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Abstract. Resonance has recently been proposed as the fun-
damental underlying mechanism that shapes the amplifica-
tion in coastal run-up for storm surges and surf beats, which
are long-wavelength disturbances created by fluid velocity
differences between the wave groups and the regions outside
the wave groups. It is without doubt that the resonance plays
a role in run-up phenomena of various kinds; however, we
think that the extent to which it plays its role has not been
completely understood. For incident waves, which we as-
sume to be linear, the best approach to investigate the role
played by the resonance would be to calculate the normal
modes by taking radiation damping into account and then
testing how those modes are excited by the incident waves.
Such modes diverge offshore, but they can still be used to
calculate the run-up. There are a small number of previous
works that attempt to calculate the resonant frequencies, but
they do not relate the amplitudes of the normal modes to
those of the incident wave. This is because, by not includ-
ing radiation damping, they automatically induce a resonance
that leads to infinite amplitudes, thus preventing them from
predicting the exact contribution of the resonance to coastal
run-up. In this study we consider two different coastal ge-
ometries: an infinitely wide beach with a constant slope con-
necting to a flat-bottomed deep ocean and a bay with sloping
bottom, again, connected to a deep ocean. For the fully 1-D
problem we find significant resonance if the bathymetric dis-
continuity is large.The linearisation of the seaward boundary
condition leads to slightly smaller run-ups. For the 2-D ocean
case the analysis shows that the wave confinement is very ef-
fective when the bay is narrow. The bay aspect ratio is the de-
termining factor for the radiation damping. One reason why
we include a bathymetric discontinuity is to mimic some nat-
ural settings where bays and gulfs may lead to abrupt depth
gradients such as the Tokyo Bay. The other reason is, as men-

tioned above, to test the role played by the depth discontinu-
ity for resonance.

1 Introduction

During the last decades, several analytical and numerical
studies of coastal run-up were published (see Synolakis,
1987; Brocchini, 1998; Brocchini and Gentile, 2001; Car-
rrier et al., 2003; Kéanoglu, 2005; Kanoglu and Synokalis,
2005; Antuono and Brocchini, 2008; Ozeren and Posta-
cioglu, 2012; Stefanakis et al., 2015), most of which made
use of Carrier—Greenspan transformations (Carrrier et al.,
2003). Some of these works, for instance Stefanakis et al.
(2015, 2011) and Ezersky et al. (2013b), identified the reso-
nance as the fundamental factor for the run-up amplification.
The bulk of the present study will be dedicated to determin-
ing the physical settings in which this might be the case.

In the past, several researchers looked at resonance aspect
of the coastal run-up. Among those, the ones that are the most
relevant to the discussion in the present study are Stefanakis
et al. (2015), Stefanakis et al. (2011), Carrier and Noiseux
(1983), Ezersky et al. (2013a), Fuentes et al. (2015), Volker
etal. (2010), and Yamazaki and Cheung (2011). The last two
of these studies report coastal resonance mechanisms leading
to amplified run-ups during the 2009 Samoa and 2010 Chile
tsunamis respectively. During the 1970s questions arose as
to whether the presence of beaches in the vicinity of ports
contribute to port resonances through surf beats. One inter-
esting work whose geometric setting is somewhat similar to
ours is that of Bowers (1977). However, this work looked at
a flat-bottomed bay rather than a sloping bay that acted as
the resonator. Additionally, it lacked a semi-infinite ocean,
and it instead connected to a wider channel. But more im-
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portantly, Bowers considered only the incident waves having
wavelengths greater than the width of the wider channel, pro-
hibiting more than one mode radiating offshore. The work by
Carrier and Noiseux (1983) does not explicitly mention res-
onance, but their formulation clearly shows a constructive
interference by multiple reflections of an obliquely incident
tsunami wave for a particular set of incidence angles. Some
of the studies looked at the resonant mechanism in experi-
mental settings (Ezersky et al., 2013a; Abcah et al., 2016).

In our modelling, we will be considering monochromatic
incident waves, simply because this makes it easier to shed
light on the resonance. However, the mathematical algorithm
we will develop is not limited to monochromatic waves but
is capable of calculating run-up for any kind of offshore
source including the earthquakes, submarine landslides or at-
mospheric pressure perturbations.

This article deals with the transient run-up response of a
sloping channel (or bay) to an incident wave. Here, the term
transient is used for the wave evolution before the stand-
ing wave regime sets in. As such, the problem presents it-
self as an initial value problem. Such an initial value prob-
lem can be difficult and expensive to handle by purely nu-
merical approaches. The reason for the difficulty is that, on
the offshore boundary, it is difficult to make a distinction be-
tween the incident and reflected waves (for a detailed discus-
sion, see Antuono and Brocchini, 2007, who use the method
of characteristics where separate expressions for the inci-
dent and reflected waves do exist). One way of surmount-
ing this difficulty numerically is to take a computational do-
main so large that, by the time the reflected waves arrive
at the offshore boundary, the standing wave regime would
have set in the coastal region. For instance, Stefanakis et al.
(2011) did one-dimensional numerical simulations to under-
stand the run-up amplification by non-leading long waves.
They cast the problem as a boundary value problem and im-
posed an offshore boundary condition, at distance L’ from
the undisturbed shoreline, for the free surface elevation as
n = j:Zn(’)’ sin(w't"), where ¢’ is time. However, this model,
as will be explained in detail later, tends to overestimate the
run-up if the open boundary lies in one of the nodes of the
standing wave that will eventually set in. When the incident
and reflected wave distinction is made (see, for example, An-
tuono and Brocchini, 2010), the run-up amplification factor
(defined as r'/(2n ), where 7]’(1) is the incident wave ampli-
tude and 7’ is the run-up) remains finite as long as the fre-
quency of the incident wave is real. This has independently
been shown in Antuono and Brocchini (2010).

Our purpose in the present work is to determine the way
in which the free modes near the coast are excited by the in-
cident waves by taking the radiation damping into account.
We will examine resonance in two different geometric set-
tings: first in a 1-D slope which connects to a 1-D channel
with a flat bottom and then, again, in a 1-D slope that con-
nects to a semi-infinite 2-D ocean with a flat bathymetry (see
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Fig. 1). When the wavelength of the incident wave is much
shorter than the width of the sloping channel, the completely
1-D model is a good approximation of the natural case and
we can neglect the geometric spreading of the waves at the
toe of the sloping bay (this geometry will be referred to as
Model-1 during the rest of the article). If this is not the case,
then a 2-D model (Model-2) near the mouth of the bay be-
comes necessary (see Fig. 1). The Coriolis acceleration is
neglected in both cases as we limit ourselves to small scales.
Storm surges and meteotsunamis can excite Kelvin waves in
the coastal areas, and such waves travelling along the coast
can come across bay mouths and force the normal modes of
the bay, so the analysis here is not confined to one specific
type of wave.

Model-1 is actually solvable, through fast Fourier trans-
forms (see Ezersky et al., 2013b), without necessarily resort-
ing to the coastal free modes. However, generalising this so-
lution approach to 2-D in the deep ocean part is computation-
ally very expensive, requiring a solution of an integral equa-
tion for each frequency component to calculate the transient
response. Hence, the real importance of the technique devel-
oped in this manuscript becomes more apparent in Model-
2, which can be of great engineering importance in mod-
elling coastal amplifications of storm surges in places like the
Tokyo Bay, which has a sloping bathymetry (Kataoka et al.,
2013).

2 Basic equations

Model-1 consists of a channel of constant slope « and length
L' that connects to a another channel of uniform depth o L'+
D’ (see Fig. 1). Parameter D’ is the discontinuity in depth
at the toe of the slope. The maximum depth of the sloping
channel is oL’ .

The governing equations we shall use over the sloping part
of the geometry are nonlinear shallow water equations:

o' +u'dpu +gdun =0, (1)
ny + 0y ((ax’ +n"u') =0, 2)
where u’ is depth-averaged velocity in offshore-pointing x
direction, ¢’ is time, g’ is the acceleration due to gravity and

n' is the free surface elevation. For the flat part of the domain,
for Model-1, the linearised versions of the same equations,

I’ +gdym' =0, 3)
)+ 3y (@’ + Du') =0, )

are used. Note that, when we eventually start to discuss
Model-2, we will generalize Eqgs. (3) and (4) into two dimen-
sions. Let us now define non-dimensional quantities as
x=x'/L', n=n'/(aLl)

t=tag'/L', u=u'/\/goL’,

D=D/@L). ()
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Figure 1. Panel (a) is the side view of the incident wave at instant #' = 0 . The black dot is the shoreline, and (va, zé) are its coordinates,
with z} being equal to run-up r’. Panel (b) is the geometry of the channel seen from above. In Model-1 the sloping channel is connected to
a deeper channel of the same width, see broken lines in panel (b). In Model-2 the channel opens to a semi-infinite ocean. The width of the
channel is 2a’. Non-dimensional quantities are defined as x = x'/L’, y =y'/L’, z=7'/(aL’),n=1n"/(aL’), D=D'/(aL) anda =a’/L’.

A hodograph transformation introduced by Carrrier et al.
(2003), also called Carrier—Greenspan transformation (here-
after referred to as CG), uses “distorted time” A and a poten-
tial ¢ defined as

A=t—u, (6)
with

u=—0,0/(20), n=0¢—(0,9)/8>), )
where

o=x+1. 8)

The nonlinear shallow water equations accordingly be-
come (Carrrier et al., 2003)
1 02, ¢
02,90 — —By — 222 =0, 9
b~ 45 009 4 )
To treat the incident wave problem, the initial conditions ev-
erywhere are

n(t =0,x) = Nial (10)
and
—nl . |
u(t =0,x) = —mual 11
( ) NOHES (1D

www.nat-hazards-earth-syst-sci.net/17/905/2017/

for the free surface elevation 1 and the fluid velocity u re-
spectively. We assume that both quantities are initially zero
over the slope (0 < x < 1). The minus sign in Eq. (11) is due
to the fact that the progressive wave advances in the negative
x direction towards the coast on the left.

3 Green’s function and the free mode expansion

For the flat part of the domain (x > 1) we propose the fol-
lowing solution

_ 7 7 . x—1
n(t,x>1)_/(n (w)exp(lw(t+—m))

—00

FR(w)exp (ia) (z— jD—__il)))dw, (12)

where 77! (w) and R(w) are the temporal Fourier transforms
of the incident and the reflected waves (to be calculated) re-
spectively. Here, ﬁ,{) is defined as

[e0]

7 (w) = 1 / nl(t,x = 1)exp(—iwt)dt. (13)
2

—00

The integrand in the right-hand side of Eq. (13), for all times,
can be inferred from the initial condition as n’ (t,x=1)=

Nat. Hazards Earth Syst. Sci., 17, 905-924, 2017



908 N. Postacioglu et al.: On the resonance hypothesis of storm surge and surf beat run-up

n7(0,14t+/D +1). Note that the choice of the point x = 1
is completely arbitrary. Let us now propose a solution over
the slope as

o]

<p=/Ao(w)Jo(Za)o)eXp(iw)L)dw, (14)

—0o0

where Ag(w) is the amplitude of the wave over the slope and
Jo is the Bessel function of the first kind of order zero.

The corresponding free surface elevation near x = 1~ (toe
of the slope) is then given as

o0

n(t,x)= /ion(a))Jo(Za)ﬁ)exp(ia)t)da). (15)

—0o0

Note that we performed a linearisation here by taking A = ¢
and o = /x, because we assume that in the deeper part of
the domain, waves are small. The unknown coefficients R (w)
and Ap(w) are to be determined from the continuity condi-
tions at the toe of the slope (see Sect. Al for the matrix form
of these two equations). The zero subscript for A is used be-
cause for Model-1, having a fully one-dimensional geometry,
only one coefficient is needed. Later, other coefficients will
also be needed when we consider two spatial dimensions.

The linearised free surface and flux continuity conditions
at the toe (x = 1) are used to obtain Ag(w) and R(w) as

2D +1

A = 7! 1
o) o (iVD+ 1oQw) — 11 Qw)) | (@), (16)
R(w) =
2J/DF1 _
1 e a7
( ¥/E= Exeyertl a)))n @. (7)

Here, by linear boundary condition at x =1 we mean that
x =02, A =1 and depth is equal to x rather than x + 7.
Both Ap(w) and R(w) have simple poles at w = 0. The
non-vanishing poles are on the upper complex plane due
to the conservation of energy through the radiation damp-
ing, because, on these poles, the ratio Ag(w)/ ?il (w) and
R(w) /ﬁl (w) both diverge and the wave can sustain itself
without an incident wave and is fuelled solely by the initial
conditions (see Longuet-Higgins, 1967 for a similar radia-
tion damping problem over a circular submerged sill); these
are called the free modes. Note that the conservation of en-
ergy requires that the amplitude of the incident wave is equal
to that of the reflected wave with |77’ (w)| = |R(w)| when the
frequency is real. However, this condition is relaxed when
the frequency is no longer real because the energy density
averaged over one cycle of oscillation evolves in time. See
also Synolakis (1988) for rigorous proof that the frequencies
of the free modes are indeed on the upper complex half-plane
for D = 0. Our argument based on the conservation of energy
is more general and can be applied to any bathymetric profile.
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Recently Stefanakis et al. (2015) attempted to calculate
resonant frequencies for a geometry similar to Ezersky et al.
(2013b) but imposed an offshore Dirichlet condition of the
form 1 = 2ngsin(wt) at a specified point x = L using a nu-
merical wave maker. With this boundary condition their re-
sults diverged at certain discrete real frequencies (Eq. 46 in
Stefanakis et al., 2015). They attributed this to run-up res-
onance. However, one can always adjust the frequencies in
such a way that the reflected wave and the incident wave are
off-phase by m at x = L, therefore leading to a destructive
interference, requiring an infinite run-up yielding to such a fi-
nite oscillation at x = L. There is no simple relation between
the amplitude of oscillation at a specified point and the am-
plitude of the incident wave unless the incident and reflected
waves are in phase at this particular point. Therefore, relat-
ing the ratio between 7no and the run-up to the resonance is
meaningless. This problem can partially be remedied by im-
posing an artificial relaxation zone (Stefanakis et al., 2015;
Madsen and Schiffer, 2010). In this work, we replace this ap-
proach with a physically realistic initial value problem where
our definition of resonance is based on the ratio between the
run-up and the amplitude of the incident wave. Not only will
the resonant frequencies we calculate will be complex, but
their real parts will also be substantially higher than those
found by Stefanakis et al., 2015 when the discontinuity, D, is
small (see Table 1). Only in the limit of large D do the com-
plex roots of the denominator (i~/D + 1JoQRw) — J1(2w))
of Ag(w) approach those of Dirichlet condition Jy(2w) = 0.
Note that all of the resonant frequencies that we calculate
in this work are independent of any nonlinearity. The reason
for this is that we linearise the boundary conditions at the
toe of the slope. The modes themselves (Jo(2wo)), on the
other hand, are affected by shoaling nonlinearity. Note that
by the frequencies of the modes, we mean the frequency of
the oscillation at the toe of the slope (x = 1). In Sect. 4.2 we
will show that for higher modes the shoaling nonlinearities
are dominant over those created by the boundary condition
at the toe.

Now consider an incident wave of the following form:

né(t,x)zé(t—to—i— (x_l)), (18)
VvD+1

where § is the Dirac delta function. The zero index of ¢ in
Eq. (18) relates to the phase of the incident wave. The re-
sponse, ¢, to such Dirac-type incident wave will be called
Green’s function G (X, tg, o). Remember that Ag(w)Jo(2wo )
is the temporal Fourier transform of ¢ . In Eq. (16) if we
replace 7! by exp(—iwty) /27, then Ag(w)Jo(2wo) will be-
come the Fourier transform of Green’s function. This Green’s
function in Fourier domain is given as

5(a),t(),(7) =
D+ lexp (—iwty)
7w (iv/D+ 1JoQQw) — Ji Qw))

JoQuwo). (19)
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Table 1. The complex natural frequencies multiplied by 2 using both the Miiller method and the asymptotic approach (see Eq. AS) for
Model-1 are tabulated. Note that 2wy, tend to the roots of J for large D. All nonlinearities are neglected in calculating these frequencies.

2w 2wy 2w3 2wy 2ws
(Miiller) D =0.0 298+1.28; 6.17+1.61i 9.34+41.81i 12.4 4 1.96i 15.6 +2.07i
(Miiller) D =1.0 2.55+0.80i 5.60+0.86; 8.70+1.87i 11.83+0.87i 14.96+0.87i
(Asymptotic) D =1.0 2.5240.70i 5.56+0.70i 8.684-0.70i 11.81+0.70i 14.944-0.70i
(Miiller) D =5.0 2.444-0.42i 5.53+043i 8.6640.43i 11.8+0.43i 14.9+0.43i
(Asymptotic) D =5.0 2434040 5.5340.40i 8.66+0.40i 11.8+0.40i 14.9 +0.40i
(Miiller) D =20 24140221 5.52+0.22i 8.65+0.22i 11.8+0.22i 14.9+0.22i

Any incident wave can be expressed in terms of a linear
superposition of Dirac functions; the response, ¢, will then
be

t(h,o=1)

o, 0)= G(x, 19, o)’ (19, x = 1)dto. (20)

0

Because of the linearisation at the toe of the slope, the upper
limit of the integration, 7 (A, o = 1), in Eq. (20) can be simply
replaced by A. We will use G (w, tg, o) to recover G (A, tp, o).
Accordingly the potential will become

(p()»,a) =

A o)
/dzo/é(w,to,o)n’(to,xz D exp(iowi)dw, Q21
0 —00

where the integration over the frequencies will be trans-
formed to a series of residues. This is not a closed integral
over the complex plane but a real line integral between —oo
and oo, except w = 0 which we circumvent with an infinitesi-
mal semicircle on the lower half-plane. The reason we use the
lower half-plane is that we want Green’s function to vanish
for negative values of A. The whole integral can be cast into
a closed integral by connecting co to —oo along a semicir-
cle on the upper complex plane and can be calculated using
a residue summation. Here, w = 0 is not the only pole. As a
matter of fact G(w, fy, ) has many poles in the upper half-
plane (see Eq. 19). These poles are symmetrical with respect
to the imaginary axis. Our aim is to understand the excitation
of these free modes by the incident waves.

It is important to note that as x — oo these free modes di-
verge. However, this is not a problem if one wishes to find
a solution in the coastal zone. We will expand the reflected
wave in terms of these free modes. For the numerical calcula-
tion, the free mode expansion is truncated at a finite term N.
This finite series also diverges for x — oo, thus the trunca-
tion error between the real reflected wave and the finite series
expansion grows as x increases, but this is also not a problem
if one wishes to find the wave field near the coast because the
discrepancy (or error) propagates towards the ocean.
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To perform the free mode expansion approach, let us
rewrite the convolution (Eq. 20) as

@A, x),0(t,x)) =

1 /tdt/w 2/DF1
2 J ") (VDT LhQw) - )i (2w)

JoQRuwo)n! (19, x = 1) x exp(io (1 — to))dw.

(22)

In an effort to calculate solitary wave run-up, Synolakis
(1987) evaluated a similar integral in his linear approach.
However, his integral was tasked with directly computing the
free surface, 7, rather than the potential and consequently
did not have a singularity at w = 0. The Fourier transform
of the particular solitary wave Synolakis (1987) considered
approached zero so fast along the infinite-radius integration
contour that he was able to close his contour on the lower
half-plane (upper half-plane in his convention). Thus, his
complex integration loop did not contain any of the com-
plex frequencies we mentioned above. The only poles that
remained within his closed contour were those of the Fourier
transform of the solitary wave he considered and were, there-
fore, independent of the geometry. His technique is limited
to this particular incident wave forcing. In his article, Syno-
lakis (1987) expressed the solution in terms of a summation
over discrete frequencies, but these frequencies can not be
interpreted as free mode frequencies not only because they
are independent of the geometry but also because the result
is only valid for times smaller than a critical time 7.. To see
this, let us write down the integral (given as equation 2.6 in
Synolakis, 1987) in our convention for D = 0:

1T 20(w) o)
n(t,x)= 7 -
T (i JoCw) — J12w))

exp(iwt)dw, 23)

where @ is the Fourier transform of incident wave. In the
integrant here, the exponential term exp(i wt) diverges on the
lower semicircle. This divergence is counter-balanced by the
Fourier transform of the incident wave for ¢ < z. but not later.

To do our calculations for wave evolution, we will need the
non-vanishing poles of Ag(w) which we calculate using the
Miiller scheme (see Press et al., 2007). For large D an asymp-
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totic approximation is presented in Appendix A. A compari-
son between these two approaches is displayed in Table 1.

As seen in this table, as D increases, radiation towards the
ocean becomes less efficient, therefore making the complex
parts of the roots smaller. The real parts also decrease as D
increases. This is because the waves that propagate from the
shore towards the ocean create reflecting waves continuously
because of the variable depth of the slope over which they
are travelling. However, we have radiation damping in our
case and some of the waves that reach the toe of the channel
escape from the sloping part of the channel. In the absence of
radiation damping, all waves reaching the toe of the channel
would reflect back. These waves contribute to standing waves
of low frequencies over the sloping channel because of the
long distance they travel. Consequently, the relative weight
of this low frequency component would increase if there is no
or little radiation. In the case of any non-uniform bathymetry,
at the high-frequency limit, ray theory can be used and the re-
flections will become minimal. This explains why the damp-
ing factor of the higher modes (imaginary parts of the eigen-
frequencies) become larger. In the real geophysical settings
where the discontinuities are less abrupt than the geometry
depicted here (such as the edges of coastal shelves), the short
waves will cross over the toes of the slopes, essentially with-
out reflection. In Model-2 where we consider an opening to a
semi-infinite ocean, short waves get reflected even for minor
depth discontinuities; hence, the formulation we developed
so far is important.

The geometry considered by Stefanakis et al. (2015) fea-
tures two consecutive slopes. If were to fix the slope angles in
their work to a single value, the resulting geometry would be
the same as ours. The frequencies that they would have come
up with in their solutions would have been the real roots of
Jo(2w). These frequencies are substantially smaller than the
real parts of the frequencies we calculate (2.98 versus 2.4 for
the fundamental mode) with radiation damping.

Now let us return to the integral (Eq. 22). This integral can
be written completely in terms of A and o as

o, 0)=
r—2(1—0) 00
s / ” / 2D+ 1Jy2wo)
2w ) ) e(iVDF1hCe) - )12w)
n! (1,0 = 1) x exp (iw (A — 1p)) dw (24)

for L > 2(1 — o) because of the causality (¢ becomes zero
otherwise, because the disturbance takes 2(1 — o) to travel
from the toe of the slope to the point o). A residue summa-
tion transforms Eq. (24) into

r=2(1—0)
p=|2 dton’ (0, x = 1)

0
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R i/D+1JoQuwyo)

+
i Shz0 @k (VD F LI Q2er) — J{ Qey))

A—2(1—0)

[ dorwx=nepiot-m). @9

0
where Jy' and J;' are the derivatives of Jo(2wy) and J; 2wy)
with respect to 2wy. The first integral in Eq. (25) comes from
the residue associated with the pole at w = 0. It is calculated
by using the fact that Jo(0) =1 and J;(0) = 0. Using the
Leibniz rule, the partial derivatives of the potential are then
e =2n"(1-2(1-0),x=1)
= i~D+1JyQRwo)
k=0 20 ©k (iv/D+1J{Qawx) — J{ Qay))

X 171 A=2(0—-0), x=1expRiwk(1 —0))

+

L < —v/D + 1JoQuyo)
ke o0 iV D+ 15 Q) — J{ ((2ax)
r—2(1—0)
/ dion’ (19 x = Dexpliax(i—10))  (26)
0
and
dop =4n' 0.—2(1—0),x =1)
LS 2iv/D +1Jo(2w;0)

k=0 @k (iv/D+ 100 Qo) — Ji Q)
xexpio2(1—oNn! A —2(1—0),x=1)

LS —2i/D+ 1J; 2wy0)
k=—okz0 iV D+ 100" Qop) — Ji' Qe)
r—2(1—0)
dro exp (i (h — ) ' (o, x = 1). 27)
0

The equation given in Eq. (9) is, in essence, the linear wave
equation with cylindrical symmetry. Because of this, the par-
tial derivative of its regular solution with respect to o must
be zero at 0 = 0. A quick inspection of Eq. (27) reveals that
the terms in the first and second line are not equal to zero
individually, and their collective sum will involve a trunca-
tion error. This truncation error is subject to an amplification
in the estimation of 9, (¢)/o which is used to calculate both
n and u. To remedy this, we use the fact that, near o =0,
the value of d,¢/o is approximately equal to 28X2A<p due to
L’Hospital’s rule. Hence, we use the numerical derivative of
Eq. (26) to find the nonlinear contribution to run-up.

4 Resonance sensitivity for Model-1

In this section we consider a monochromatic incident wave
of type nf (@) sin(w (¢ + (x —1)/+/D + 1)). We will study the
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evolution in the large time limit, namely the standing wave
regime. The transient regime will be discussed in the next
subsection. The resulting wave on the slope in the linear ap-
proximation will then be

Nt x) = (Ao(a»w
+A0(—w)w) 0o (20F) 28)

for t — oo. This equation follows naturally from Eq. (15),
where, instead of evaluating the integral, we add the two con-
tributions coming from w and —w. Taking into account that
Jo(0) = 1, the associated run-up, r = n(¢, 0 = 0), becomes

w|Ag(w)|cos (wr +¢a) (29)

in the linearised theory. Here, ¢4 is the argument of complex
number Ag(w). In a real situation that would occur in nature
where the monochromatic incident wave gets generated at a
particular instant ¢ = 0, the expression

w|Ag(w)] (30)

in Eq. (29) provides a limiting value of amplitude of oscil-
lation of the run-up. This limiting amplitude, normalised to
the amplitude of the incident wave, is displayed in Fig. 2 as
a function of 2w, where w is the frequency of the incident
wave. In this figure local maxima of the limiting amplitude
of the run-up can be observed for D =1 and D =5 but not
for D = 0, where this amplitude steadily increases with the
frequency of the incident wave. Therefore, there is no reso-
nance for D = 0.

In the limit of large D, the local maxima of the limit-
ing amplitude of the run-up occur at the frequencies where
Jo(2w) = 0 and the value of the limiting amplitude of the os-
cillation of the run-up at those maxima is given as

2V D+ 1{ng ) /11 ey, (€29

where 2wy is the kth root of the Bessel function Jy. Hence,
the run-up sensitivity to @ increases as D increases.

One last remark relates to the power laws for run-up, pro-
vided by Didenkulova et al. (2009). The Fig. 2 shows that,
when D is large, the denominator of Eq. (16) has roots that
are closer to the real axis. This essentially means that for
large D explicit relations for power laws might not be possi-
ble to derive.

4.1 Transient regime

The resonant phenomena we discussed above do not set in
immediately upon the entrance of the incident wave into the
slope region. It is important to know how fast the limiting
amplitude of oscillation of the run-up will be reached, be-
cause in a real situation the incident wave will have a finite
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duration, a fact that was not taken into account in the large
time limit analysis.

For that purpose the residue series in Eq. (26) must be eval-
uated. Here, the incident wave is taken as né sin(w (t + (x —
1)/v/D+1))0(t —(x — 1)/~ D+ 1), where 6 is the Heav-
iside step function. The resulting run-up is displayed in
Fig. 3. A good agreement between run-up obtained from
residues summation and the fast Fourier transform approach
can be seen in this figure (continuous and dashed curves re-
spectively). The limiting amplitude for the run-up is almost
reached after just one oscillation (see the horizontal limit-
ing line on the top part of the figure). In Fig. 4 the run-up is
displayed as a function of time for incident waves of three
different frequencies. In this figure no significant change in
run-up can be observed as the frequency of the incident wave
deviates from the resonant frequency . This is due to the fact
that the depth discontinuity D is zero. On the other hand in
the bottom part of Fig. 4, where D is equal to 5, the run-up in-
creases as the incident wave frequency approaches the reso-
nant frequency. A comparison between the upper and bottom
parts of Fig. 4 reveals that in the bottom figure it takes longer
for the run-up to reach its limiting value. This is due to the
fact that for larger D the imaginary part of the frequency of
the free mode is smaller. This means that if the incident wave
excitation were to be cut at a given time, the standing wave
oscillations over the slope would last longer (before eventu-
ally decaying due to the radiation) when D is larger. Simi-
larly, for large D, it also takes longer for the standing wave
regime to reach its limiting amplitude. It is also important
to note that in both parts of Fig. 4 the initial time derivative
of the run-up is very large, leading to the glitch at r = 6 for
the D =5 case on the bottom. No such glitch exists D =0
because there is minimal reflection from the toe. In nature,
waves do not “switch on” at once at a given time. There-
fore, their initial profiles do not have discontinuous spatial
derivatives. As a matter of fact, such discontinuities will trig-
ger short-frequency waves which can not be properly mod-
elled using shallow water approach anyway. The discontinu-
ity mentioned here is seen much more clearly in the shoreline
velocity field in Fig. 5.

4.2 Nonlinear effects

We assume the incident wave to be linear. Considering that
we are dealing with a monochromatic incident wave, this
makes sense, because any nonlinearity over the flat part of
the ocean would have generated higher harmonics during the
propagation. As long as the waves do not break, the nonlin-
earity arising from the shoaling over the slope is accounted
for by the CG approach. This particular nonlinearity, as indi-
cated by Pelinovsky and Mazova (1992), does not affect the
maximum shoreline velocity; it does, on the other hand, af-
fect the timing of the maximum. After the CG transformation
the equations become linear the only remaining nonlinearity
in the (A, o) space for the run-up is the ug /2 term in Eq. (7),
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Figure 2. The limiting amplitude of run-up, 7,,, normalised to the amplitude of the incident wave is shown as a function of the frequency of
the incident wave multiplied by 2 for Model-1. The depth discontinuity D is O for the blue continuous curve, 1 for the green dashed curve
and 5 for the red dotted—dashed curve. The black bullets correspond to the limiting run-up given in the expression Eq. (37), normalized to
'ﬁ(l), for the infinite slope. Here, oy is taken to be one.
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Figure 3. Continuous and dashed blue curves display the run-up normalised to the amplitude of incident wave for Model-1 with D = 0. The
frequency of the incident wave is equal to the real part of the first-mode resonant frequency w; (see Table 1). The continuous blue curve is
obtained from the series of residues (see Eq. 26). The dashed blue curve is the run-up calculated using the fast Fourier transform approach.
The green horizontal line on the top part of the figure is the limiting amplitude given by w! |A0(a)1 )Y 776, where ! is the frequency of
the incident wave. The red bullets are the run-up produced by a wave maker on an infinite constant slope. The action of the wave maker is
represented by the “tsunamigenic” seafloor motion given by (¢, x) = —27)(])8 (x —1D)cos(Mw )0 (t)/Rw1, where 6 is the Heaviside function,
h is the seafloor uplift and )i denotes the real part.
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25

Figure 4. The run-up normalised to the amplitude of the incident wave for Model-1. In panel (a), the frequency of the incident wave
is fw1 (D = 0) for the blue continuous curve, 1.05NRw( (D = 0) for black dashed curve, 1.075Rw; (D = 0) for the green dashed—dotted
curve and 1.19%w( (D = 0) for the red dotted curve. In panel (b) the frequencies Rw (D = 0), 1.05%Rw (D =0), 1.075Rw (D = 0) and
1.1NRw1 (D = 0) have been replaced by Niw( (D =5), 1.05Rw (D =5), 1.075Rw; (D =5) and 1.1 Rw| (D =5) respectively. Depth dis-
continuity D is 0 in panel (a) and 5 in panel (b). Refer to Table 1 for the values of w;. All curves are obtained using series of residues. Note
that in the bottom figure the wave arrives at the shore at = 2 and the first reflection from the toe of the slope reaches the shore at ¢ = 6, for
which the continuous plot includes a slight glitch. In the main text we elaborate on this glitch.

ug/n}

(du, /dt) /]

Figure 5. Panel (a) is the shoreline velocity us normalised to the amplitude of the incident wave as a function of # (Model 1). The frequency
of the incident wave is fiw;. The continuous green curve is the shoreline velocity corresponding to incident wave n = r](l) sin(Mowy (t + (x —

1)/+/D+1))0(t + (x —1)/+/D + 1). The red dashed curve is the same for the incident wave that has been smoothed by multiplying it by
tanh(f + (x — 1)/+/ D + 1). Panel (b) is the time derivative of the shoreline velocity for the smoothed incident wave.
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Figure 6. Run-ups normalized to the amplitude of the incident wave for Model-1. The incident wave is in the form n = né sin(w (t 4+ (x —
1)/~/D+1))0(t+ (x —1)/+/D + 1)tanh(¢ 4+ (x — 1)/+/D + 1). The frequency of the incident wave is fw| (D = 0). The blue continuous
curve is the linear run-up. The dashed—dotted green curve includes nonlinear effects associated with CG transform (r = 9) ¢ — O.Sug and
t = X+ us). The amplitude of the incident wave is 1/15. Nonlinear effects due to the boundary condition at the toe of the slope have been

neglected.

with ug being the fluid velocity on the shoreline. Figure 6
shows the difference between the two values of run-up cal-
culated by taking and not taking this uf /2 term into account.
Another subtlety in this figure is that for the nonlinear case
the time is given as ¢ = A + u.

For t— oo, the nonlinear run-up is given as
w|Ag|sin(wA) — 0.5u§, which approximately becomes

2

s =

1
w|Ag| (sin (wt) — wugcos (wt)) — —u

,c0s(Qwt) + 1

|Aglewsin (wr) + w*| Ao| 1

(32)
The reason we performed this expansion with respect to
small shoreline velocity is that we eventually want to com-
pare the nonlinear effects on the run-up, caused by the non-
linear boundary condition at x = 1 with the contribution by
the nonlinear terms in the above equation.

At the near-resonant frequencies nonlinear effects will be-
come important even in the deep part of the slope, rendering
the linearised boundary conditions that we apply at x =1
invalid, compromising the relations for Ag(w) and R(w)
(Egs. 16 and 17). In Appendix B we give the results from
a first-order perturbative approach to correct the boundary
conditions for nonlinearity. We performed a comparison be-
tween the nonlinearity brought in by the boundary condition
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and that caused by the nonlinear part of Eq. (32). The details
of this perturbative analysis can be found in Appendix B. The
results suggest that the first-order correction associated with
the nonlinearity of the boundary condition at x = 1 is given
by

ND coswt) Jo (4w/x) +CD

0 for x <1
n' = M ( _(x—l)) (D) (_ x—1 )
R%Wcos| 2wt — —= )+ 0O"Wo (¢ R
VD +1 VD +1
for x> 1.
(33)

where the superscripts refer to the first-order perturbation.
When D becomes very large, at the near-resonant frequen-
cies (Jo(2w) =~ 0), the time-dependent and time-independent
parts of the solution for 1 over the slope respectively become

2
N~ llelzwz Ji Qw)
4 Jo(dw)
and
A 2.2
ch = %13(2@. (34)

These indicate that the nonlinearity brought in by the non-
linear part of Eq. (32) is comparable to that caused by the
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boundary conditions at x = 1 only for the first mode and
when D is infinite. This is to be expected, because shoal-
ing is insignificant for the first mode. The wave must travel
a distance of several wavelengths in order to experience sig-
nificant amplification associated with shoaling. For the first
mode (2w ~ 2.4) the analysis yields N ~ —0.41|4¢/% and
CM 2 0.097. The fact that NV is a negative number, tak-
ing into account that the cos(2wt) term in Eq. (33) for x < 1
takes the value —1 for maximum run-up (because with the
phase convention adopted in this section the run-up is pro-
portional to sin(wt) in linear approximation), means that
the nonlinearity at seaward boundary condition increases the
run-up slightly (see Antuono and Brocchini, 2007 for a sim-
ilar conclusion reached using a different mathematical ap-
proach). The coefficient of the second harmonic in Eq. (32) is
1.4|Ao|?. For the higher modes the dominance of the Eq. (32)
nonlinear effect associated with shoaling increases rapidly
because of the fourth power of w.

5 Resonance for infinite slope

In this section we investigate the resonant frequencies of the
waves produced by a wave maker placed on an infinite, con-
stant slope. The reason for this practice is that the work that
claims significant resonance (Stefanakis et al., 2011) consid-
ered an infinite slope. In the analysis we will allow the waves
to progress in the offshore direction, unrestricted. When the
wavelength produced by the wave maker matches the dis-
tance of the wave maker to the shoreline, one might expect a
resonance to occur. To see if this is really the case, let us go
into a little further detail about the nature of the wave maker.

When the water is sufficiently deep, in the vicinity of the
wave maker, linear shallow water equations will apply. The
effect of the wave maker, which starts its action at a given
time, will be equivalent to hypothetical volume injections
and suctions at a rate 2n) v/depthsin(w?) = (2n{oo) sin(wt),
where 002 is the horizontal distance between the wave maker
and the shoreline. Consequently, two waves of equal am-
plitude of r}é start moving in opposite directions if w is
not smaller than 002. For w — 0 the asymmetry introduced
by the slope becomes significant, and the wave maker ra-
diates essentially in the offshore direction (see the black
bullets Fig. 2). Due to the superposition principle, the ac-
tion of the wave maker will not prevent the waves reflected
from the shore from freely propagating in the offshore di-
rection. The free surface response to such a source on the
slope is given in Eq. (2.13) in Ozeren and Postacioglu (2012).
To adapt the source in Ozeren~ and Postacioglu (2012) to
our case, the expression S(c,2) needs to be replaced by
27](1) sin(wA)38 (6 — op)og, where & and A are integration vari-
ables. In Fig. 3, the red bullets show the run-up associated by
such a source over an infinite slope as a function of time. For
t — oo a simple analytical solution that satisfies the radiation
condition (wave progressing in +x direction for x 3> x¢) can
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be found for a source of the form mentioned above. The pres-
ence of the source at xo induces a discontinuity in the fluid
velocities such that

oo (u(t, x{) —u(t,xy)) = 2n} (0) sin(wt)
and

n(t,x5) =n(t, xq), (35

where x( is both the horizontal position of the source and the
non-dimensional depth at that position. The corresponding
solution as t — oo is then given as

—2wmoon (JoQwo) (Yo(2wap) cos(wl)
—JoQwop) sin(wA))) for o <oy

—2wmoon Jo(woy) (Yo(2wo) cos(wh)
—JoQwo)sin(wA)) for o > oy,

(36)

where Y( is the Bessel function of the second kind. For
o > op the relation given in Eq. (36) is proportional to
sin(w(t — 24/x))/+/x. The amplitude of the resulting run-up
then becomes

anaoné\/Yoz Qwoy) + J§ Qwoy), 37)

and for large frequencies it is reduced to ZMn(’). The
black-dotted curve in Fig. 2 shows this expression normal-
ized by n(l) as a function of 2w for oy = 1. As seen in this
figure, the resonance for the infinite slope is almost non-
existent. It is also worthwhile to mention that the run-up
tends to zero for w — O for the infinite slope. The reason
for this is that the wave generated during one period of the
forcing activity spreads over to an infinite distance offshore.
It is clear from Fig. 2 that the wave generated by the artifi-
cial source/sink that we introduce satisfactorily emulates an
incident wave if the wavelength of the generated wave is less
than the distance to the shore.

6 Normally incident wave from a 2-D ocean into a bay

Analytical studies that consider run-up in 2-D are rare.
Among the most relevant, we can mention Brocchini and
Peregrine (1996), who considered oblique nonlinear inci-
dent waves over slopes with infinite width, and Brocchini
(1998), who investigated the run-up of weakly 2-D solitary
pulses. There are also some studies that combine 1-D ana-
Iytical approaches with 2-D numerical simulations such as
Choi et al. (2011). In this section we shall study Model-2.
We consider an incident wave of the form né (w)expiw(t +
(x —1)/+/D + 1)) coming from the open ocean into a slop-
ing bay of width 2a. This wave will be reflected back by the
shallower part of the bay. This reflected wave will then be
subject to geometrical spreading in the open ocean. Conse-
quently, the one-dimensional nature of the waves will be lost
in the deeper part of the bay. We will now derive a simple
mathematical formulation to model these phenomena.
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The governing equations, linearised in the deeper part of
the channel and the open sea, for the potential, ¢, read

V (@% + l30) p(0)
o

for x«1

3x (h(x) 3 9) + h(x)03, ¢
for0 < x < 1 and (38)
dyp(x,y) =0 fory==a

D+ (82, +33, )¢
for x > 1 and
hp(x=1",y)=0 for|y|>a,

w*p(x,y) =

where h(x) = x is the undisturbed depth in our case. For a
constant slope beach Mei et al. (2004) page 155 and Zhang
and Wu (1999) used the confluent hypergeometric function
M. We will now adapt their solution to a sloping bay. Let us
start by defining a potential inside the channel as

Oo(t,x) = Ap(w) JoQwo) exp(iwi)
00 2
+nZ=;A,,(a))exp (—”aﬂ) M (—‘”—a w1 1,27‘mx/a)

2nmr 2
( y+a
cos | nm

where the unknown coefficients Ag, Aq, ... are to be deter-
mined from the boundary conditions at the mouth of the
channel. Note that the solution given in Eq. (39) satisfy
the linear shallow water equations in the deeper part of the
channel. For 1 — x > a the y-dependent part of the solution
quickly decays. The cosine term with integer values of n is
both symmetrical about the x axis and its derivative with re-
spect to y for y = %a is zero, satisfying, therefore, the no-
flux condition on the channel sides. In the deeper part of the
channel where 1 — x is of the order of a, the velocities in x
and y directions can be derived from the potential given in
Eq. (39) using u = —0yx¢ and v = —d, ¢ respectively.

The bulk of the incident wave will be reflected back by the
solid boundary at x = 1, |y| > a. Consequently the wave in
the open ocean will be n = Zﬁé cos(w(t—(x—1)//D+1)),
perturbed by the waves radiating from the mouth of the chan-
nel and the scattering from the channel mouth corners. The
potential in the open sea then reads

ﬁé(w) cos (a)(x —1)/~/D+1)

Lw

) explior). (39)

Po(t,x >1,y)=2 exp(iwt)

~ S,y) (2)( ® g
+/dy—2i(D+1)H0 N
+(y =) J1) explion). (40)

where i and } are unit vectors in the x and y directions re-
spectively. Note that the Hankel function Héz) satisfies both
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the linearised wave equation in two dimensions and the radi-
ation condition for w > 0. For w < 0, on the other hand, the
Hankel function will be replaced by its complex conjugate
alongside the rest of the terms. The integral in Eq. (40) rep-
resents the potential of the waves radiating from the mouth of
the channel. Function S(w, y) is the unknown virtual sources
distribution along the mouth of the channel. This source dis-
tribution will be determined by matching the potentials given
in Egs. (39) and (40).

We want the solution in the open sea to satisfy the no-flux
condition at (x = 1, |y| > a). According to Mei et al. (2004,
p. 194), the solution given in Eq. (40) satisfies this condition
as

0 for

|y| >a
S(w,y) for @D

el
- = + =
(D+Do—gultx=17y) ol

To match the depth-integrated u along the mouth we need to
satisfy

a(pw(xv y)
0x

8(pa)(x7 y)

(D+1) ox

=1+ =S(@,y) = ly=1-- (42)
The second condition to be satisfied is the continuity of n

itself, across the mouth. This condition reads

gﬂw(x, y)|x:1+ =g0w(x, y)|x:l" (43)

Here, it is important to note that the condition (Eq. 43) is
an integral equation for the source distribution. The condi-
tion (Eq. 42), on the other hand, is not an integral equation,
because the field inside the channel is governed using sum-
mations rather than an integral. In order to solve a system
that simultaneously involves an integral equation and a set of
algebraic equations, we shall expand the source distribution,
S(w,y), in terms of even-order Legendre polynomials as

N-1
S@.9 = Su@Pu (). (44)
n=0

where the even indices of the Legendre polynomial were
used to make sure that the solution is symmetric with respect
to the symmetry axis of the sloping channel (y = 0). The co-
efficients S, (w) in Eq. (44) and Ag, A1, ..., Ay—1 in Eq. (39)
(we truncate the series in Eq. 39 to N — 1) are solved in such
a way as to minimise the following penalty integral along the
mouth:

i w =1_,
/(‘(D+1)M_S(w,y)

2

0x

+ g0 =17,3) — gu(x = 1+,y>|2)dy. (45)

Thus, we have 2N unknowns. The integral (Eq. 45) is eval-
vated numerically using Gauss quadrature. For precision,
the number of quadrature points we use is larger than 2N.
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The Egs. (42) and (43) have to be satisfied at all quadrature
points, making the resulting system over-determined. We
use the weighted least-squares approach to solve this over-
determined system. Algebraically speaking, this simply cor-
responds to writing down Eqgs. (42) and (43) for each quadra-
ture point, multiplying each equation by the square root of
the corresponding quadrature weight and solving the result-
ing linear, over-determined system by using the conventional
least-squares method.

Note that in Eqs. (39) and (44), the only terms that are
responsible for the net flux from the channel to the open sea
are Ag and S, since the following integrals vanish for n # 0O:

a
fems(m )
cos (| nm dy,
a

—a

a

/ Pau(y/a)dy. (46)

—a

The conservation of the net flux requires that
—2awApJ12w) =2aSy, where J; is the Bessel func-
tion of order 1. When the frequency of the incident wave
is equal to that of the free oscillation of the system, the
coefficients Ag and Sy should diverge. In order to determine
the frequencies of these free mode oscillations (natural
frequencies), the roots of 1/A¢ are sought in the complex
plane using the Miiller method.

A quick look at Table 2 reveals that for any mode, with the
decreasing channel width (2a), imaginary parts of the normal
mode frequencies decrease. However, for lower modes this
effect is slightly more pronounced. This is because the time
necessary for the waves to travel over the open ocean across a
distance of half-channel width a is equal to a/+/D + 1, and,
when this time is much less than the period of a longitudi-
nal oscillation within the sloping channel, the geometrical
spreading in the open sea is very efficient. This makes the
free surface in the vicinity of the channel mouth almost flat
due to the fast escape of the waves, rendering the channel
mouth boundary condition effectively a Dirichlet condition
with n = 0. Consequently, the waves reaching the mouth re-
flect very efficiently back towards the shore, limiting the ra-
diation damping.

The rays that the waves follow in the sloping channel are
straight lines at the shallower parts, and they bend towards
the corners as they get near to the mouth of the channel,
due to geometrical spreading (see the streamlines in Fig. C1).
If the width of the channel increases, this corner effect will
penetrate deeper into the channel, making the rays longer.
Longer rays will decrease the frequencies of the free oscil-
lations. This can be observed in Table 2. Overall, because of
this ray bending the frequencies in Model-2 are lower than
those in Model-1. Having said that, for a fixed value of chan-
nel width, if D increases, the discrepancy between Model-1
and Model-2 decreases because for D — oo the free surface
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in the open ocean side of the domain will be flat for all free
modes for both Model-1 and Model-2, making the behaviour
the same within the channel.

Now let us turn our attention to the transient response for
Model-2. As before, we shall model the transient response
to an incident wave of the form 771 (t+x/+/D+1), and, as
the first step, we shall look at the particular case in which
n! is a Dirac delta function. For the sloping channel, such a
response for the potential ¢ corresponds to the integration of
Eq. (39) with respect to w. This integration reduces down into
a residue summation which we shall explain below. Since
we are not interested in the y-direction dependence of the
run-up, we are only interested in Ag. However, since they
are interrelated through the boundary conditions, we end up
having to calculate A1, Ay, ....A, as well, even though we do
not need them individually for our physical interpretations.

Remember that in Model-1 we had an analytical expres-
sion for Ag, and therefore also for ¢ (see Eqgs. 16 and 14).
For Model-2, on the other hand, we do not have a closed-
form relation for Ay except when w — 0. Obviously, when
w — 0, the free surface over the slope becomes flat, and in
this regime A (w) is approximately equal to 277/ (w)/iw for
both Model-1 and Model-2. Bowers (1977) finds a simple
analytical solution for a non-sloping bay that opens into a
wider channel, and the wavelength of the incident wave is
larger than the width of the larger channel. To approximately
adapt his theory for our case, the incident wave frequency
must tend to zero. At this limit the solution by Bowers (1977)
(see his unnumbered expression for D in page 75 of his ar-
ticle) and our solution both give the run-up as twice the in-
cident wave amplitude. For the rest of the frequencies, wg,
that make A singular, we simply calculate circular integrals
around each wy on the complex plane. Consequently, for ¢
we have

r=2(1—0)

p=|2 / dron’ (19, x = 1)
0

400
Sy

k=—00.k#0",

Ap(w)JoRwo)dw

A—2(1—0)
X / dron’ (tg, x = 1)exp (iwg (A — 19)) 47)
0

where ¢, are integral contours with infinitesimal radii around
each wy. This approach is much faster than calculating the
frequency integrals exclusively along the real axis. This is be-
cause on the real axis, the integrand becomes oscillatory and
the accuracy can only be sustained using small integration
steps (in Model-1 we used several tens of thousand integra-
tion points to keep the integral stable). This is not feasible be-
cause for each integration point, an integral equation (Eq. 45)
needs to be solved to calculate the relevant Ag. On the other
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Table 2. The complex natural frequencies multiplied by 2 are tabulated for Model-2. These are essentially those 2wy that are the roots of
1/Ag(w). In this table those lines with “(int)” list the frequencies calculated using Ag(w) obtained from minimising the penalty integral
(Eq. 45). The lines with “(conf)”, on the other hand, use Eq. (48) from the conformal mapping formulation for this quantity. Note that 2wy
tend to the roots of J for large D or small a.

2w 2wy 2w3 2wy 2ws
a=0.05, D =0 (int) 2.2640.056i 5.2740.126i 8.3240.19i 11.4+0.25i 14.5+0.31i
a=0.05,D=0(conf) 226+0.056i 5.27+40.126i 8.32+4+0.192i 11.38+0.253i 14.46+40.310¢
a=0.1, D=0 (int) 2.18+0.11i 5.14+0.23i 8.16+0.34i 11.240.44i 14.340.52i
a=0.1, D =0 (conf) 2.184-0.107i 5.1340.234i 8.14+0.346i 11.1740.446i 14.20+0.533}
a=0.1, D=1 (int) 2.284-0.057i 5.30+0.13i 8.37+40.20i 11.4540.26i 14.6 4-0.32i
a=0.1, D=5 (int) 2.3540.020i 5.43+40.045i 8.534+0.07i 11.6540.095i 14.840.12i
a=0.2, D=0 (int) 2.0540.197i 4.95+0.41i 7.9540.58i 11.04-0.74i 14.0+0.88i
a=0.2, D =0 (conf) 2.0540.197i 4.92+40.410i 7.84+0.572i 10.75+40.661i 16.6 4 0.61i

hand, for each wy, the complex integral f Ag(w)JoQwo)dw
C

can be satisfactorily calculated using jll;st four points be-
cause the integrand for w — w; becomes proportional to
1/(w — wy), which is not oscillatory. A further practicality of
this approach for an operational activity such as predicting
a storm surge run-up is that these contour integrals are inde-
pendent of the structure of the incident wave and therefore
can be pre-calculated for a particular bay or channel geome-
try and be injected in during the operational calculations. To
relate the run-up to Eq. (47) we follow the same procedure as
in Model-1 to compute the partial derivatives of ¢. In Fig. (7)
the run-up, shoreline velocity and shoreline acceleration are
given as a function of time.

In Fig. C1 the rays not only bend towards the mouth of
the channel but they also coalesce. This coalescence reflects
certain features that relate to the energy exchange to and from
the channel.

To summarise, for both Model-1 and Model-2, when the
incident wavelength is larger than the channel length, the
run-up amplitude tends to 2n; in other words the wave be-
comes blind to the bathymetric variation. However, an inter-
esting case arises in Model-2 when the wavelength is much
larger than the width of the channel but is still less than
the length of the channel. In this case an analytical solu-
tion can be found using a conformal mapping approach (Mei
et al., 2004, p. 218, for a flat-bottomed channel case). In Ap-
pendix C we give the mathematical details of the analysis
in which we generalize the conformal mapping approach for
the sloping channel with D = (. As seen in the Appendix,
the corresponding Ag(w) becomes

217! (w)

Ao(@) =— [Jo(Zw)

—1

2
+aw]; Qo) (7111 (2;’7;“) —|—i):| ,

where I ~ 1.781 is the exponential of the Euler—-Mascheroni
constant. The run-up amplitude is simply then given as

(48)
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w|Ap(w)|. Figure 8 shows this value as a function of twice the
frequency of the incident wave, calculated using both the in-
tegral equation and conformal mapping approaches. Kajiura
(1977) also used conformal mapping to reach the same con-
clusion (note that his equivalent figure includes the amplifi-
cation factor rather than the run-up, and therefore his values
are half of those reported here). In this work we essentially
extended the solution of Kajiura (1977) to short waves using
integral equations.

7 Conclusions

In this work we studied the resonance aspect of the coastal
run-up as a response to incident waves. The analysis fol-
lows a normal mode approach and examines the sensitivity
of those normal modes to a given linear incident wave to
produce coastal run-up. These modes diverge offshore, but,
since we are only interested in the coastal run-up, we can
still use them. In Model-1, significant run-up sensitivity, in
other words resonance, occurs only when D is large. Large
values of D are not encountered very often in nature, not
even in the shelf breaks. We also find slightly smaller run-
ups in Model-1 if we impose a linearised seaward bound-
ary condition (see also Antuono and Brocchini, 2007). In the
two-dimensional open ocean and finite-width sloping chan-
nel case (Model-2), resonance occurs when the aspect ratio of
the bay (width /length) is small. This kind of bay (or channel)
geometry exists in many coastal regions such as the Tokyo
Bay, making the results relevant in engineering practice.
The residue method developed here can actually be gen-
eralized for more complicated channel geometries (such as
piecewise constant slopes with varying width) by performing
a “fusion” of this method with the boundary elements tech-
nique. This is because the boundary elements technique has
recently proven to be very efficient for solving the Helmholtz
equation in multiple dimensions (Gumerov and Duraiswami,
2008; Takahashi and Hamada, 2009). Therefore, the fusion
should work as follows: for a series of complex frequen-
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Figure 7. The blue continuous curve is the run-up (calculated using Eq. 47) normalized by the incident wave amplitude as a function of
time. The channel width, 2a, is equal to 0.2. The incident wave is given as 176 sin(Mwp (t + (x — 1)))6(t + (x — 1)), where w is the lowest
free mode frequency for Model-2 (see Table 2 for D = 0), smoothed by multiplying it with the zanh function as in Fig. 5. The continuous
red curve is the shoreline velocity. The dashed green curve is the shoreline acceleration. The horizontal blue line is the maximum run-up
calculated using conformal mapping.
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Figure 8. The maximum run-up normalized to the amplitude of the incident wave for the standing wave case for two different channel
half-width values. The continuous blue curves are computed using the integral equation, and the red broken curves are obtained from the
conformal mapping (see Eq. 48). The green dotted—dashed curve is the maximum run-up for the infinitely wide channel. In panel (a) the
half-width of the sloping channel is 0.1, and in panel (b) the half-width is 0.2.
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cies, the boundary elements determine those frequencies for
which the response diverges (for a single run, the bound-
ary elements, formulated in the temporal Fourier domain,
can only calculate the response for a monochromatic inci-
dent wave). These are the normal mode frequencies for the
particular geometry chosen. Then for any incident wave train
(this can be, for instance, buoy data time series for an in-
coming storm surge) we can calculate the contour integrals
in Eq. (47) to compute the response much faster than inverse
Fourier transforming the boundary element results. The op-
erational fast Fourier transform-based models that use buoy
data for tsunami warning (such as Lin et al., 2014) can not
assimilate the buoy data continuously as it comes; they in-
stead use the time series after a substantial part of the tsunami

Nat. Hazards Earth Syst. Sci., 17, 905-924, 2017

has passed across the buoy and then input this time series
as the wave forcing to calculate run-up. This computational
economisation has two advantages; the first is that these con-
tour integrals can be pre-calculated and stored before, so dur-
ing an operational emergency the only data that is needed
is the wave train, and the response can be calculated very
fast (the last integral in Eq. 47). The other advantage is that
the number of points necessary to numerically evaluate the
contour integral is very low compared to the inverse Fourier
transformation along the real axis.

Data availability. No data sets were used in this article.
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Appendix A: Asymptotic approximation of the
frequencies of the free modes for large D in Model-1

In this appendix, the natural frequencies of Model-1 will
be evaluated for large D using an asymptotic approxima-
tion. The matrix relation that relates the incident wave to the
waves over the slope and the reflected wave is given as

JoQw) —1/iw Ap(@)
—wJ12w) ~D+1 R(w) )

~1 .

N (w)/iw
( «/D—l—lﬁ](a)))' (A)
The determinant of the matrix becomes zero if

i/D+1JyRw) — J1(2w) vanishes. Expanding natural
frequencies in powers of ¢ = 1/4/D + 1, we obtain

wp = w]((O) + Awp = a)l(co) + ea)](cl) + ezwiz) +..., (A2)

where w,go) is the unperturbed root with Jo(2a),((0)) =0.Upto
the second order we obtain

o) =i/2, (A3)

©)
o 1 (2wk )
o = gL (A4)
4 Jo' (2(:)]({ ))

where the primes mean the derivative with respect to the ar-
(0)
gument, 2w, . Consequently,

)
W ~ 2w
R T D1 2D+ D) X (2w,§°>)

(A5)
is obtained for twice the perturbed normal mode frequencies.

Appendix B: Nonlinear effects at the toe of the slope

The solution we obtained in Eq. (16) satisfies nonlinear shal-
low water equations over the slope; however, it does not sat-
isfy any nonlinearity as far as the boundary conditions at
x =1 are concerned. In this section, we will call the potential
associated with this solution ¢@, which is given as

O (t,x) = Aol Jo 2o/x + 1) cos (w(t —u)). (B1)

Note that this expression does not give information on the
transients; it is only valid as r — co. An incoming wave ar-
riving from far away, considered in this work, would prob-
ably be highly linear, because otherwise it would have lost
its monochromaticity due to nonlinear effects. However, near
the resonant frequencies the amplitudes of oscillations over
the slope (even the deeper part further offshore) are generally
much larger than the amplitude of the incident wave. Nonlin-
ear effects might therefore be important over the entire slope,

www.nat-hazards-earth-syst-sci.net/17/905/2017/

including the toe region. On the toe, the upper bound of the
free surface oscillations cannot be larger than twice the inci-
dent wave amplitude. However, the derivative with respect to
x of n can be very large because of the discontinuity of u for
large D and a theoretical upper limit on it cannot be found.
Therefore, the linearisation of the boundary conditions might
be a serious compromise.
Our aim is to calculate an additional term, ¢!, such that

0 =o® 40 (B2)

will satisfy the boundary condition at the toe, to the order
|Ag|2. The linear approximation to ¢(? is given as

(pl(i?]) = |Ao|Jo (2w+/x) cos (w1), (B3)

by which one can find the linear expressions of the free sur-
face and the fluid velocity. The term that is responsible for
the nonlinear correction of the boundary condition at x =1
is the difference between the <p(0) (t,x) and (pl(l.orz (t, x) near the
toe of the slope, denoted as Ap®. To the first order, this is
simply obtained through expanding ¢© (¢, x) around x = 1
and t :

Mg x| Ag)Pw? J1 Qo) Jo (2w+/x) sin(wt) cos(w )

20./x)

7
T 1 Aol20* o Qw) I(T

for x > 1" (B4)

cos(wt)sin(wt)

and Ap© =0 for x > 1. We denote the free surface associ-
ated with Ap(D as V. Since n© associated with Ap® has
a discontinuity of the order | Ag|? at the toe, this discontinuity
is remedied by adding 1) = 8,91, The boundary condition
at the toe then reads

(¢)) —

n

x=1*t

n

x=1

|Ag|>w? ( —2wJ; Qw) Jo Qw) cos2wt)
+ %J%(Zw) (cosQwt) + 1) ) (B5)

For the velocities, a similar approach based on the conti-
nuity of the flux (this time taking into account the real depth,
given by 1 + ) gives

u® —(D+1Du?

x=1"

x=1

1 2.2 2 d
3140l 0” | —0J7 20) + Jo2w) = 11 Qox) =
3
+5 02wy (2a))) sinQ2wt), (B6)
where Au@|,_;- = -3, A¢©|,_;- and u = -5, D).

Nat. Hazards Earth Syst. Sci., 17, 905-924, 2017



922 N. Postacioglu et al.: On the resonance hypothesis of storm surge and surf beat run-up

Let us now propose a general solution for 7", composed
of time-dependent and time-independent parts of the form:

N coswt) Jy (4w/x) +CD

" for x <1
' = o ( _(x )) () (_ x—1 )
RY cos | 2wt + 0ot
VD +1 vD+1
for x> 1.
B7)

Here, N is given as

NOD =
oo (F0RC0) + Q0 510Dl + 3902001 20)
‘ ofe J1(40) — /D + Lo (4w)
(—2w]1 Q2w) Jo Qo) + gjﬁ(zw)) VD1
e’ : (BS)
Ji(4w) — /D + 1Jp(4w)

Strong resonance is expected for large values of D and
for Jo(2w) ~ 0. Therefore, the relation for N O simplifies
to |Ao|?w?J}(2w)/(4Jy(4w)). Furthermore, we find CV =
|Ao*w? I (2w) /4 and © = 0.

Appendix C: Conformal mapping for Model-2

The problem of an incident wave into a rectangular bay of
uniform depth was solved in Mei et al. (2004), page 218. We
will extend their solution to the case of the sloping channel
using the same conformal mapping. Actually, Kajiura (1977)
also mentions a conformal mapping, but its mathematical de-
tails are not included in his paper or elsewhere in publicly
available literature.

The flow displays a complex pattern in the vicinity of the
mouth of the channel (see Fig. C1). If the depth discontinu-
ity D is zero, the relative change of depth in this region is
small. Therefore, the linearised shallow water equation for
a given frequency w can be approximated by the Helmholtz
equation (V2¢ + w?¢ = 0) in this region. If the wavelength
is much larger than the width of the channel (2a), then V2
is of the order of ¢/a® with 1/a” > w?. Consequently, the
Laplace equation can be used as an accurate approximation
of the Helmholtz equation. Unlike the Helmholtz equation,
however, the Laplace equation is invariant under conformal
transformation. The semi-infinite channel connected to an in-
finite sea shown in Fig. C1 can be mapped onto the upper
complex plane by conformal transformation f(z). The in-
verse of this function is given by

f~ 1(’)_1+—[—n/ +ln(

, (CD
V22— 14i )i|

where 7 =X + iy spans the upper half complex plane. The
square root function used in this conformal mapping has a
branch cut along the positive real axis with /|7] £0%i =
+./Z]. Accordingly, f~!' maps the segment ¢ +i0*" for
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1> ¢ > 0 on one side of the semi-infinite channel, and the
segment with 0 > ¢ > —1 is mapped on the other side.

The no-flux condition is also invariant under the conformal
mapping and it becomes

e (x,y=0T)=0 for X#0 (C2)
in 7 space. Note that the 7 = 0 is the singular point of 1.
A general solution of the Laplace equation that satisfies the
no-flux condition is given by

¢(x,y) =mln(z]) +c, (C3)
where the coefficients m, ¢ together with coefficients A, Eo
will be calculated in a way to insure a smooth transition from
the solution of the Laplace equation to the inner solution,
(ApJo(2wo)), and to the outer solution given by Eq. (40).

For small |Z|, f~! can be approximated by

l—i-i—a(ln(z'/(Zi))) =x+iy. (C4)

Therefore, the solution of the Laplace equation, m In(|z]) +c,
in terms of z = x + iy becomes

T(x—1)
A )

—mln(e/2) +c. (Cs5)
2a

Matching this with the inner solution Ag(w)Jo(Rw/x) ~
Ao(joQw) + (x — 1)J12w)) at x =1~ (note that x =1~
means that the distance to the mouth is much smaller than
the channel length but much larger than a, which is the width
of the channel), we obtain

Ao(@)Jow) = —mIn(e/2) +¢ (C6)

and

—Ao(@)w ] Qw) = 7 (C7)
2a

The outer solution given by Eq. (40) is, at intermediate range
(that is the distance from the mouth of the channel is much
larger than the width of the channel but much smaller than
the wavelength), given as

ZaS() e
- ( V@ =1 +Y) (C8)

In obtaining Eq. (C8), we made the approximation that
a < +/(x — 1)2 4 y2; therefore, the Hankel function term in
Eq. (40) can be taken out of the integral and approximated us-
ing the logarithm, again assuming that w < /(x — 1)2 4 y2.
For |Z| — oo, in the upper complex plane f~!(Z), can be ap-
proximated by

257{) (@)
iw

2
x+zy~1—$z (C9)
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Therefore, the solution of the Laplace equation in the open Solving Egs. (C6), (C7), (C11) and (C12),
sea is then

277" (@)

] Ag(w) =— [J Qw) +awd; 2w)
mln(%,/(x—l)2+y2)+c ‘ Lo ‘ 1_1
-2 em .
for (\/<x —1y2 +y2) >a. (C10) (71“(zrwa) + ’)] (€13

Matching Eq. (C10) with Eq. (C8) will become is found.
2aS,
aso(®) _ " 1D
jT o~
~ 2a S r 251
aSoi + 2250, (o) 21 @) =m1n(1) e (C12)
T 2 iw 2a
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