or pasture or a combination of both.

2.1 Geology

The Laternser valley is built up by different tectonic units,
including a variety of geological units (Fig. 2c, Table 1). Hel-
vetic nappes in the western and northern part of the valley in-
clude competent limestones (e.g. Schrattenkalk, Seewerkalk)
and marls with calcareous layers (e.g. Drusbergschichten).
To the south-east, Ultrahelvetic nappes are superimposed,
which are mainly built up of clayey marls and shales (e.g.
Leimernmergel). On top in the south-east of the catchment
area, Penninic nappes make up more than half of the val-

ley. These nappes include mainly sandstones (e.g. Reisels-
berger Sandstein, Planknerbrückenserie) and thinly layered
marls (e.g. Piesenkopfschichten) (Friebe, 2007; Heissel et al.,
1967; Oberhauser, 1982, 1998). Widespread till deposits and
hillside debris cover more than 57 % of the catchment area.
These units are overly susceptible to shallow landsliding
(Zieher et al., 2016). In numerous cases, subglacial till is re-
ported to act as an impermeable layer and slip surface for the
unconsolidated material on top. Furthermore, marls of the
Ultrahelvetic nappes, as well as less competent sandstones
of the Penninic nappes, are particularly susceptible to shal-
low landsliding (Zieher et al., 2016).

2.2 Climate

Oceanic air masses advecting from the north-west dominate
the warm temperate climate of Vorarlberg. On the Alpine rim
in northern Vorarlberg, precipitation amounts are higher due
to blocking of the inflowing air masses (Werner and Auer,
2001a, b). Because of the valley’s orientation, it is prone to
north and north-westerly weather conditions. At Innerlaterns
station (location mapped in Fig. 2c), mean annual precip-
itation exceeds 1800 mm a−1 (period 1981–2010). Consid-
ering a potential evaporation in Vorarlberg on the order of
600 mm a−1 (Werner and Auer, 2001a), a year-round high
amount of seepage water can be assumed.

On the synoptic scale, the landslide-triggering rainfall
events in May 1999 and August 2005 occurred in the course
of so-called Vb weather situations (van Bebber, 1891; For-
mayer and Kromp-Kolb, 2009). Such synoptic meteorologi-
cal situations are characterized by a low forming south of the
Alps, subsequently moving to the north-east. The moisture
taken up over the Mediterranean and Adriatic Sea is trans-
ported to eastern-central Europe, potentially causing heavy
rainfalls in large parts of Austria (Seibert et al., 2007).

2.3 Landslide-triggering rainfall events

Figure 3a, b show the daily and cumulative deviation of
precipitation from the long-term mean (1981–2010) cover-
ing 1 year before the landslide-triggering rainfall events in
May 1999 and August 2005 for the region around the Lat-
ernser valley. For the period of June 1998 to January 1999,
the cumulative deviation of precipitation was balanced over-
all, including a dry August and a wet September and Oc-
tober (Fig. 3a). Afterwards, particularly the second half of
February 1999 was exceptionally wet. Locally, fresh snow
depth exceeded 2 m within 3 days, leading to catastrophic
snow avalanches (Bollinger et al., 2000; Heumader, 2000).
In March and April 1999, precipitation corresponded to the
long-term mean, but precipitation in February and April pro-
vided an elevated level of the cumulative deviation. From 11
to 14 May, a rainfall event with a total sum of 144.4 mm
occurred. No shallow landslides are reported for this event.
However, increased soil moisture must be assumed before
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Table 1. Information on the geological units shown in Fig. 2c and their respective lithology (Heissel et al., 1967; Oberhauser, 1958, 1982;
Friebe, 2007). Only geological units covering more than 1 % of the catchment area are listed.

Tectonic unit No. Geological unit Lithology Age

Quaternary
1 Hillside debris Unconsolidated materials Quaternary
2 Till deposits Unconsolidated materials Quaternary

Helveticum

3 Globigerinenmergel Calcareous marls Eocene
4 Grünsandstein Sandstones Eocene
5 Seewerkalk Competent limestones Upper Cretaceous
6 Schrattenkalk Competent limestones Lower Cretaceous
7 Drusbergschichten Marls with calcareous layers Lower Cretaceous

Ultrahelveticum 8 Leimernmergel Clayey marls and shales Upper Cretaceous

Penninicum
9 Reiselsberger Sandstein Competent sandstones Upper Cretaceous

10 Piesenkopfschichten Thin-layered limestones Upper Cretaceous
11 Planknerbrückenserie Sandstones Upper Cretaceous

Figure 2. Location of the Laternser valley (a), slope angle map (b), geological map with sampled sites (c) and shallow landslide inventory (d).
The slope angle map is based on a digital terrain model derived from airborne laser scanning (ALS) in 2011, serving as input data for
modelling (resampled to a spatial resolution of 10 m). The box plots show the slope angle distribution for forest and non-forest areas. In
the geological map only geological units covering more than 1 % of the catchment area are listed in the legend (data source: Heissel et al.,
1967; Oberhauser, 1982). The shallow landslide inventory shows landslides triggered by the rainfall events in May 1999 (82; yellow) and
August 2005 (356; red) occurring on undisturbed hillside slopes (Zieher et al., 2016). The areas covered by forest were derived from ALS
data acquired in 2011.

the onset of the landslide-triggering rainfall event on 21–22
May, with a total sum between 134.0 mm at Frastanz station
and 212.8 mm at Thüringen station (Fig. 3c).

Monthly precipitation sums from November 2004 to June
2005 generally fell below the long-term mean, except for
February and May (Fig. 3b). Therefore it can be expected
that no exceptional antecedent soil moisture preceded the
rainfall event in August. However, the amount of precipita-
tion in July and the first half of August corresponds to the

long-term mean. Therefore, no exceptionally dry conditions
preceded the landslide-triggering rainfall event. After days
with repeated minor rainfalls, a phase of intense precipitation
started on 22 August. At Innerlaterns station, the 24 h cumu-
lative sum amounted to 244 mm. The highest precipitation
intensity was recorded in the late evening on 22 August and
during the night (21:00 to 22:00: 19.4 mm h−1). The trigger-
ing time of four landslides was reconstructed from protocols
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of the local voluntary fire brigade (Fig. 3d). Most landslides
occurred over the course of the night from 22 to 23 August.

3 Materials and methods

3.1 Shallow landslide inventory

A comprehensive shallow landslide inventory was compiled
for the catchment area of the Laternser valley, based on the
systematic interpretation of nine orthophoto series covering
the period from 1950 to 2012 (Zieher et al., 2016). Landslide
mapping was aided by digital terrain models (DTMs) de-
rived from two airborne laser scanning (ALS) campaigns and
their differential digital terrain model (dDTM). In addition,
data from two field surveys conducted immediately after two
landslide-triggering rainfall events in May 1999 and August
2005 and associated archive data were included in the inven-
tory. In total, 82 shallow landslides attributed to the rainfall
event in May 1999 and 356 shallow landslides triggered in
August 2005 were used for this study (Fig. 2d). Only rainfall-
triggered shallow landslides which occurred on undisturbed
hillside slopes were considered. They account for three quar-
ters of the observed landslides for both rainfall events. Ob-
served shallow landslides on other slope types may involve
additional causative factors for slope failure, which are not
included in the model (e.g. weakened foot slope). Of the con-
sidered landslides, 28 (34.1 %; May 1999) and 88 (24.7 %;
August 2005) are located within forests.

3.2 TRIGRS 2.0 model

The dynamic, physically based, coupled hydrological–
geomechanical model TRIGRS 2.0 was developed by Baum
et al. (2008, 2010) and is written in the Fortran program-
ming language (USGS, 2016). TRIGRS 2.0 is based on a
raster environment and implements a hydrological model el-
ement (a run-off model and two types of infiltration models)
and a geomechanical model element (infinite slope stability
model). It is suitable for modelling the spatio-temporal pro-
gression of slope stability in the course of rainfall events with
a duration of up to a few days (Baum et al., 2010).

In the model, the infiltration process and associated effects
on slope stability are computed dynamically for each raster
cell in defined time intervals. Run-offRd is routed downslope
from raster cells where the precipitation intensity P plus the
incoming run-off Ru from adjacent raster cells above exceed
the infiltration capacity (equal to the hydraulic conductivity
Ks; Baum et al., 2008):

Rd =

{
P +Ru−Ks if P +Ru−Ks ≥ 0

0 if P +Ru−Ks < 0.
(1)

However, the amount of run-off is not passed on to the
next time interval. The available amount of water ready for
infiltration on each raster cell is passed on to the infiltration

model. For tension-saturated initial conditions, a generalized
pore pressure diffusion model after Iverson (2000) can be
applied. The predictive performance of Iverson’s model has
been tested in the Laternser valley on a plot scale (Zieher
et al., 2017). For unsaturated conditions, an analytical so-
lution for unsaturated flow following Srivastava and Yeh
(1991) can be applied. However, the exponential model de-
scribing the soil water retention curve (Gardner, 1958) used
for linearizing Richard’s equation is considered suitable for
coarse-grained materials (Baum et al., 2008) and hence not
suitable for the application in the Laternser valley. The de-
tails of the infiltration models have been presented in previ-
ous studies (e.g. Baum et al., 2010; Iverson, 2000; Kim et al.,
2013; Park et al., 2013; Salciarini et al., 2006). The result
of both infiltration models is the evolution of pore pressures
with depth and time as a response to the infiltration of time-
varying precipitation. Pore pressures ψ(d, t) are passed on to
the infinite slope stability model relating driving to resisting
stresses (FOS):

FOS(d, t)=
tanϕ′

tanβ
+
c′−ψ(d, t) · γw · tanϕ′

γs · d · sinβ · cosβ
, (2)

where d (m) is the vertical depth (positive in downward di-
rection), t (s) is time, ϕ′ (deg) is the angle of internal friction
for effective stress, β (deg) is the slope angle, c′ (Pa) is the
cohesion for effective stress per unit area, γw (9806.6 N m−3)
is the unit weight of water and γs (N m−3) is the unit weight
of soil. Raster cells where the FOS falls below 1.0 are con-
sidered slope failures. Each cell with a FOS< 1.0 repre-
sents a single shallow landslide (Milledge et al., 2012). The
model’s results are FOS maps showing a quantitative mea-
sure of slope stability in space and time.

However, the original version of TRIGRS 2.0 does not ac-
count for effects of vegetation. Kim et al. (2013) extended the
model to include vegetation effects on hydrology and slope
stability. They conclude that root reinforcement and tree sur-
charge can affect slope stability, while interception has only
minor effects during landslide-triggering rainfall events. Fol-
lowing Kim et al. (2013), lateral root cohesion cr (Pa) and
tree surcharge st (Pa) were added to Eq. (2):

FOS(d, t)=
tanϕ′

tanβ
+
c′+ cr−ψ(d, t) · γw · tanϕ′

(st+ γs · d) · sinβ · cosβ
. (3)

Instead of adding a constant value for cr (e.g. Kim et al.,
2013), a linear decrease of cr with depth up to a given rooting
depth dr (m) was assumed, accounting for the distribution of
roots with depth as observed in other studies (e.g. Bischetti
et al., 2005, 2009). If the rooting depth exceeds the regolith
depth, cr is only considered down to the regolith–bedrock in-
terface (roots are not expected to penetrate the bedrock). For
the revised form of TRIGRS 2.0, three additional parame-
ters (cr, st and dr) must be given. The three parameters are
allowed to vary spatially and can be prepared as parameter
maps.
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Figure 3. Landslide-triggering rainfall events in the Laternser valley on 21–22 May 1999 (a, c) and 22–23 August 2005 (b, d). The map (e)
shows the meteorological stations considered. Regional daily mean (07:00–07:00) and cumulative deviation of precipitation from the long-
term mean (1981–2010) are shown for the period of 1 year before the rainfall events (a, b). Cumulative precipitation for 3 days covering
the landslide-triggering rainfall events are shown for meteorological stations within and surrounding the Laternser valley (c, d). Hourly
precipitation sums are shown for Ebnit station in May 1999 (c), because at Innerlaterns station missing values are present in the respective
hourly time series. Estimated triggering times of four shallow landslides were derived from protocols by the voluntary fire brigade. Data
source: Hydrographic Service of Vorarlberg (HD), Central Institute for Meteorology and Geodynamics (ZAMG).

3.3 Model parameters

Table 2 shows the required parameters and their values con-
sidered in previous studies with the original TRIGRS model
(versions 1.0 and 2.0) and a revised form (Kim et al., 2013).
In the cited studies, the time-varying precipitation intensities
are derived from meteorological stations in or near the study
area. The slope angle maps are calculated using digital eleva-
tion models (based on interpolated contour lines) of various
spatial resolutions. Regolith depth maps are prepared as a
function of the slope angle (Salciarini et al., 2006), using a
geomorphologically indexed model (Zizioli et al., 2013), us-
ing a spline interpolation of direct measurements (Kim et al.,
2013) and with spatially constant values (Park et al., 2013;
Vieira et al., 2010). The initial depth of the water table dwi
(positive in downward direction) is assumed to be either at
the regolith–bedrock interface (Kim et al., 2013; Park et al.,
2013; Vieira et al., 2010) or at a depth relative to it (Salciarini
et al., 2006; Zizioli et al., 2013). For the background infil-
tration rate describing a steady-state infiltration component,
constant values (e.g. Kim et al., 2013; Vieira et al., 2010) or
multiples of Ks (e.g. Park et al., 2013) were used.

For the landslide-triggering rainfall events considered in
the present study, hourly precipitation maps were prepared
for the whole province of Vorarlberg. Based on hourly
precipitation records from available meteorological stations
throughout the province, hourly precipitation maps were gen-
erated using a spline interpolation. Figure 4 shows the re-
spective time series and the resulting cumulative precipita-
tion maps for the Laternser valley. The temporal course of the
precipitation intensities differs distinctly (August 2005: short
and intense; May 1999: prolonged and less intense), while
cumulative precipitation sums over the considered duration
are of the same order (May 1999: 263 mm; August 2005:
252 mm). For modelling the temporal evolution of slope
stability, FOS maps were computed for nine (May 1999;
Fig. 4a) and seven (August 2005; Fig. 4c) time steps with
intervals of 9 h to completely cover both rainfall events.

The required slope angle map (Fig. 2b) was derived area-
wide from a DTM after Wood (1996). The DTM was gener-
ated with ALS data acquired in 2011, with a reported accu-
racy of 10 cm horizontally and 7.5 cm vertically (Wiedenhöft
and Vatslid, 2014). The data quality of the DTM from 2011
exceeds the quality of the DTM from 2004, particularly in ar-

Nat. Hazards Earth Syst. Sci., 17, 971–992, 2017 www.nat-hazards-earth-syst-sci.net/17/971/2017/



T. Zieher et al.: Calibration of a dynamic physically based slope stability model 977

Table 2. Parameters for the revised TRIGRS 2.0 model and parameter values considered in previous studies. DEM: digital elevation model;
Ks: saturated hydraulic conductivity.

Parameter Unit Salciarini et al. (2006) Zizioli et al. (2013) Vieira et al. (2010) Park et al. (2013) Kim et al. (2013)∗

Precipitation intensity P m s−1 Station data Station data Station data Station data Station data
Slope angle β Degree DEM (5× 5 m) DEM (10× 10 m) DEM (2× 2 m) DEM (10× 10 m) DEM (5× 5 m)
Regolith depth dmax m Function of Geomorphologically Constant value Constant value Spline interpolation

slope angle indexed model (1.0, 2.0 and 3.0 m) (2.0 m) of measurements
Initial depth of the m 0, 25, 50 and 100 % 0.75 m below At regolith At regolith At regolith
water table dwi of regolith depth the surface depth depth depth
Background infiltration rate Iz m s−1 – – 1.00× 10−9 0.01×Ks 4.50× 10−9

Angle of internal friction for Degree 18.00–40.00 22.00–33.70 34.00 29.63 34.00
effective stress ϕ′

Cohesion for effective stress c′ kPa 4.00–100.00 0.00–10.00 1.00; 6.00 10.17 5.20
Sat. hydraulic conductivity Ks m s−1 10−8

− 10−4 1.50× 10−5
− 1.00× 10−4 1.00× 10−6 1.30× 10−5 4.50× 10−5

Hydraulic diffusivity D0 m2 s−1 – – 5.5× 10−5 200×Ks –
Unit weight of soil γ kPa 18.00–22.00 17.46–19.91 17.10; 14.30 18.38 14.71

Root cohesion cr kPa – – – – 3.0
Tree surcharge st kPa – – – – 2.9
Rooting depth dr m – – – – –

Number of property zones 5 4 1 1 1

∗ Revised form of TRIGRS 1.0.

Figure 4. Hourly precipitation time series (a, c) and spatially interpolated precipitation sums (b, d) for the duration of the landslide-triggering
rainfall events in 1999 (a, b; 07:00 on 20 May to 07:00 on 23 May) and 2005 (c, d; 07:00 on 21 August to 12:00 on 23 August). The error
bars and the shading for the cumulative precipitation sum in (a) and (c) indicate the range of the interpolated hourly precipitation sums within
the catchment area.

eas covered by forest. The spatial resolution of the prepared
parameter maps was set to 10 m with regard to the most abun-
dant size of observed landslide scar areas, which is on the
order of 100 m2 (Zieher et al., 2016). Furthermore, the cho-
sen spatial resolution was considered a compromise between
the topographical representation of the surface, the computa-
tional efficiency for the modelling and the required minimum
length-to-depth ratio (on the order of 8 : 1) for the application
of the infinite slope stability model (Milledge et al., 2012).

Regolith depth, also referred to as soil depth (e.g. Lanni
et al., 2013) or soil thickness (e.g. Catani et al., 2010; Segoni
et al., 2012), is still one of the most difficult and laborious
parameters to measure on a catchment scale, yet it is crucial
for physically based modelling of slope stability (Dietrich
et al., 1995; Lanni et al., 2012; Segoni et al., 2012). It is de-
fined as the thickness of unconsolidated material covering the
earth’s surface, i.e. the depth from surface to bedrock (Fair-
bridge, 1968). Regolith depth can be assessed by (i) direct
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Figure 5. Cumulative distribution of dmax derived from observations and models (a) and the resulting regolith depth map (b).

measurements (e.g. Lanni et al., 2012; Wiegand et al., 2013),
(ii) means of geophysics (e.g. Davis and Annan, 1989; Sass,
2007) and (iii) modelling (e.g. Dietrich et al., 1995; Heim-
sath et al., 1997). Furthermore, the depth of past landslides
can be derived from multitemporal, remotely sensed eleva-
tion data (Zieher et al., 2016). For regolith depth mapping,
regression models correlating regolith depth to either eleva-
tion, slope angle or other derivatives were used in previous
case studies on shallow landslide susceptibility (Baum et al.,
2010; Lanni et al., 2012; Salciarini et al., 2006; Segoni et al.,
2012). For the assessment of regolith depth in the Laternser
valley, 126 dynamic cone penetration tests (DCPTs) were
conducted along four transects. A lightweight dynamic cone
penetrometer with a 10 kg hammer dropped from a height of
0.5 m onto an anvil of 6 kg was used (e.g. Wiegand et al.,
2013). Following ÖNORM EN ISO 22476-2:2012, the num-
ber of strokes for penetrating vertical increments of 10 cm
was recorded in the field. After completing 50 strokes, the
penetration tests were stopped if the penetrated increment
was less than 10 cm (ÖNORM EN ISO 22476-2:2012). The
final depth was recorded to the nearest centimetre, with the
maximum detectable depth of 6.0 m exceeded only once.
Furthermore, the maximum vertical depths of 96 shallow
landslides triggered on 21–22 May 1999 and of 249 shal-
low landslides triggered on 22–23 August 2005 are available
for validation (Fig. 5b). The landslide depths were measured
in the field after the triggering event in May 1999 (Andrecs
et al., 2002) and derived from the analysis of a dDTM for
the landslides triggered in August 2005 (Zieher et al., 2016).
The final depths of the DCPTs were used to train generalized
linear models (GLMs) with local morphometric parameters
as predictors, including elevation, slope angle, minimum and
maximum curvature (Wood, 1996), and the topographic wet-
ness index (Beven and Kirkby, 1979). A stepwise backward
predictor selection revealed a linear model with the slope an-
gle yielding the best agreement with the cumulative landslide
depths from 1999 and 2005 (Fig. 5a). It outperforms the cur-
vature and the combined slope angle–curvature model, par-
ticularly for depths below 2.0 m. The resulting empirical re-

lationship for regolith depth dmax and the slope angle β is

dmax =

{
3.028− 0.049 ·β for 0.0◦ ≤ β < 61.8◦

0.0 for β ≥ 61.8◦.
(4)

The derived regolith depth map (Fig. 5b) also matches the
field observation that on slopes which are inclined more than
approximately 60◦ the surficial cover of unconsolidated ma-
terial is of minor depth or not present at all. Furthermore, on
very steep slopes there is a transition from sliding to toppling
and falling as the predominant types of failures (Baum et al.,
2010).

For the derivation of the geotechnical and hydrological pa-
rameter values suitable for the Laternser valley, a limited
number of laboratory tests were conducted. On the south-
facing slopes of the study area, geotechnical samples were
collected from eight sites where shallow landslides had been
triggered in 1999 (BIN-02), 2002 (ROH-01), 2005 (BIN-01,
BON, MAZ, REU, ROH-02) and 2013 (INN), close to popu-
lated areas in the Laternser valley (Fig. 2c, Table 3). The ab-
breviations were chosen according to the closest settlements
(BIN: Bingadels; BON: Bonacker; INN: Innerlaterns; MAZ:
Mazona; REU: Reute; ROH: Rohnen). In the geological map
(Fig. 2c), the sampled sites are mapped as hillslope debris
(BIN-01, BIN-02), till deposits (INN, MAZ, REU, ROH-01),
Leimernmergel (BON) and Drusbergschichten (ROH-02).
Back walls were laid open at the top of the landslide scarps.
Two undisturbed and one disturbed sample were taken at two
depths at each site except for location ROH-02. There, sam-
ples of one depth were considered sufficient because of the
homogeneously structured regolith. The undisturbed samples
were collected with the help of core cutters (diameter 9.6 cm)
and stored airtight. Furthermore, buckets of material were
taken from the respective depths. The grain size distributions
(Fig. 6b), wet and dry bulk densities and water contents were
determined for all samples. With the lower samples, geotech-
nical parameters (ϕ′, c′, Atterberg limits) were derived from
the respective laboratory tests (Fig. 6a, d). The upper sam-
ples were used to obtain estimates for the specific storage Ss,
based on the constrained modulus Es (Pa) derived from oe-
dometer tests (Rowe and Barden, 1966). The respective val-
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ues for Ss (m−1) were derived from

Ss = ρw · g · (αs+ n ·βw), (5)

where ρw (kg m−3) is the density of water, g is the acceler-
ation of gravity (9.81 m s−2), n is porosity, βw is the com-
pressibility of water (4.4× 10−10 m2 N−1) and αs (m2 N−1)
is the compressibility of bulk soil (Fig. 6c), derived from

αs =
3 · (1− v)
Es · (1+ v)

, (6)

where v is Poisson’s ratio, for which a constant value of
1/3 was assumed (e.g. Lu and Godt, 2013; Schmidt et al.,
2014). Es depends on the prevailing stress level (i.e. over-
burden height; Schmidt et al., 2014) and was derived for a
depth of 1–2 m (e.g. Berti and Simoni, 2010). The hydraulic
diffusivity D0 (m2 s−1) was derived from

D0 =
Ks

Ss
. (7)

However, Ks was not tested in the field or laboratory. Its
parameter values were calibrated over several orders of mag-
nitude. The background infiltration rate was set to zero to
consider a conservative estimate of pore pressure conditions
assuming a slope-parallel groundwater flow (Baum et al.,
2008, 2010).

For the parameters representing the effects of vegetation
on slope stability in the revised model, spatially constant
parameter values are assumed within the area covered by
forest. A conservative set of parameter values is derived
from respective literature with cr set to 2.5 kPa (e.g. Bis-
chetti et al., 2009; Steinacher et al., 2009), st set to 2.5 kPa
(e.g. Steinacher et al., 2009) and dr set to 1.0 m (e.g. Bis-
chetti et al., 2009; Kutschera and Lichtenegger, 2002). How-
ever, these values were only applied within areas covered
by forest. A forest cover map was prepared, based on the
normalized digital surface model (nDSM) derived from the
ALS data from 2011. The areas covered by forest for the
time of the two landslide-triggering rainfall events in Au-
gust 2005 and May 1999 was adapted manually, using high-
resolution orthophotos from 2006 (ground sampling distance
of 0.125 m) and 2001 (ground sampling distance of 0.25 m)
respectively.

3.4 One-parameter-at-a-time sensitivity analysis

Following Hammond et al. (1992), the model’s sensitivity
against each parameter is tested individually. For each pa-
rameter, central, minimum and maximum values are defined
based on laboratory tests, field investigations and respective
literature (Table 4). The resulting FOSpi for each parameter
pi sampled over the specified range is related to the respec-
tive FOSpcentral based on the defined central parameter values:

1FOS=
FOSpi −FOSpcentral

FOSpcentral

. (8)

The resulting relative deviation1FOS reflects the model’s
sensitivity against each parameter. However, interactions be-
tween parameters are not considered (Dobler and Pappen-
berger, 2013; Hammond et al., 1992).

3.5 Parameter calibration and validation

In previous studies, local OAT parameter tests were used for
the calibration of parameter values (e.g. Gioia et al., 2016). In
the present study, the calibration of the four identified sensi-
tive parameters (ϕ′, c′, Ks, Ss; Sect. 4.1) is based on system-
atic testing of parameter value combinations for the whole
catchment area (global calibration), computed with a HPCC
(162 nodes, 1.944 Intel Xeon Gulftown compute cores). For
each parameter, 10 values are sampled from a uniform dis-
tribution in equal increments from the defined minimum to
maximum (e.g. Beven and Freer, 2001). Because of the lim-
ited number of laboratory tests, it is not possible to infer
probability distributions of the parameter values. The hydro-
logical parameters are sampled on the logarithmic scale (Ta-
ble 5).

The predictive performance of each FOS map resulting
from the 10 000 calibration runs with seven time steps each
(514.9 GB of data) was assessed with the receiver operat-
ing characteristic (ROC) principle (Begueria, 2006). Using
physically based slope stability models, a FOS< 1.0 indi-
cates a potential slope failure, while a FOS≥ 1.0 suggests a
stable slope. The coordinates of the point in the ROC plot
where the FOS falls below 1.0 represent the correctly pre-
dicted fractions of observed landslides (true positives; TP)
and non-landslides (true negatives; TN). The basic idea of
the calibration procedure is to identify parameter value com-
binations which result in an optimum prediction of observed
landslides and non-landslides, at a FOS threshold falling be-
low 1.0, by minimizing the distance to the perfect classifi-
cation (D2PC; Formetta et al., 2016; Mergili et al., 2017;
Fig. 7). Data processing and analysing included the open
source GRASS GIS 6.4 (GRASS Development Team, 2014),
Python 2.7 programming language (Python Software Foun-
dation, 2016) and R statistical software (R Core Team, 2016).

The identification of “behavioural model runs” out of the
10 000 calibration runs is based on the following observa-
tions and assumptions:

1. At the beginning of the simulations, the slopes through-
out the Laternser valley must be stable (FOS≥ 1.0).

2. Most shallow landslides were triggered after the highest
precipitation intensity occurred (FOS falls below 1.0).

3. Optimum parameter values can be derived from the
simulations which correctly predict the most observed
landslides and non-landslides (minimized D2PC) while
satisfying the first two assumptions.

The necessary observations for the assessment of the pre-
dictive performance are obtained from the shallow landslide
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Table 3. Metadata for the eight sampled landslide sites and results of the conducted laboratory tests.

Parameters Unit INN MAZ REU BON BIN-01 BIN-02 ROH-01 ROH-02

Latitude Degree 47.2572 47.2679 47.2647 47.2673 47.2722 47.2737 47.2690 47.2699
Longitude Degree 9.7381 9.7352 9.7144 9.7256 9.7040 9.7087 9.6980 9.7001
Sample depth 1 cm 56 37 34 30 45 42 41 –
Sample depth 2 cm 72 67 56 80 92 72 65 108
Angle of internal friction for Degree 38.1 29.3 30.3 30.3 25.9 24.8 25.3 37.2
effective stress
Cohesion for effective stress kPa 1.3 4.6 0.8 6.2 5.6 0.0 3.7 17.6
Constrained modulus∗ kPa 1050 470 2040 240 1400 2740 400 750
Specific storage∗ m−1 0.037 0.031 0.007 0.061 0.011 0.005 0.037 0.020
Plastic limit mass % 24.2 26.6 29.6 26.8 23.5 22.8 27.3 18.9
Liquid limit mass % 31.1 41.8 49.1 46.2 40.0 47.1 47.9 23.1
Dry density g cm−3 1.43 1.45 1.27 1.37 1.36 1.84 1.25 1.99
Porosity % 45.2 45.1 52.4 48.9 46.3 29.8 52.3 25.5
Soil type Clay/silt Silt Silt Clay Clay Clay Clay Clay/silt

∗ Results for a depth of 2.0 m.
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Figure 6. Results of the conducted laboratory tests. (a) Direct and triaxial shear tests, (b) grain size distributions, (c) compressibility of bulk
soil and (d) Atterberg limits.

inventory. For 261 out of 356 shallow landslides triggered
in August 2005, the scar areas are available, delineated with
the help of a dDTM (Zieher et al., 2016). A shallow land-
slide is regarded as correctly predicted if the FOS falls below
1.0 in at least one raster cell intersecting the scar area. This
strategy was chosen because of the discrepancy between the
regular raster environment (input and output maps) and the

mapped shallow landslide scar area polygons. The spatial
resolution of 10 m results from a compromise between the
size of most shallow landslide scar areas, the constraints of
the infinite slope stability model and the representation of
the topography. However, it remains unknown which pixel
represents an actually observed shallow landslide. This re-
sults from positional uncertainties of the involved data sets,
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Table 4. Parameter value ranges and central values considered in the OAT sensitivity analyses.

Parameter Unit Central value
Range

Minimum Maximum

Angle of internal friction for effective stress Degree 29.0 20.0 38.0
Cohesion for effective stress kPa 5.0 0.0 18.0
Root cohesion kPa 2.5 0.0 5.0
Slope angle Degree 30.0 20.0 40.0
Regolith depth m 1.5 1.0 2.0
Unit weight of soil kPa 18.5 17.0 20.0
Rooting depth m 1.0 0.5 1.5
Tree surcharge kPa 2.5 0.0 5.0

Specific storage m−1 0.010 0.001 0.100
Sat. hydraulic conductivity m s−1 10−6 10−8 10−4

Depth of the water table m 1.5 0.0 1.5
Precipitation (August 2005) % 100 50 150
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FOS: factor of safety; TPR: true positive rate; FNR: false negative rate; TNR: true negative rate; FPR: false positive rate; D2PC: distance to
perfect classification; AUC: area under the ROC curve.

as well as from the smoothed representation of the topogra-
phy associated with the coarse raster resolution. It is there-
fore assumed that the raster cell with the lowest FOS inter-
secting the scar area polygon represents the respective land-
slide (e.g. Montgomery and Dietrich, 1994; Casadei et al.,
2003; Keijsers et al., 2011). For landslides with no scar area
mapped (95 landslides triggered in August 2005, landslides
triggered in May 1999), a planimetric circle with a radius of
5.6 m (resulting in an area of 100 m2) around the scar point
(mapped in the visual centre of the scar areas) is used instead.

4 Results

4.1 One-parameter-at-a-time sensitivity analysis

The OAT sensitivity analysis of the geomechanical model el-
ement’s parameters reveals that an increase in parameter val-
ues can have positive (ϕ′, c′ and cr) and negative effects (β,
dmax, st) on slope stability (Fig. 8a). Variations in β and dmax
result in non-linear effects on slope stability. An increase in
β or dmax lowers the FOS. Both parameters are derived from
a DTM and direct field measurements. Increased parameter
values for ϕ′ and c′ distinctly enhance the FOS. Their impact
is greater than the effects of the parameters associated with
the vegetation (cr, st, dr). While variations of st have minor
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destabilizing effects, modified values of cr increase the FOS.
For the tested parameterization, variations of dr do not show
effects on the FOS. In the calibration procedure, the param-
eters representing the effects of vegetation are kept constant
within the respective areas covered by forest, while the pa-
rameters ϕ′ and c′ are tested systematically.

For the parameters of the hydrological model element, the
sensitivity analysis is based on the precipitation time series
from 22 to 23 August 2005 to account for time-dependent re-
sponses. The model’s sensitivity against the precipitation in-
put is tested with scaled time series of this rainfall event. De-
pending on the previous precipitation input, the parameters
Ks, Ss and dwi have different effects on the resulting FOS.
Reducing Ks by 2 orders of magnitude, the FOS increases
up to 30 % due to the lowered infiltration, while higher pa-
rameter values result in a reduced FOS as reaction to the en-
hanced infiltration. The magnitude of Ss essentially controls
the temporal dynamics of the modelled infiltration process.
By reducing Ss, the value ofD0 increases (Eq. 7), leading to a
quicker infiltration of the precipitation input. Thus, lowering
the Ss by 1 order of magnitude leads to a reduction of the FOS
by more than 20 %, while higher parameter values lead to an
enhanced FOS. Decreasing the dwi by 100 % (initial water
table at the surface) results in a reduced FOS by 24 %. Com-
pared to the other hydrological parameters, the model’s sen-
sitivity against the scaled precipitation time series is lower.
By varying the precipitation input within a range of ±50 %,
the resulting FOS changes by −4 to +9 %. The precipitation
input is given by the interpolated hourly precipitation sums
and the dwi is set to the regolith–bedrock interface for the
calibration procedure with the rainfall event in August 2005,
while the parameters Ks and Ss are tested systematically.

4.2 Calibration with the landslide-triggering rainfall
event in August 2005

The temporal prediction rates and the respective coordinates
for a FOS falling below 1.0 in the ROC plot for the shal-
low landslides triggered on 22–23 August 2005 are shown in
Fig. 9. Table 6 shows the respective minimum and maximum
prediction rates for the calibration steps. The value ranges are
presented for the best-performing output time step of each
simulation. The D2PC is given for the coordinates of the FOS
falling below 1.0, while the area under the ROC curve (AUC)
as a measure of the overall predictive performance (Begue-
ria, 2006) is based on the full FOS range of the resulting
maps. Considering all 10 000 calibration runs (Fig. 9a), many
parameter combinations yield completely stable conditions
over all computed time steps (no correctly predicted land-
slides; TPR= 0.0%) but also to unstable conditions at time
step t = 0. Allowing for 0.5 % of the catchment area to fail at
time step t = 0, 7300 calibration runs remain (Fig. 9b). How-
ever, many of the remaining calibration runs predict slope
failures before the onset of the landslide-triggering rainfall
event. Assuming that most shallow landslides were triggered
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Figure 8. OAT sensitivity of the model results (change in factor of safety) for tested parameter value ranges for the geomechanical model
element (a) and the hydrological model element (b). Respective parameter values are listed in Table 4.

after the maximum precipitation intensity, 1134 calibration
runs remain (Fig. 9c). Several of these remaining calibra-
tion runs do not predict any of the observed shallow land-
slides over time (TPR= 0.0%). Therefore, the 25 calibration
runs with the highest sum of correctly predicted landslides
and non-landslides are selected, while minimizing the D2PC
(“behavioural model runs”, Fig. 9d). With these model runs,
the location and the supposed triggering timing of 46.6 to
70.5 % of the observed shallow landslides can be predicted,
while 71.0 to 90.3 % of the observed non-landslides remain
stable. It is assumed that this identified model ensemble is
able to represent the spatial and temporal occurrence of shal-
low landslides triggered on 22–23 August 2005. The result-
ing parameter value combinations are regarded as best for the
dynamic modelling of slope stability in the Laternser valley.

4.3 Validation with the landslide-triggering rainfall
event in May 1999

To test the identified model ensemble’s predictive perfor-
mance, it is applied for the landslide-triggering rainfall event
in May 1999. Despite the different nature of the rainfall
events (August 2005: short and intense; May 1999: pro-
longed and less intense), most landslides are again predicted
after the highest precipitation intensity (time step 6; after
45 h; Fig. 10). Hence, assuming that the landslides observed
for the rainfall event on 21–22 May 1999 were triggered af-
ter the maximum precipitation intensity occurred, the model
ensemble is able to predict the location and the supposed trig-
gering timing of most of these landslides. However, the melt-
ing of the accumulated snow from the preceding winter may
have led to an enhanced soil moisture and a rise of the water
table. Therefore, three scenarios for the dwi were considered
(100, 75 and 50 % of the regolith depth; Fig. 10, Table 7).
Assuming the dwi to be at the regolith–bedrock interface, be-
tween 43.9 and 79.3 % of the observed landslides are pre-

dicted correctly. Increasing the dwi to 75 % of the regolith
depth, the true positive rate rises to 51.2–89.0 with up to
4.9 % of the landslides predicted at t = 0. By further increas-
ing the dwi to 50 % of the regolith depth, the true positive rate
rises to 58.5–95.1 %, while up to 30.3 % of the landslides are
predicted at t = 0. Setting dwi to 75 % of the regolith depth is
therefore considered adequate for simulating slope stability
for the landslide-triggering rainfall event in May 1999.

4.4 Comparison of the model ensemble’s predictive
performance

Figure 11 shows the resulting areas of slope failures pre-
dicted by the model ensemble for both rainfall events. The
colours indicate the number of model runs predicting slope
failures per raster cell. Areas shown in red indicate a high
agreement of the model ensemble, while yellow areas are
identified by only one model run. The coordinates in the ROC
plots associated with the number of agreeing model runs are
shown in Fig. 11c for the rainfall event in August 2005 and
Fig. 11f for the rainfall event in May 1999. The area, which
is predicted to fail by at least one model run of the model en-
semble, includes the most observed landslides (highest TPR)
while the TNR is considerably low. With all 25 model runs
in agreement, the rate of correctly predicted landslides is dis-
tinctly lower, while the TNR increases markedly. The pre-
diction rates of the 25 model runs are shown in Fig. 11d for
the rainfall event in August 2005 and Fig. 11e for the rain-
fall event in May 1999. Respective maximum and minimum
prediction rates are listed in Table 8. Generally, the model
ensemble is better at predicting the landslides triggered in
May 1999. However, non-landslides are better predicted for
the rainfall event from August 2005.

In total, the model ensemble correctly predicts 73.0 % of
the landslides triggered in August 2005 (landslides, which
are predicted correctly by at least one ensemble model run).
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Figure 9. Temporal prediction rate for the seven time steps and rate of correctly predicted landslides (true positives) and non-landslides
(true negatives) at a FOS falling below 1.0 for the calibration runs. All 10 000 calibration runs (a), calibration runs which satisfy assumption
1 (b; n = 7300), calibration runs which satisfy assumption 2 (c; n= 1134) and the 25 calibration runs which predict most landslides and
non-landslides (d). In (d), only the coordinates with the highest true positive rate for the 25 calibration runs are shown. The grey lines
in (d) indicate the D2PCs of these runs.

Table 6. Prediction rates of the model ensemble for the landslide-triggering rainfall event in August 2005. TPR: true positive rate, TNR: true
negative rate, FPR: false positive rate, FNR: false negative rate, D2PC: distance to perfect classification, AUC: area under the ROC curve.

Prediction
All calibration runs Stable at t = 0 Most landslides at t = 45 Best 25 runs

Minimum Maximum Minimum Maximum Minimum Maximum Minimum Maximum

TPR 0.0 % 99.4 % 0.0 % 90.4 % 0.0 % 70.5 % 46.6 % 70.5 %
FNR 0.6 % 100.0 % 9.6 % 100.0 % 29.5 % 100.0 % 29.5 % 53.4 %
TNR 10.6 % 100.0 % 57.5 % 100.0 % 71.0 % 100.0 % 71.0 % 90.3 %
FPR 0.0 % 89.4 % 0.0 % 42.5 % 0.0 % 29.0 % 9.7 % 29.0 %
D2PC 0.34 1.00 0.34 1.00 0.41 1.00 0.41 0.54
AUC 72.2 % 84.3 % 73.5 % 84.3 % 73.5 % 84.0 % 78.1 % 83.5 %

This is slightly more than the best single model run of the
ensemble. Apparently, some observed landslides which can-
not be explained by the best single model run (TPR 70.5 %)
are explained by other model runs. Landslides observed on
open land are predicted better (206 out of 268; 76.9 % cor-
rectly predicted) than in the forest (54 out of 88; 61.4 %). For
the landslide-triggering rainfall event in May 1999, 91.5 % of
the observed landslides are predicted correctly. Like for the
results for the rainfall event in August 2005, some additional
landslides are explained by the model ensemble compared
to the best single model run (TPR 89.0 %). On open land,
landslides are again predicted better (51 out of 54; 94.4 %
correctly predicted) than in the forest (24 out of 28; 85.7 %).

4.5 Calibrated parameter values

Unlike the OAT sensitivity analysis, the presented calibration
procedure can reveal parameter interactions. The calibrated
parameter values are shown in (Fig. 12). For the geotechnical
parameters, ranges of 21–35◦ for the angle of internal friction
for effective stress and 4–8 kPa for the cohesion for effective
stress are optimum value ranges. The results of four of the
eight conducted shear tests are within these ranges.
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Table 7. Prediction rates of the model ensemble for the landslide-triggering rainfall event in May 1999. Three scenarios for the initial depth
of the groundwater table in relation to regolith depth are considered. TPR: true positive rate; TNR: true negative rate; FPR: false positive
rate; FNR: false negative rate; D2PC: distance to perfect classification; AUC: area under the ROC curve.

Description
Regolith depth 0.75× regolith depth 0.50× regolith depth

Minimum Maximum Minimum Maximum Minimum Maximum

TPR 43.9 % 79.3 % 51.2 % 89.0 % 58.5 % 95.1 %
FNR 20.7 % 56.1 % 11.0 % 48.8 % 4.9 % 41.5 %
TNR 71.5 % 91.5 % 66.1 % 89.1 % 62.7 % 88.6 %
FPR 8.5 % 28.5 % 10.9 % 33.9 % 11.4 % 37.3 %
D2PC 0.35 0.57 0.31 0.50 0.29 0.44
AUC 82.3 % 87.6 % 84.1 % 87.8 % 85.2 % 87.2 %

Table 8. Prediction rates of the model ensemble for the landslide-triggering rainfall events in May 1999 and August 2005. For the rainfall
event in May 1999, an initial depth of the water table of 0.75×regolith depth was considered. TPR: true positive rate; TNR: true negative
rate; FPR: false positive rate; FNR: false negative rate; D2PC: distance to perfect classification; AUC: area under the ROC curve.

Description
May 1999 August 2005

Minimum Maximum Minimum Maximum

TPR 51.2 % 89.0 % 46.6 % 70.5 %
FNR 11.0 % 48.8 % 29.5 % 53.4 %
TNR 66.1 % 89.1 % 71.0 % 90.3 %
FPR 10.9 % 33.9 % 9.7 % 29.0 %
D2PC 0.31 0.50 0.41 0.54
AUC 84.1 % 87.8 % 78.1 % 83.5 %
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Figure 10. Temporal prediction rate (a) and coordinates for a
FOS falling below 1.0 (b), based on the model ensemble for the
landslide-triggering rainfall event in May 1999. Three scenarios for
the initial conditions (initial depth of the water table) are consid-
ered.

Furthermore, the distribution of the calibrated geotechnical
parameters suggests that lower angles of internal friction for
effective stress can be compensated by increasing the cohe-
sion for effective stress and vice versa. This can be expected
from Eqs. (2) and (3). In case of the hydrological parame-
ters, the calibration procedure reveals optimal value ranges
between 10−6 and 10−5 m s−1 for the hydraulic conductiv-
ity and between 10−2 and 10−1 m−1 for the specific stor-
age. Compared to the experimentally derived range of the

specific storage, the calibrated parameter values show a ten-
dency towards higher values. The resulting hydraulic diffu-
sivity (Eq. 7) is in the range of 10−5–10−3 m2 s−1. These
ranges theoretically cover a variety of materials, from sands
to clays (e.g. Prinz and Strauß, 2011).

4.6 Model ensemble’s sensitivity against increased
precipitation intensity

According to the Austrian Assessment Report (Kromp-Kolb
et al., 2014), frequency and magnitude of extreme precipita-
tion events are expected to increase over Austria in a future
climate. Using the model ensemble, the impact of increas-
ing precipitation intensity on shallow landslide susceptibil-
ity is assessed. The precipitation input from August 2005 is
scaled up to 125 % in increments of 5 % (Fig. 13a). The re-
sulting change in the proportion of unstable areas is shown in
Fig. 13b. It increases from 7.6 % (±2.4%; 1 standard devia-
tion) for the original rainfall event in August 2005 to 8.5 %
(±2.7%) for the same rainfall event scaled to 125 %.

At the same time, the predicted mean surface run-off ob-
served after 40 h (time step with the highest run-off) in-
creases distinctly. It rises from 9.8× 10−4 m s−1 (±1.3×
10−3 m s−1; 1 standard deviation) for the original rain-
fall event in August 2005 to 1.7× 10−3 m s−1 (±1.8×
10−3 m s−1) for the same rainfall event scaled to 125 %. This
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Figure 11. Predictive performance of the model ensemble. The maps show areas predicted to fail in response to the rainfall event in August
2005 (a) and in May 1999 (b). The colours indicate the number of model runs predicting the respective areas to fail. The ROC plots likewise
show the coordinates of the correctly predicted landslides and non-landslides for August 2005 (c) and May 1999 (f) associated with the
number of model runs which are in agreement. The predictive rates of the model ensemble (see Table 8) are visualized for August 2005 (d)
and May 1999 (e). The colours indicate the true positive rate. TPR: true positive rate; TNR: true negative rate; FPR: false positive rate; FNR:
false negative rate; AUC: area under the ROC curve.
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is an increase of 76.0 % compared to the run-off generated
with the original rainfall input from August 2005 (Fig. 13c).

5 Discussion

The OAT sensitivity analysis reveals a high impact of the
slope angle and the regolith depth on the resulting FOS. The
slope angle map is derived area-wide from a DTM based
on ALS data. Their accuracy is considered sufficient for the

derivation of slope angles at a spatial resolution of 10 m.
However, resulting slope angles may differ, depending on
the respective calculation method (e.g. Horn, 1981; Wood,
1996). The regolith depth map used in this study is based on
a linear model with the slope angle as the only predictor. It
is shown that this model is suitable to predict the cumulative
distribution of regolith depth for depths up to 2.0 m. How-
ever, its spatial distribution may be better reproduced with
techniques including further predictors, like geomorphology
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Figure 13. Scaled rainfall event of August 2005 (a) and resulting changes in slope stability (b) and surface run-off (c), based on the ensemble
runs with a scaled precipitation input. The area shaded in grey shows one standard deviation.

or land cover (e.g. Catani et al., 2010; Tesfa et al., 2009).
Compared to the impact of the geotechnical parameters, the
effect of the vegetation parameters is rather small. This can
be attributed to the conservative set of parameter values as-
sumed for the three vegetation parameters.

For the calibration procedure, the tested parameters are as-
sumed to be constant throughout the catchment area. In other
studies, property zones according to the geological substra-
tum are defined with varying parameter value ranges. How-
ever, for the proposed calibration procedure, interactions be-
tween such property zones would have had to be included
(e.g. enhanced run-off from zones above with lower infiltra-
tion capacity). Considering such interactions would have ex-
ceeded the available computational capabilities.

The parameter value ranges considered in the calibration
procedure are derived from laboratory tests conducted on
samples from eight sites. It is assumed that these ranges are
representative for the whole catchment area. However, results
of additional laboratory tests conducted on samples from
other locations could further extend these ranges. In contrast,
the tested parameter space already covers a wide range of
material properties and raises the question of whether labora-
tory tests are required for the suggested calibration procedure
at all. Such parameter value ranges could be derived from
textbooks as well (e.g. Prinz and Strauß, 2011). Neverthe-
less, results of laboratory tests can be helpful for interpreting
and validating the parameter combinations of the identified
model ensemble.

Four parameters with a high impact on the model out-
come were systematically sampled from a uniform distribu-
tion with defined increments and ranges. Hence, the subse-
quent calibration procedure, which considers each parame-
ter value combination, remains deterministic. However, the
combination of the results of the identified model ensemble
must not be confused with a probability of failure, since the
sampling and selecting of the parameter values is done sys-
tematically. Probabilistic approaches (e.g. Hammond et al.,
1992; Raia et al., 2014), including a randomized parameter
sampling strategy, could overcome this limitation while con-
sidering the uncertainty of the input parameters. If the prob-
ability distributions of the parameters throughout the study

area are known, probabilistic approaches can be applied to
derive the probability of failure. Theoretically, the resulting
parameter value combinations of the identified model ensem-
ble could provide insights into the area-wide probability dis-
tributions of the tested parameters. However, further investi-
gations are necessary, including an enhanced sampling strat-
egy. Improved and optimized models (e.g. Alvioli and Baum,
2016) will facilitate this objective.

The constrained set of 25 simulations, which optimally
predict the observed landslides and non-landslides, is se-
lected by minimizing the D2PC at a FOS threshold right be-
low 1.0. Further performance indicators could be used for
this task instead (e.g. Formetta et al., 2016; Mergili et al.,
2017). However, for validating the results of physically based
slope stability models, a performance indicator which is in-
dependent of a threshold (such as the AUC) can be mislead-
ing. As shown in Table 5, the AUC is less sensitive over the
tested parameter value ranges compared to the D2PC. As a
consequence, a high D2PC for the coordinates of the FOS
threshold right below 1.0 (indicating a bad model perfor-
mance) can go along with a high AUC (typically indicating a
good model performance). Thus, for validating the results of
physically based slope stability models, a performance in-
dicator considering a FOS threshold right below 1.0 must
be preferred over an indicator independent of a threshold.
Nevertheless, the minimum D2PC increased during the cal-
ibration procedure from 0.34 to 0.41, suggesting worsening
results. However, the simulations with lower D2PCs are as-
sociated with an unrealistic early triggering of the observed
landslides before the onset of the rainfall event. Therefore,
in case of dynamic slope stability models, the temporal pro-
gression of the performance indicators must be considered.

In the calibration procedure, FOS maps were calculated
for seven time steps with intervals of 9 h. For computa-
tional reasons it was not possible to compute hourly output
for all 10 000 simulations. A re-calculation of hourly out-
put maps with the parameter combinations of the identified
model ensemble showed that, in the time intervals between
the original output time steps, slightly more observed land-
slides were predicted correctly in some cases. Theoretically,
even more observed landslides could be predicted within the
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hourly time steps. Therefore the proposed calibration proce-
dure may yield a different model ensemble if more output
time steps were considered. In the same way, parameter val-
ues were tested in discrete intervals. Using parameter values
in-between these intervals could enhance the model’s pre-
dictive performance. Hence, the assessed predictive perfor-
mance must be taken as a conservative estimate.

For both landslide-triggering rainfall events, some of the
ensemble model runs show a decrease in the temporal true
positive rate after the maximum precipitation intensity. This
observation is associated with decreasing pore pressures
due to less infiltrating water. For some observed landslides,
which are predicted to fail around the maximum precipita-
tion intensity, the reduced pore pressure later causes the FOS
to rise above 1.0, and hence stable slopes are predicted again.
However, this behaviour also suggests a sufficient calibration
of the parameter values, since the model reacts to the tempo-
rally varying precipitation intensity.

With the model runs of the identified model ensemble be-
tween 46.6 and 70.5 % of the observed landslides triggered
in August 2005 and between 51.2 and 89.0 % of the observed
landslides triggered in May 1999 can be predicted correctly.
In total, the model ensemble correctly predicts 73.0 % of
the landslides triggered in August 2005 and 91.5 % of the
observed landslides triggered in May 1999. A direct com-
parison with prediction rates of further studies conducted in
other study areas is difficult, since site-specific characteris-
tics (e.g. soil material, conditions prior to landslide trigger-
ing, size of the study area) and data availability and quality
(e.g. landslide inventory, DTM) may vary considerably. Still,
the model ensemble fails to predict the remaining 27.0 %
of the landslides triggered in August 2005 and 8.5 % of the
landslides triggered in May 1999. Furthermore, the identi-
fied model ensemble cannot explain why landslides triggered
in August 2005 were not triggered in May 1999. Areas pre-
dicted as unstable are in good agreement for both rainfall
events. Further local factors may control the triggering of the
landslides (e.g. local precipitation patterns, preferential flow,
concentrated surface run-off, locally weak layers). Such lo-
cal effects and properties are not covered by the model nor
by the input parameter maps. Moreover, the geomechanical
model element includes a simplified representation of land-
slide geometry, while an instant failure mechanism of the
whole landslide is assumed. The model’s simplifications of
complex processes, together with the applied parametriza-
tion, may explain the shortfall in spatial and temporal pre-
diction accuracy.

The resulting slope stability maps of the identified model
ensemble show a bias from east to west. Compared to the ob-
served landslides, the predicted landslide density is notice-
ably higher in the eastern half of the catchment area. This
bias might be related to the lithology. The south-eastern part
of the Laternser valley is built up of sandstones (Penninic
nappes), while the western and northern part is underlain
by limestones, marls and shales (Helvetic and Ultrahelvetic

nappes). Furthermore, the unconsolidated material located in
the cirques of the south-eastern part of the valley is mostly
coarse-grained debris originating from debris slides/debris
flows and rockfalls from source areas above. Therefore, the
material may feature higher angles of internal friction com-
pared to the respective value range considered in the model
ensemble. As a result, the slopes may remain stable in nature
while they are predicted to fail by the ensemble.

The results of the identified model ensemble suggest a
lower prediction rate of shallow landslides located in the
forest. Therefore, the chosen representation of the effects of
vegetation on slope stability in the revised model may be too
simple. Furthermore, a conservative, spatially constant set of
parameter values was chosen for the parameters describing
the effects of vegetation. In forest stands, these parameter
values vary spatially according to tree species, age and den-
sity. Parameter maps for the effects of vegetation accounting
for these attributes could further improve the model’s predic-
tive performance (e.g. Schwarz et al., 2010, 2012).

The results of the model ensemble based on a scaled pre-
cipitation intensity suggest a slight positive trend of unsta-
ble areas, while the surface run-off increases markedly. How-
ever, since subsurface flow is not considered and the run-off
is calculated for each time step individually, the model will
fail in predicting actual stream flow. Nevertheless, this result
suggests that the precipitation intensities during landslide-
triggering rainfall events are already close to or above the
infiltration capacity under present-day conditions. A poten-
tial increase in precipitation intensity might thus lead to an
increase in surface run-off rather than slope failure. However,
considering the uncertainty indicated by the model ensemble,
both trends are not significant.

6 Conclusions

In the present study, a revised form of the model TRIGRS 2.0
is calibrated based on a limited number of laboratory tests
and a detailed shallow landslide inventory. The parameter
space of four identified sensitive parameters is tested system-
atically. A model ensemble including 25 “behavioural model
runs” is identified which correctly predicts most landslides
and non-landslides for a landslide-triggering rainfall event in
August 2005. The predictive performance of this ensemble is
tested for a landslide-triggering rainfall event in May 1999.
Finally, the ensemble is used to quantify potential changes in
slope stability associated with increasing rainfall intensities.

It is shown that despite the simplified representation of the
involved processes, the location and the supposed triggering
timing of 73.0 % of the observed landslides triggered in Au-
gust 2005 and 91.5 % of the observed landslides triggered in
May 1999 are predicted correctly by the identified model en-
semble. The inability of the model to correctly predict the
remaining landslides may be in part related to the simplifi-
cations of the related processes. To overcome these issues,
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additional processes should be included in the model (e.g.
subsurface flow). However, the spatial variability of the in-
put parameter values remains an unresolved issue.

The assessment of changes in slope stability associated
with scaled precipitation input shows a slight increase in
potentially affected areas. At the same time, the peak run-
off increases markedly. Even though neither trend is signif-
icant, this could indicate that the precipitation intensities of
past landslide-triggering rainfall events were already close to
the soil’s infiltration capacity. However, a general increase
in precipitation intensity could lead to an increase in the fre-
quency of landslide-triggering rainfall events. Rainfall events
which did not trigger any shallow landslides in the past may
become trigger events under a changing climate in the future.

Data availability. The digital terrain model of 2011 used in the
present study is currently not publicly available. A resampled ver-
sion (spatial resolution of 5 m) is provided at http://vogis.cnv.at/
geodaten/. The multitemporal subsets of the shallow landslide in-
ventory are available as shapefiles in the Supplement.

The Supplement related to this article is available
online at https://doi.org/10.5194/nhess-17-971-2017-
supplement.
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