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Abstract. The assessment of road infrastructure exposure to
extreme weather events is of major importance for scientists
and practitioners alike. In this study, we compare the differ-
ent extreme value approaches and fitting methods with re-
spect to their value for assessing the exposure of transport
networks to extreme precipitation and temperature impacts.
Based on an Austrian data set from 25 meteorological sta-
tions representing diverse meteorological conditions, we as-
sess the added value of partial duration series (PDS) over the
standardly used annual maxima series (AMS) in order to give
recommendations for performing extreme value statistics of
meteorological hazards. Results show the merits of the robust
L-moment estimation, which yielded better results than max-
imum likelihood estimation in 62 % of all cases. At the same
time, results question the general assumption of the thresh-
old excess approach (employing PDS) being superior to the
block maxima approach (employing AMS) due to informa-
tion gain. For low return periods (non-extreme events) the
PDS approach tends to overestimate return levels as com-
pared to the AMS approach, whereas an opposite behavior
was found for high return levels (extreme events). In extreme
cases, an inappropriate threshold was shown to lead to con-
siderable biases that may outperform the possible gain of in-
formation from including additional extreme events by far.
This effect was visible from neither the square-root criterion
nor standardly used graphical diagnosis (mean residual life
plot) but rather from a direct comparison of AMS and PDS in
combined quantile plots. We therefore recommend perform-
ing AMS and PDS approaches simultaneously in order to se-

lect the best-suited approach. This will make the analyses
more robust, not only in cases where threshold selection and
dependency introduces biases to the PDS approach but also
in cases where the AMS contains non-extreme events that
may introduce similar biases. For assessing the performance
of extreme events we recommend the use of conditional per-
formance measures that focus on rare events only in addition
to standardly used unconditional indicators. The findings of
the study directly address road and traffic management but
can be transferred to a range of other environmental variables
including meteorological and hydrological quantities.

1 Introduction

Reliable information about the exposure of road infrastruc-
ture networks to extreme weather events is of major concern
for road authorities, governmental institutions and safety re-
searchers all over the world (TRB, 2008; Koetse and Ri-
etveld, 2009; Eisenack et al., 2011; Doll et al., 2013; UN-
ECE, 2013; Meyer et al., 2014; Michaelides, 2014; Schweik-
ert et al., 2014a, b; Matulla et al., 2017). In a changing cli-
mate (IPCC, 2012) and due to extensive soil sealing (Ne-
stroy, 2006) the impacts of extreme weather events are likely
to increase in both frequency and intensity (APCC, 2014).
Against this background, the resilience of transport systems
with respect to weather hazards has become increasingly im-
portant.
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A basic requirement for foresightful road infrastructure
management is data about both the probability and mag-
nitude of severe weather events. This information can be
derived from long-term records of weather quantities such
as precipitation and temperature by means of statistical ex-
treme value modeling. While extreme value theory provides a
methodological framework that is commonly used in various
scientific disciplines, such as hydrology (Katz et al., 2002),
finance (Embrechts et al., 2003), engineering (Castillo et al.,
2005) and climate sciences (Katz, 2010; Cheng et al., 2014),
the application of these tools for road network exposure anal-
ysis is a relatively uncharted area. In particular, formal com-
parative assessments of the various statistical methods that
can be applied for estimating return levels of extreme events
are rare.

Two basic approaches have been proposed for deriving ex-
treme value series (Coles, 2001), which are both widely ap-
plied in studying extreme meteorological events (e.g., Smith,
1989; Davison and Smith, 1990; Parey et al., 2010; Vil-
larini, 2011; Papalexiou and Koutsoyiannis, 2013). On the
one hand, the maximum value per year can be used in the
block maxima approach, resulting in an annual maxima se-
ries (AMS). On the other hand, all values exceeding a certain
threshold can be considered extreme, leading to the thresh-
old excess approach based on partial duration series (PDS).
Once the extreme value series has been derived, an appro-
priate distribution function is fitted to these observations by
using different parameter estimation methods, such as maxi-
mum likelihood estimation, method of moments or Bayesian
methods for parameter estimation. Clearly, there are a num-
ber of possible combinations of the approaches that may lead
to different, often equally plausible results.

Several efforts have been made to compare the perfor-
mance of block maxima and threshold excess approaches.
While some studies only provide a qualitative description
of resulting parameter estimates and estimated return lev-
els for both methods (Jarušková and Hanek, 2006), more
formal assessment approaches are based on the asymptotic
variance of the T -year event estimator (Cunnane, 1973) or
on various goodness-of-fit tests and model performance met-
rics (Madsen et al., 1997a, b; Bezak et al., 2014). Controver-
sial conclusions have been drawn. For instance, Madsen et
al. (1997a) found for extreme discharges that the most suit-
able approach depends on the sample size and the shape pa-
rameter of the fitted functions. However, Ben-Zvi (2009) and
Bezak et al. (2014) argue that a generalized Pareto (GP) dis-
tribution fitted to partial duration series yields the best re-
sults for modeling rainfall and discharge extremes. Mkhandi
et al. (2005), again, found that AMS and PDS methods result
in similar predictions of flood magnitudes. All of these stud-
ies document the importance of extreme value analysis in hy-
drology, but similar studies on temperature extremes, which
are equally important as rainfall impacts for road networks,
are rare. Based on a literature review, Grotjahn et al. (2016)
argue in favor of using PDS for analyzing extremes in large-

scale meteorological patterns, but their review did not con-
tain any direct quantitative comparisons based on a common
data set. Moreover, studies so far did not specifically assess
the performance of methods with respect to rare events, such
as 100-year events, which are more relevant for risk assess-
ment than events at the moderate tail of the distribution.

In this study, we compare the different extreme value
approaches and fitting methods with respect to their value
for assessing the exposure of transport networks to ex-
treme weather impacts. Based on an Austrian data set from
25 meteorological stations representing diverse meteorolog-
ical conditions, we assess the added value of partial duration
series over the standardly used annual maxima series in or-
der to give recommendations for performing extreme value
statistics of meteorological hazards.

2 Materials and methods

2.1 Data – meteorological indicators

This study focuses on several meteorological indicators that
can be used to assess the exposure of road networks to two
main meteorological quantities: precipitation and tempera-
ture. These two variables are considered to have the most
serious influence on damage to infrastructure (Matulla et al.,
2017). They are measured by meteorological services on a
regular basis so the data quality is usually high. Neverthe-
less, the methodology presented in this paper is applicable to
various other meteorological quantities (e.g., maximum wind
speed) when time series of about 30 years or more are avail-
able.

Four meteorological indices are used in this study. Tem-
perature impacts are considered by daily minimum (Tmin)

and daily maximum temperature (Tmax). In addition, maxi-
mum daily temperature difference (T1 = Tmax−Tmin) is an-
alyzed, with all temperature indices in ◦C. Regarding pre-
cipitation impacts, the daily precipitation sum mm day−1 has
been chosen.

In order to identify suitable meteorological stations that
represent the main climate features of the highway network
in Austria, all monitoring stations operated by the national
weather service Zentralanstalt für Meteorologie und Geody-
namik (ZAMG) served as a starting point. The selection of
suitable stations was carried out in a stepwise procedure with
respect to the following considerations. Firstly, the spatial
proximity of available measuring stations to the highway net-
work was considered by excluding stations with a distance
greater than 10 km from the data set. Secondly, data avail-
ability and data quality were considered. As sufficiently long
time series are a prerequisite for reliable return level estima-
tion, only stations with more than 30 years of record (i.e.,
since 1 January 1985) and with less than 5 % missing values
were selected. Finally, topographic conditions and regional
peculiarities were taken into account for selecting evenly
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spread and climatically representative stations. This step was
guided by visual inspection of climate maps (Hiebl et al.,
2011) and the digital hydrological atlas of Austria (BML-
FUW, 2007; Fürst et al., 2009). The data set so obtained con-
sists of 25 hot spots representing climatically homogeneous
regions of Austria (Fig. 1).

2.2 Extreme value selection

2.2.1 Block maxima method

The first approach for deriving extreme value series con-
sists in selecting maximum (or similarly minimum) values
of the observations within subsequent time intervals (blocks)
of constant length. While the block size is freely selectable,
a trade-off has to be made between bias (small blocks) and
variance (large blocks). Most commonly, the length of the
block is chosen to correspond to a calendar year (Coles,
2001), resulting in an annual extreme value series. This was
also the case in our study.

Based on the Fisher–Tippett–Gnedenko theorem, a gener-
alized extreme value (GEV) distribution is appropriate for
modeling the resulting annual maxima series (Fisher and
Tippet, 1928; Gnedenko, 1943). The cumulative distribution
function of the GEV is defined by

Gµ,σ,ξ (z)= exp

{
−

[
1+ ξ

(
z−µ

σ

)]−1/ξ
}

(1)

for the set
{
z : 1+ ξ

(
z−µ
σ

)
> 0

}
, where µ is the location pa-

rameter, σ is the scale parameter and ξ is the shape param-
eter. Alternative formulations with inverse sign of ξ are also
common (e.g., Hosking, 1990). In both cases, the parame-
ters satisfy −∞< µ<∞, σ > 0 and −∞< ξ <∞ (Coles,
2001).

The GEV comprises three different types of distributions,
which can be distinguished by the sign of their shape parame-
ter: Gumbel, Fréchet and Weibull distribution (Fréchet, 1927;
Gumbel, 1958; Coles, 2001; Embrechts et al., 2003; Bas-
rak, 2014). The Gumbel distribution is commonly applied
for maxima that are not limited towards an upper bound,
whereas the Weibull case is more appropriate for minima that
are often limited by a lower bound (Tallaksen and van Lanen,
2004).

2.2.2 Threshold excess method

In some cases, fitting distributions to block maxima data is
a wasteful approach as only one value per block is used for
modeling. A threshold excess approach potentially provides
more information on extremes (Coles, 2001).

Analogous to the choice of the block size in the block
maxima approach, the selection of the threshold value in
the threshold excess method is also subject to a trade-off
between bias (due to selecting non-extreme events if the
threshold is low) and variance (due to a small number of

exceedances when selecting a high threshold). Hence, the
choice of a suitable threshold is important. The basic aim
is to select the potentially lowest threshold, given the pre-
requisite that the extreme value model must provide a rea-
sonable approximation to exceedances above this threshold
and shall not contain non-extreme events (Coles, 2001). Ac-
cording to the Pickands–Balkema–de Haan theorem, a GP
distribution is suited for modeling the resulting threshold
excesses (Balkema and de Haan, 1974; Pickands, 1975): It
states that, for some large threshold u, the distribution func-
tion of (X− u), conditional on X > u can be well approxi-
mated by the GP distribution, which is defined by

Hξ,σ (z)=


1−

[
1+ ξ

(
z−µ

σ

)]−1/ξ

for ξ 6= 0

1− exp
(
−
z−µ

σ

)
for ξ = 0,

(2)

where the support is z ≥ µ in the case ξ ≥ 0, and µ≤ z ≤
µ−σ/ξ when ξ < 0 . This is valid for x1, x2, . . . , xn being a
sample of n independent and identically distributed realiza-
tions of a random variable x following some common distri-
bution function F (Coles, 2001).

A number of approaches have been proposed for select-
ing an appropriate threshold. Coles (2001) suggests to let the
selection be guided by graphical diagnostics about bias (i.e.,
mean excess; see Ghosh and Resnick, 2010, for a detailed
discussion) and stability of the scale and shape parameter.
Despite these criteria being well justified from a theoretical
point of view, their application involves substantial elements
of subjectivity, leading to ambiguous results (Scarrott and
MacDonald, 2012; Northrop and Coleman, 2014). To over-
come this problem, we employed the deterministic square-
root rule k =

√
n (Ferreira et al., 2003) for pre-selecting the

threshold level in an objective way, using the kth upper-order
statistic as a threshold, which is related to the total time series
length n. Although this rule does not properly account for
threshold uncertainty on subsequent inferences (Scarrot and
MacDonald, 2012), it satisfies the intermediate sequence of
order statistics that formally ensures tail convergence (Lead-
better et al., 1983). The so-obtained threshold was subse-
quently validated by the graphical criteria of Coles (2001)
for bias and parameter stability.

2.3 Dealing with non-stationarity and dependency

Extreme value theory assumes that data are independent
and identically distributed (Coles, 2001; Gilleland and Katz,
2011; Katz, 2010, 2013; Cheng et al., 2014). To test for
non-stationarity in the expected value we perform sepa-
rate Mann–Kendall trend tests (Mann, 1945; Kendall, 1976;
Gilbert, 1987) at a significance level of α = 0.05 (Zhang et
al., 2004) for the extreme value series of each meteorolog-
ical indicator. In case of significant trends, detrending was
performed with respect to the last year of the time series (i.e.,
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Figure 1. Location of the selected meteorological stations used for extreme value analysis.

2015). The trend-corrected estimation of a meteorological in-
dicator z at time t is obtained as

ẑt = yt − ŷt + ŷ2015, (3)

where yt is the measurement at time t and ŷt is the trend at
time t obtained from the linear trend model

ŷt = β0+β1t, (4)

with intercept β0 and slope β1, and ŷ2015 being the trend es-
timate for 2015.

For climate variables independence of data is usually a mi-
nor issue for the annual maxima approach as multi-annual
dependencies are usually low for most climates (Madsen et
al., 1997a; Katz et al., 2002). Regarding the threshold ex-
cess method, threshold exceedances on consecutive days will
likely violate the assumption of independence. Dependent
values in the threshold excess series are eliminated by a
declustering procedure that consists in removing threshold
exceedances within the autocorrelation length on both sides
of the local maxima (Jarušková and Hanek, 2006). Based on
sensitivity analysis an autocorrelation window of 5 days was
chosen for the three temperature indicators, while a window
of 3 days was chosen for accumulated daily precipitation.

2.4 Parameter estimation

Once the extreme value series is available, a theoretical dis-
tribution needs to be fitted. Two different methods of param-
eter estimation are used within the scope of the present anal-
ysis.

The first method, maximum-likelihood estimation (MLE),
was formally introduced by Fisher in the early 20th century
(Fisher, 1912; Aldrich, 1997; Hald, 1999). Let x1, x2, . . . , xn
be a sample of n independent and identically distributed re-
alizations of a random variable with the unknown probability

density function f (x|θ0). As the true value of the parameter
vector θ0 is unknown, an estimate θ̂ which is as close to θ0 as
possible is found by maximizing the likelihood function

L(θ)=

n∏
i=1
f (xi |θ), (5)

i.e., by maximizing the accordance of the extreme value
model with the observed data (Coles, 2001).

The second method, L-moment estimation (LMOM),
evolved from modifications of probability weighted mo-
ments of Greenwood et al. (1979). They are linear combi-
nations of first-order statistics and are hence more robust
to measurement errors or sampling uncertainty than con-
ventional moments (Hosking, 1990). The rth population L-
moment of a random variable X is defined as

λr ≡ r
−1

r−1∑
k=0

(−1)k
(
r − 1
k

)
EXr−k:r r = 1, 2, . . . (6)

As compared to MLE, L-moments are superior for fitting
GEV distributions in terms of bias and variance, in partic-
ular for small sample sizes (Hosking et al., 1985).

As far as reliability of the fitting results is concerned, con-
fidence intervals play a major role for assessing uncertainty.
The most common way to derive a (1−α) confidence inter-
val for a particular component θi of a parameter vector θ is
by using the formula θ̂i ± zα/2 ×σ/

√
n, with θ̂i denoting the

estimate for θi , zα/2 indicating the α/2 quantile of the stan-
dard normal distribution and σ/

√
n indicating the standard

error of the estimate.
The approach assumes Gaussian distributed parameter es-

timators, which may be inappropriate for extreme value dis-
tributions. For LMOM estimators resampling methods have
been recommended (Burn, 2003). Thus, nonparametric boot-
strapping with 500 iterations was applied in this study. MLE
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offers a more accurate method for deriving confidence inter-
vals based on the profile likelihood (Coles, 2001). The profile
log-likelihood for θi is defined as

Lp (θi)=max
δ
L(θi,δ) , (7)

where δ denotes all components of parameter vector θ ex-
cluding θi . That is, for each value of θi ,Lp (θi) is the maxi-
mized log-likelihood over all remaining elements of θ .

2.5 Assessment method

There are various performance measures that are regularly
employed in model evaluation, including the root-mean-
square error (RMSE) and the mean absolute error (MAE).
These metrics provide a comprehensible and objective basis
regarding the assessment of the fitted functions.

However, most events of the extreme value series are only
moderate and these will have an overly excessive influence
on the performance measure. In order to specifically assess
the accuracy of the fitted models for higher quantiles (i.e.,
for larger return periods), we propose conditional variants of
the RMSE (CRMSET ∗) and MAE (CMAET ∗). These met-
rics are specifically consider the upper tail of the fitted func-
tions above some return period T ∗. Using Weibull plotting
positions as empirical probability estimator (Weibull, 1939;
Makkonen, 2006), these measures are defined as

CRMSET ∗ =

√√√√√ n∑
i=1

(
ŷi − yi

)2
nT ∗

∀yi :

− 1

ln
(

m
N+1

)
≥ T ∗, (8)

CMAET ∗ =

n∑
i=1

∣∣ŷi − yi∣∣
nT ∗

∀yi :

− 1

ln
(

m
N+1

)
≥ T ∗, (9)

where ŷi denotes the model prediction or the ith element of
the extreme value series, yi is its observed value, m is its or-
der statistic (withm= 1 for the minimum andm=N for the
maximum) and nT ∗ is the number of elements with an em-
pirical return period greater than T ∗. Hence, the conditional
performance measures are calculated by using only the resid-
uals of observations and theoretical distribution above some
relevant return level T ∗. The value for T ∗ should be chosen
depending on the length of the time series available. Since
the records at the stations used for this study date back to the
period between the world wars in most cases, or even further
back to as early as 1895, T ∗ = 10 years has been chosen as
the base value of the conditional performance measure, and
CRMSE10 and CMAE10 are calculated accordingly. Similar
return periods (about 5–10 years) are often considered as a
minimum requirement in storm infrastructure design (e.g.,
GRCA, 2014; EPA, 2014). Hence, such a level appears well
suited to separate extreme and non-extreme events.

Distribution-fitting tests such as Kolmogorov–Smirnov,
Anderson–Darling or Cramér–von Mises are not used in this
study. Such tests are primarily useful for gaining an appre-
ciation of whether a lack of fit is statistically significant or
an effect of sampling uncertainty, but they have little dis-
criminative power to identify the “true” or “best” distribu-
tion to use (e.g., Stedinger et al., 1993). Instead, we perform
graphical diagnosis of the extreme value series and the fitted
distributions in quantile plots, which allow a more complete
assessment. Plotting of empirical distributions is straightfor-
ward. The return level (i.e., magnitude) zT of each observed
extreme event is plotted against its return period (i.e., recur-
rence interval) T = 1/(1−P), using Weibull plotting posi-
tions as an estimator of empirical recurrence probability P .
For AMS, the T -year return level is obtained using the quan-
tile function of the GEV:

zT ,AMS =

{
µ−

σ

ξ

[
1−{−ln(P )}−ξ

]
for ξ 6= 0

µ− σ ln {−ln(P )} for ξ = 0,
(10)

with parameters according to Eq. (1). For PDS, the quan-
tile function provides N -observation return levels rather than
T -year events, with N being the number of threshold ex-
ceedances. When calculating T -year return levels, the re-
turn period T needs to be transformed from an annual scale
to an observation scale by taking the ratio of threshold ex-
ceedances and years of record into account (Coles, 2001).
Hence, the T -year return level is obtained from the quantile
function of the GP by

zT ,PDS = u+
σ

ξ

[
(T λ)ξ − 1

]
, (11)

where λ is the mean number of threshold exceedances per
year, u is the threshold, and remaining parameters according
to Eq. (2). Although Eqs. (10) and (11) yield consistent re-
turn levels for both types of extreme value series, the return
periods of AMS/GEV and PDS/GP are not fully compara-
ble. As pointed out by Langbein (1949) and Rosbjerg (1977),
their relationship can be well approximated by an exponen-
tial equation of the form

1
TGEV

= 1− e(−1/TGP), (12)

and the return periods of one approach need to be trans-
formed to obtain consistent plots. Following the convention
of the extRemes package (Gilleland and Katz, 2016), the
PDS/GP-based T -year event definition is applied in this pa-
per, and we transformed AMS/GEV return periods accord-
ingly. Note, however, that the transformation difference is
mostly relevant for small return periods, as differences be-
tween TGEV and TGP become negligible for return periods of
more than 5 years (Langbein, 1949; Rosbjerg, 1977; WMO,
2009).
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3 Results

3.1 Non-stationarity

Extreme value series were checked for stationarity. Most of
the temperature hot spots showed a significant trend in at
least one of the temperature indicators, but often maxima
and minima series were simultaneously affected. All signif-
icant trends were incorporated in the model. As illustrated
by Fig. 2, the consequence of incorporating a trend model in
the analysis is non-stationary return levels that refer to a spe-
cific time. We will give results for the end of the observation
period.

For precipitation, non-stationarity seems less important
than for temperature indicators: about 85 % of the hot spots
of our study area showed no trend in the annual extremes.
This is consistent with the expectation of the Austrian Panel
of Climate Change (APCC, 2014) that climate impacts on
precipitation will mainly lead to seasonal shifts rather to
changes in total annual precipitation.

3.2 Parameter estimation method

The two approaches have been tested for the four meteoro-
logical indicators. In summary, it becomes apparent that the
relative performances of MLE and LMOM are strongly sit-
uation dependent. For instance, while the return level plots
for temperature maxima at Schwechat in the eastern low-
lands show that the function fitted on the basis of LMOM
behaves more robust, which appears to be beneficial in this
case (Fig. 3), return level plots of daily rainfall at Brenner on
the Austrian–Italian border indicate that the less robust MLE
offers better fit for higher quantiles (Fig. 4).

Table 1 summarizes the overall goodness of fit for the
100 climate records (25 stations× 4 indicators) assessed in
this study for the AMS approach. LMOM performed better
in 69 % of the cases when assessed by the RMSE and in 94 %
when assessed by the MAE (note that for 100 climate records
one percent corresponds to one record). Since the MAE fa-
vors overall model accuracy and gives little weight to outliers
with large errors, the better overall fit achieved by LMOM
nicely illustrates the greater robustness of this method. These
differences apply to most individual meteorological indi-
cators. The sole exception is daily minimum temperature,
which yields similar success rates of MLE and LMOM for
both goodness-of-fit measures. This is attributable to several
larger residuals in these time series.

The relative performances turned out to be more balanced
with respect to the PDS approach. As indicated by Table 2,
MLE performed better in 56 and 53 % of the cases when
judged by the RMSE and MAE, respectively. Again, daily
minimum temperature deviates from the general picture by
showing clear advantages in favor of LMOM estimation in
this case.

Table 1. Comparison of parameter estimation methods for the AMS
approach based on goodness-of-fit measures RMSE and MAE.
Numbers indicate success cases of MLE and LMOM.

Indicator RMSE RMSE MAE MAE
(MLE) (LMOM) (MLE) (LMOM)

Precipitation 7 18 4 21
Tmin 13 12 1 24
Tmax 5 20 0 25
T1 6 19 1 24

Total 31 69 6 94

Table 2. Comparison of parameter estimation methods for the PDS
approach based on goodness-of-fit measures RMSE and MAE.
Numbers indicate success cases of MLE and LMOM.

Indicator RMSE RMSE MAE MAE
(MLE) (LMOM) (MLE) (LMOM)

Precipitation 14 11 13 12
Tmin 9 16 12 13
Tmax 17 8 14 11
T1 16 9 14 11

Total 56 44 53 47

Apart from the overall goodness of fit it is interesting to
assess how the fit depends on the return period of events.
This has been done by visual inspection of the distribution
plots, such as the examples shown in Figs. 3 and 4. In most
cases there were only minor differences between MLE and
LMOM when considering return levels below 10 years, but
often considerable differences for larger return periods. For
the 100-year events, for example, results of the temperature
indicators differed by about 0.5 ◦C on average and by up to
2 ◦C for single stations. With maximum differences around
10 mm day−1, the 100-year precipitation events showed even
greater variation.

As the objective of extreme value analysis is usually re-
lated to return periods of 10 years or more, we specifi-
cally assessed the performance of the extreme upper tail of
the distribution by the conditional goodness-of-fit measures
CRMSE10 and CMAE10. Results indicate again a favorable
performance of LMOM-method for AMS series (Table 3),
when judged by the CRMSE10 (58 %) and the CMAE10
(62 %).

In contrast, results for the PDS showed, again, a slight ad-
vantage of MLE when assessed with the goodness-of-fit mea-
sures for the conditional variants. Both measures indicate a
preference towards MLE in 58 % of the cases. The better
performance of the MLE method is against the expectation
based on robustness and will be examined in more detail in
the following section.
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Figure 3. Return level plot of temperature maxima at Schwechat. Return level estimation is based on the threshold excess approach with two
different parameter estimation methods (MLE and LMOM estimation). Solid lines show the mean estimate, while dashed lines indicate the
95 % confidence intervals for the fitted functions.

3.3 Extreme value selection

Table 5 presents the relative performances of AMS and PDS
approaches based on the two parameter estimation methods.
Although overall results show advantages for the AMS ap-
proach in terms of goodness of fit for the upper tail of the

underlying distributions, results largely depend on the un-
derlying meteorological indicators. While precipitation and
daily maximum temperature difference offer a better fit when
using GEV distributions of AMS, GP distributions of PDS
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Figure 4. Return level plot of daily rainfall events at Brenner. Return level estimation is based on the block maxima approach with two
different parameter estimation methods (MLE and LMOM estimation). Solid lines show the mean estimate, while dashed lines indicate the
95 % confidence intervals for the fitted functions.

Table 3. Comparison of parameter estimation methods for the
AMS approach based on conditional goodness-of-fit measures
CRMSE10 and CMAE10. Numbers indicate success cases of MLE
and LMOM.

Indicator CRMSE10 CRMSE10 CMAE10 CMAE10
(MLE) (LMOM) (MLE) (LMOM)

Precipitation 11 14 11 14
Tmin 11 14 10 15
Tmax 12 13 8 17
T1 8 17 9 16

Total 42 58 38 62

Table 4. Comparison of parameter estimation methods for the PDS
approach based on conditional goodness-of-fit measures CRMSE10
and CMAE10. Numbers indicate success cases of MLE and
LMOM.

Indicator CRMSE10 CRMSE10 CMAE10 CMAE10
(MLE) (LMOM) (MLE) (LMOM)

Precipitation 14 11 14 11
Tmin 9 16 10 15
Tmax 19 6 19 6
T1 16 9 15 10

Total 58 42 58 42

Table 5. Comparison of AMS and PDS approach based on condi-
tional goodness-of-fit measures CRMSE10 and CMAE10 for two
parameter estimation methods MLE and LMOM. Numbers indicate
success cases of approaches.

Indicator Fitting CRMSE10 CRMSE10 CMAE10 CMAE10
method (GEV) (GP) (GEV) (GP)

Precipitation MLE 18 7 19 6
Precipitation LMOM 19 6 20 5
Tmin MLE 9 16 8 17
Tmin LMOM 10 15 10 15
Tmax MLE 10 15 11 14
Tmax LMOM 13 12 14 11
T1 MLE 16 9 17 8
T1 LMOM 17 8 16 9

Total 112 88 115 85

appear better suited for modeling daily temperature maxima
and minima.

To perform a direct comparison, Fig. 5 presents the devi-
ations between return levels derived via AMS and PDS ap-
proach for the four meteorological indicators. Interesting pat-
terns regarding the magnitude of the estimated return levels
can be observed. For precipitation, PDS/GP estimates result
in slightly higher return levels for lower return periods (indi-
cated by negative deviations) and this behavior changes to the
opposite for higher return periods. Maximum temperature
shows the same tendencies as precipitation, but the PDS/GP
always yields higher return levels than the AMS/GEV, sug-
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Table 6. Success rates of methods according to CRMSE10. The
bold value in the center of each field indicates the overall count.
The four numbers in the corners display the counts with respect
to temperature minima (top left), temperature maxima (top right),
temperature difference (bottom left) and precipitation totals (bot-
tom right). Bold values indicate better performance.

Distribution

GEV GP Total

3 4 5 12
MLE 19 19 38

Fitting 4 8 1 1

method 7 4 10 5
LMOM 35 27 62

12 12 8 4

Total 54 46 100

gesting that differences mainly occur at higher return peri-
ods. Temperature minima, however, show a rather constant
overestimation (i.e., underestimation of negative magnitude)
of PDS compared to AMS regardless of the frequency of
events, with patterns of temperature difference being a com-
bination of the effects of temperature maxima and minima.
Overall, the average deviations between methods mostly in-
crease with the return period, and the variability between
cases increases as well. This issue will be further explored
in the discussion section.

Finally, Table 6 summarizes the success rates of all meth-
ods based on CRMSE10. Results show an overall advantage
of using L-moment estimation as compared to MLE. As far
as the two different methods of extreme value selection are
concerned, the AMS approach seems to slightly outperform
the threshold excess approach in this study. While results are
basically quite balanced between all four methods, AMS fit-
ted on the basis of LMOM estimation turned out to yield the
best results in about 35 % of all cases.

4 Discussion

We compared the relative merits of the block maxima method
and the threshold excess approach. In addition, two differ-
ent fitting methods have been contrasted. This results in four
possible combinations of extreme value model parameter es-
timation, all of which have certain strengths and weaknesses.
Concerning the fit of the distributions to sample, we found a
slight advantage of using LMOM instead of MLE, especially
in combination with AMS/GEV. For PDS/GP there was a
slight advantage of using MLE. However, overall, the dif-
ferences were not huge.

The conditional assessment of the individual deviation
between return levels of AMS/GEV and PDS/GP yielded
deeper insight in the relative performances of methods. Most
importantly, we found ambiguous systematic deviations be-

tween both approaches (Fig. 5), depending on the meteoro-
logical indicators under consideration: concerning tempera-
ture minima, PDS/GP was found to consistently overestimate
return levels compared to the AMS/GEV approach, while
results for temperature maxima and – albeit to a lesser ex-
tent – temperature differences show just the opposite. Re-
garding daily rainfall events, the PDS/GP approach tends
to slightly overestimate return levels for low return peri-
ods (non-extreme events) as compared to the AMS/GEV ap-
proach, while an opposite behavior was found for high return
levels (extreme events). To assess the reasons for this sys-
tematic behavior, we selected four example series that repre-
sent extreme cases, where results of approaches differ signif-
icantly.

The first two examples are daily precipitation at Sankt
Michael (Fig. 6a) and Brenner (Fig. 6b), where extreme value
series deviate from the ideal, smooth behavior of a homoge-
neous extreme value series. These fluctuations point to ei-
ther measurement errors or process heterogeneity that will
introduce uncertainty into extreme value analysis. In the case
of Sankt Michael, the most extreme events appear as out-
liers that deviate from the general behavior of the sample.
In general, LMOM will give lower weight to such leverage
points but this seems not the case here where the GP fitted by
LMOM seems more attracted. A plausible explanation would
be that the upper-tail behavior results from the attraction of
the distribution at the lower end because of the limited flex-
ibility of the GP. In the case of Brenner, the extreme values
seem to follow the same distribution as the remaining sample
so one would have more confidence in the validity of these
values. However, extreme values are always prone to higher
uncertainty than the remaining sample. The MLE estimate
gives more weight to these values and shows a better fit at
the upper tail in this case, whereas LMOM gives less weight
to these values and makes visible that they are not perfectly
following the shape of the entire distribution. The choice of
the parameter estimation method will finally depend on the
weight one tends to give to the extreme values as compared
to the remaining sample.

It is also interesting to analyze extreme cases where
AMS/GEV and PDS/GP methods yield contrasting results
(Fig. 7). When focusing on the empirical distributions, we
observe that only the more extreme events (three in the case
of Bruck an der Mur and two in the case of Graz) have almost
identical empirical probabilities in both extreme value series.
At the lower end, we observe that there are several events in
the AMS/GEV below the threshold level of PDS, which fit
well to the distribution of the higher values so we find no ev-
idence to exclude them from the analysis. The shift in the dis-
tribution can therefore be regarded as an effect of threshold
level selection, which determines the lower end and therefore
the shape of the lower part of the PDS/GP distribution. Be-
tween the undisturbed upper part and the disturbed lower part
a breakpoint at T = 15 years in the PDS/GP is clearly visi-
ble from the robustly fitted GP distribution using the LMOM
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Figure 5. Differences in estimated return levels between GEV and GP models for six selected return periods. These differences are calculated
by subtracting the GP estimate from the GEV estimate, given the same parameter estimation method. This results in n= 50 observations per
box plot.

method. This illustrates an inherent danger of the PDS/GP
approach: an inappropriate threshold may entail considerable
biases that outperform the possible gain of information by
the method by far. This was visible from neither the square-
root criterion nor the graphical diagnosis (residual life plot;
Fig. 8), which yielded almost no bias in both cases (in the
case of Bruck an der Mur, mean excess= 2.99 for the thresh-
old of −17.1 ◦C; in the case of Graz, mean excess= 1.63 for
threshold of 32.6 ◦C).

Similar shifts may arise if the extreme value series con-
tains dependent events. Non-extreme events are generally
more likely to cluster than extreme events because they are
generated by exceptional process combinations, which are
unlikely to occur more often during one extreme weather sit-
uation. Thus, dependencies may possibly affect all parts (but
more likely the lower part) of the distribution apart from the
maximum, which remains unchanged. In consequence, the
empirical distribution is stretched at the lower tail (shifted
to the left), with similar consequences on lower and upper
tail as described for the case of data uncertainty and leverage
points. Such artifacts are difficult to detect in quantile plots
of one extreme value series alone but are often visible from
direct comparison of AMS/GEV and PDS/GP approaches.
Although both AMS/GEV and PDS/GP may be affected by
dependency of events, AMS/GEV behaves more robust since
it selects only one event per year.

These findings are against our initial expectation and con-
tradict the spirit of most existing studies that aimed to recom-

mend the best-performing method for a variable or situation.
Instead of recommending either block maxima or threshold
excess method, we recommend performing both approaches,
as their combined assessment by means of diagnostic plots
together with overall and conditional goodness-of-fit mea-
sures offers a more complete diagnosis of the quality of ex-
treme series and the resulting distributions.

Concerning the parameter estimation method, there are
also benefits and disadvantages that have to be balanced
against each other. MLE has some merit with respect to cal-
culating reliable confidence intervals via profile likelihood.
Confidence intervals for estimation via LMOM were derived
with non-parametric bootstrapping, which is arguably less
trustworthy for indicating the uncertainty of the estimates.
However, LMOM estimation has been shown to yield more
robust estimation results for small sample sizes (Hosking et
al., 1985; Hosking et al., 1987), which can be especially ben-
eficial when analyzing environmental data like temperature
or precipitation indicators, which are derived from raw mea-
surements at meteorological measuring stations. Regarding
the overall results, LMOM estimation turned out to offer a
better fit than MLE, which is consistent with previous find-
ings (Hosking et al., 1985; Hosking et al., 1987; Bezak et al.,
2014).

Concerning the comparison based on the goodness of fit of
the distributions it shall be noted that a formal comparison of
the two extreme value selection approaches is not straightfor-
ward. Measures of goodness of fit are not fully conclusive, as
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Figure 6. Return level plots of daily rainfall events at the hot spot
in (a) Sankt Michael im Lungau, which is located in the Central
Eastern Alps, and (b) Brenner pass, located at the Austro-Italian
border. Return level estimation is based on the block maxima ap-
proach and on the threshold excess approach with two different pa-
rameter estimation methods (MLE and LMOM estimation). Based
on the CRMSE10, GP fitted on the basis of LMOM estimation was
found to be the most appropriate method for Sankt Michael, while
GEV with MLE was found to be most suitable at Brenner. Please
note that functions are plotted without associated confidence inter-
vals for the sake of clarity.

the underlying extreme value series are derived by different
methods and thus are not directly comparable. Our analysis
demonstrates that the choice between these approaches has
to be based on the statistical properties of the extreme value
series, which are related to the indicators under consideration
and on data availability. The conditional measures proposed
in this paper help to perform a more specific assessment for
extreme events, but they are also not a remedy to overcome
this problem. They are a way to assess the goodness of fit at
the upper tail of the distribution and facilitate the comparison
between AMS/GEV and PDS/GP. These metrics can assist,
but not substitute, careful analysis of assumptions. We show
that contrastive plotting methods can strongly support these
analyses.

While the methodology of this study can be easily gener-
alized and extended to cover other environmental variables,
four possible limitations have to be discussed. First, the sea-
sonality of temperature and precipitation extremes has not
been taken into account. While maximum/minimum temper-
atures will always occur in the same season, which will factor
out any seasonal heterogeneity, this is not genuinely the case
for extreme precipitation events, where seasonal occurrence
may be associated with diverging processes (Hundecha et al.,
2009). In order to account for seasonal effects, a common ap-
proach is to split the events into process-homogeneous sub-
sets. This can be based either on seasonality (e.g., Laaha and
Blöschl, 2006, for low streamflows) or on a typology of pro-
cesses (e.g., Merz and Blöschl, 2003, for floods based on
rainfall types and catchment preconditions), or a temporal
stratification of records is applied (e.g., Méndez et al., 2008,
for wave height and Maraun et al., 2009, for heavy precipi-
tation). For each subset extreme value analysis is performed
separately, leading to process-specific return levels, such as
summer and winter low flows in the case of minimum dis-
charges. These quantities may be combined by a mixed dis-
tribution model to yield overall return levels (e.g., Hundecha
et al., 2009). For further discussion of modeling dependent
and non-stationary time series extremes, the reader is re-
ferred to Chavez-Demoulin and Davison (2012).

Secondly, threshold selection in the PDS/GP method is a
legitimate subject for debate. In recent years, efforts have
been made to overcome the problem of visual threshold se-
lection, e.g., by robust threshold selection (Dupuis, 1999),
likelihood-based visual diagnostics (Wadsworth and Tawn,
2012; Wadsworth, 2016), Bayesian approaches (Tancredi et
al., 2006; Lee et al., 2014), approaches based on goodness-
of-fit tests (Roth et al., 2016) and extreme value mixture
models (MacDonald et al., 2011). In addition, attempts were
made to develop more automated approaches for extreme
value threshold estimation, including the automated thresh-
old selection approach (ATSM) by Thompson et al. (2009),
the multiple threshold method (MTM) by Deidda (2010) and
the automatic threshold and run parameter selection by Fuku-
tome et al. (2015). While these approaches are appealing
from a theoretical perspective, their practical value is of-
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Figure 7. Return level plots of (a) temperature minima at Bruck an der Mur and (b) temperature maxima at Graz. Return level estimation
is based on the block maxima approach and on the threshold excess approach with two different parameter estimation methods (MLE and
LMOM estimation). Based on the CRMSE10, GP fitted on the basis of MLE was found to be the most appropriate method for both Bruck an
der Mur and Graz.

ten reduced by numerical issues and sampling effects. At
least for the time series tested in this study, both the ATSM
and MTM yielded inconsistent results: threshold values of
similarly distributed time series obtained by ATSM varied
considerably, and parameter estimates were depending on
range and resolution of the thresholds considered. One could
think that automatic threshold selection procedures replace
the threshold selection problem with that of selecting an ap-
propriate range and resolution of the thresholds to be tested.

However, the authors are aware that also the semi-
supervised method applied in this study may not be optimal
in all cases. Rather than performing in-depth analysis of sin-
gle time series, we have given priority to analyzing a large
amount of time series covering a range of environmental con-
ditions. Therefore, the application of the square-root rule in
combination with graphical diagnostics is argued to be a fea-
sible approach that led to satisfactory results in the present
study.

Thirdly, the conditional performance metrics depend, to
some extent, on the chosen plotting position. While the
choice of plotting position formula is only of minor impor-
tance in many cases, it might be influential in the present case
with emphasis on the upper-order statistics. However, a sen-
sitivity analysis based on Beard (i.e., median) plotting posi-
tions has shown that effects on results in terms of return level
estimates are small in this study, since changes mainly occur
in cases where both estimation methods yield very similar
parameter estimates.

Finally, it has to be noted that the conditional metrics are
of limited robustness, especially if time series are short and
the condition is chosen inappropriately. Since the variance of
the order statistics strongly increases towards the upper end
of the ordered sample, the conditional metrics may be sub-
ject to high uncertainty, particularly if inadequate (i.e., too
high) return periods are selected. Thus, the authors want to
emphasize that an appropriate base value has to be chosen
depending on the length of the time series under consider-
ation. For small samples, priority should be given to robust
error metrics such as CMAET ∗ .

5 Conclusion

We compared statistical methods for extreme value analy-
ses based on four climate indicators related to daily pre-
cipitation and temperature. While the indicators were se-
lected for studying the exposure of road infrastructure to ex-
treme weather events, the assessments are equally relevant
for a range of other environmental variables including me-
teorological and hydrological quantities. We first analyzed
the goodness of fit of distributions to extreme value series
consisting of annual maxima (AMS/GEV) and threshold ex-
ceedances (PDS/GP) using two parameter estimation meth-
ods.

Results for the parameter estimation methods vary consid-
erably between stations and approaches. For the AMS/GEV
approach, LMOM yielded, on average, better fitted distribu-
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Figure 8. Mean residual life plots of (a) temperature minima the hot spot in Bruck an der Mur and (b) temperature maxima at Graz. Black
lines indicate the 95 % confidence interval for the mean excess and orange lines indicate the threshold selected by means of the square-root
rule.

tions than MLE. The goodness of fit turned out to be more
balanced with respect to the PDS/GP approach, with a slight
advantage of MLE. In most cases there were only minor dif-
ferences between MLE and LMOM when considering return
levels below 10 years, but often considerable differences for
larger return periods.

Concerning extreme value selection, the relative perfor-
mance of AMS/GEV and PDS/GP approaches varies be-
tween meteorological indicators. For precipitation and tem-
perature difference the AMS/GEV data outperformed the
PDS/GP approach. For temperature maxima and minima the
PDS/GP approach appeared better suited.

Regarding goodness of fit for extreme events that are typi-
cally used as design values (T of 10 years and more), results
show an overall advantage of using L-moment estimation as
compared to MLE and that the AMS/GEV approach slightly
outperforms the threshold excess approach. The AMS/GEV
fitted on the basis of LMOM estimation method performed
better than all other combinations of approaches in this study.

We further examined the conditional performances of
AMS/GEV and PDS/GP approaches with respect to the re-
turn period in more detail. From conditional performance
measures and combined plots, we found systematic devi-
ations between AMS/GEV and PDS/GP approaches. For
low return periods (non-extreme events) the PDS/GP ap-
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proach tends to overestimate return levels as compared to
the AMS/GEV approach, whereas an opposite behavior was
found for high return levels (extreme events). The assess-
ment of extreme cases where approaches differed signifi-
cantly suggests that this behavior may be related to two fac-
tors: sampling uncertainty and threshold selection.

Regarding sampling uncertainty, we found that outliers
may not only attract the distribution at the tail where they
occur, but they may also bend the curve at the opposite tail as
a consequence of limited flexibility of the extreme value dis-
tributions. Such leverage effects can be handled by careful
inspection of quantile plots. Regarding threshold selection,
the analysis of extreme cases within the data set revealed that
an inappropriate threshold may lead to considerable biases
that may outperform the possible gain of information from
including additional extreme events by far. Selecting a high
threshold will determine the lower end of the extreme value
distribution whereas the upper tail remains unchanged. This
may introduce an inflection point in the distribution, which is
against its ideal shape according to extreme value theory, re-
sulting in poor estimates of the theoretical distribution. This
effect was not visible from either the square-root criterion
or the graphical diagnosis (mean residual life plot), which
yielded no atypical biases for the analyzed cases. Similar ef-
fects may arise when the extreme value series contains de-
pendent events that may stretch the empirical distribution at
the part where they occur. These findings were against our
expectations that the estimation of the theoretical distribu-
tion will greatly profit from the gain of information that is
provided by the PDS/GP approach.

We emphasize that reliable extreme value statistics require
controlling for sample effects in order to avoid biased mod-
els. In our study, the differences and relative merits of meth-
ods were best visible from a direct comparison of AMS/GEV
and PDS/GP approaches. We therefore recommend perform-
ing both analyses and carefully analyzing the distribution fit
relative to the respective sample and relative to each other
by means of combined quantile plots. This will make the
analyses more robust in cases where threshold selection and
dependency introduce biases to the PDS/GP approach as
well as in cases where the AMS/GEV contains non-extreme
events that may introduce similar biases. For assessing the
performance of extreme events we recommend conditional
performance measures such as CRMSE10 and CMAE10 in
addition to unconditional indicators.
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