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Abstract. Extreme waves influence coastal engineering ac-
tivities and have an immense geophysical implication. There-
fore, their study, observation and extreme wave prediction
are decisive for planning of mitigation measures against nat-
ural coastal hazards, ship routing, design of coastal and off-
shore structures. In this study, the estimates of design wave
heights associated with return period of 30 and 100 years
are dealt with in detail. The design wave height is estimated
based on four different models to obtain a general and re-
liable model. Different locations are considered to perform
the analysis: four sites in Indian waters (two each in Bay
of Bengal and the Arabian Sea), one in the Mediterranean
Sea and two in North America (one each in North Pacific
Ocean and the Gulf of Maine). For the Indian water do-
main, European Centre for Medium-Range Weather Fore-
casts (ECMWF) global atmospheric reanalysis ERA-Interim
wave hindcast data covering a period of 36 years have been
utilized for this purpose. For the locations in Mediterranean
Sea and North America, both ERA-Interim wave hindcast
and buoy data are considered. The reasons for the variation in
return value estimates of the ERA-Interim data and the buoy
data using different estimation models are assessed in detail.

1 Introduction

The Indian Ocean with two horns of the Arabian Sea and
the Bay of Bengal has been playing a significant role in the
regional economic development. This rapid progress is at-
tributed to a variety of activities in the coastal and offshore
sectors that include construction and development of major
ports and fishing harbours, establishment of power plants,

offshore exploration and exploitation of oil and gas, and tam-
pering of ocean wave and tidal energy. To sustain these de-
velopments along the coast, the aforementioned activities re-
quire a variety of coastal and offshore structures such as
groins, sea walls, breakwaters, offshore platforms, intake and
outfall structures, submarine pipelines, etc. to be constructed
in the marine environment. It is hence mandatory to design
these structures for its life span which could be achieved by
considering its survival conditions. The most dominant envi-
ronmental forces that dictate this design of the structure are
due to the maximum probable wave height of a site of interest
(Massel, 1978).

Depending on the importance and lifespan of the structure,
the return period of the extreme events could be selected as
30 years or 100 years. The lesser would be associated with
lesser wave height but more risk and vice versa. It demands a
better understanding of hydrodynamic characteristics of local
wave environment, especially the extreme conditions. In the
design of any marine structures, the first step is the extreme
wave analysis for the determination of design wave heights
with certain return periods (Goda, 2000). Estimation of ap-
propriate design values indicates the level of protection and
the scale of investment during the construction of the struc-
ture.

Fundamentally, extreme values are scarce and are neces-
sarily outside the range of the available observations, im-
plying that an extrapolation from the observed sea states to
unknown territories is required. An estimate of anticipated
wave height can be furnished using historical wave hindcast
data or field observed data with the help of various distribu-
tion models, which enable extrapolation under the extreme
value theory framework (Goda, 2000; Coles, 2001; Caires,
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2011). Ferreira and Guedes Soares (2000) suggested that the
estimation of extreme values should rely on methods based
on extreme value theory which makes use of the largest of
the observations in the sample. Coles (2001) obtained the
detailed statistical results of extreme value prediction us-
ing the annual maximum (AM) (Castillo, 1988) and Peaks
Over Threshold (POT) (Ferreria and Guedes Soares, 1998)
sampled observations. Caires, 2011 rigorously compared the
commonly used extreme value statistical methods (like gen-
eralized extreme value, or GEV, and generalized Pareto dis-
tribution, or GPD) with different parameter estimation meth-
ods for combination of different data sampling techniques.

Another approach that may be applied starting from a
wave data time series is that of equivalent storm models
(Boccotti, 1986, 2000; Fedele and Arena, 2010; Laface and
Arena, 2016), which is based on the concept of sea storm.
Specifically, these models consist of substituting the se-
quence of sea storms at a given site (actual sea) with a se-
quence of equivalent storms (equivalent sea) from a statis-
tical perspective. The equivalent storms have very simple
geometric shapes such as triangular (Boccotti, 1986, 2000;
Arena and Pavone, 2009), power (Fedele and Arena, 2010;
Arena et al., 2014) or exponential (Laface and Arena, 2016).
Depending on the shape the related model gives an analyti-
cal or numerical solution for the calculation of the return pe-
riod R(Hs>h) of a sea storm whose maximumHs is greater
than a given threshold h. Specifically, the triangular and ex-
ponential equivalent storm models give a closed form solu-
tion for R(Hs>h), while the equivalent power storm model
requires numerical calculation. In the paper the Equivalent
Triangular Storm (ETS) model is utilized.

The accuracy of any methodology for extreme values sig-
nificantly depends on the length of the recorded time series. It
is believed that measurements from wave rider buoy offer the
most reliable long historical record. However, the availabil-
ity of such buoy data is limited to certain specific locations,
mainly in the northern hemisphere. At a particular location of
interest, the availability of buoy data is usually scarce, and of-
ten there will be no data. The oceanographic community has
recognized the hindcasts with ocean wave models to comple-
ment the limited buoy observational records.

In the recent years, the performance of wave models has
appreciably improved, with better quality of the wind fields
and enhancement in numerical wave modelling. The mete-
orological centres like European Centre for Medium-Range
Weather Forecasts (ECMWF), Australian Bureau of Meteo-
rology and Meteo France that operate global wave models
are currently using altimeter wind data for data assimilation
purposes. The process combines numerical wave model and
observations of diverse sorts in the best possible ways to gen-
erate a consistent, global estimate of the various atmospheric,
wave and oceanographic parameters. At present in numerous
meteorological centres, wind and wave simulated data are as-
similated on a daily basis.

The simulated hindcast data have been adopted in numer-
ous studies for the estimation of extreme wave conditions.
Teena et al. (2012) applied a GEV distribution and GPD to
the 31 years assimilated wave hindcast data based on MIKE-
21, a spectral wave model for a location in the eastern Ara-
bian Sea and extracted extreme wave for several return pe-
riods. Li et al. (2016) used a third-generation wave model,
WAMC4, and simulated 35 years of wave hindcast data from
two sets of reanalysis wind data, NCEP and ECMWF. In
their study, Pearson III distribution method is used to anal-
yse the extreme wave climate in the East China Sea. Polnikov
and Gomorev (2015) proposed to use the extrapolation of a
polynomial approximation constructed for the shorter part of
the tail of probability function to estimate the return values
of wind speed and wind-wave height. The wave field was
computed from the wave model, WAM-C4M, from ECMWF
global atmospheric reanalysis ERA-Interim wind field data.

Even though several studies have been carried out, a study
on the identification of the most suitable approach for esti-
mating extreme wave heights for a particular source of as-
similated wave hindcast data is still lacking. In the present
study, the investigation of different existing approaches and
models is carried to assess its application and reliability for
the Indian domain. Increased uncertainty in the model out-
puts questions the reliability of the estimation model, which
is an important issue. Thus, the present study introduces a
statistical approach to validate the reliability of the design
wave height return values resulting from a particular extreme
wave estimation method by considering variability criterion
on the basis of measured maximum value. The variation in
the extreme value estimates of the ERA-Interim data and
the buoy data for different estimation models is also consid-
ered and examined. The objective of the present study is to
identify a robust extreme wave height estimation method for
the Indian domain using global atmospheric reanalysis ERA-
Interim wave hindcast data.

2 Datasets

2.1 Study locations

Four offshore locations along the Indian coast (Fig. 1) are
considered. The selection of these particular locations is
based on their distance from the nearest coast and the wa-
ter depth, two each on east and west coasts of the Indian
peninsula. Both deep and shallow water locations are cho-
sen to examine the application of the estimation model based
on water depth.

The projected estimates using ERA-Interim data are com-
pared with those obtained from data from various buoy
datasets to validate the performance of ERA-Interim data in
extreme wave analysis. The choice of the locations was made
according to the size of wave data that were available. Fur-
ther, two locations in North America, National Data Buoy
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Table 1. ERA-Interim data locations and buoy stations.

Data point Coordinates Availability Interval No. of data
(h) points

ERA IN-1 19.50◦ N, 85.75◦ E 1979–2014 6 52 596
ERA IN-2 15.50◦ N, 81.00◦ E 1979–2014 6 52 596
ERA IN-3 10.25◦ N, 75.75◦ E 1979–2014 6 52 596
ERA IN-4 14.50◦ N, 73.50◦ E 1979–2014 6 52 596
NDBC 44005 43.204◦ N, 69.128◦W 1978–2014 1 254 221
ERA 44005 43.25◦ N, 69.125◦W 1979–2014 6 52 596
NDBC 46050 44.656◦ N, 124.526◦W 1991–2014 1 180 231
ERA 46050 44.625◦ N, 124.50◦W 1991–2014 6 35 064
RON Alghero 40.548◦ N, 8.107◦ E 1989–2008 3 125 443
ERA Alghero 40.5◦ N, 8.125◦ E 1989–2008 6 29 220

Figure 1. Selected locations for ERA-Interim data along the Indian
Coast.

Center Station 44005 in Gulf of Maine and National Data
Buoy Center Station 46050 west of Newport, and one of the
most energetic sites in the coasts of central Mediterranean
Sea (Liberti et al., 2013; Vicinanza et al., 2013; Arena et
al., 2015) from the Italian buoys network locations, Alghero
(west coast of Sardinia Island), are considered. A compre-
hensive comparison has been carried out by extracting the
ERA-Interim data of resolution 0.125◦× 0.125◦ nearest to
the selected buoy locations. The coordinates, period of data
availability, interval and number of data points for these lo-
cations are presented in Table 1.

2.2 Wave data

2.2.1 ERA-Interim data

ERA-Interim data are produced by the ECMWF, which is a
global atmospheric reanalysis from 1979, continuously up-

dated in real time and among the most recent reanalysis data
available (Berrisford et al., 2009). ERA-Interim is the first to
perform reanalysis using adaptive and fully automated bias
corrections of observations (Dee and Uppala, 2008). The pa-
rameters such as significant wave height (Hs), mean wave di-
rection and mean wave period can be obtained with 6-hourly
fields covering the whole globe, with the best space resolu-
tion of 0.125◦× 0.125◦.

There have been several studies comparing the values
of Hs between ERA-Interim dataset and buoy data at differ-
ent locations around the world to evaluate the model perfor-
mance (Shanas and Kumar, 2014; Kumar and Nassef, 2015).
It has been found that at certain locations in the Arabian sea,
the maximum Hs based on ERA dataset in deep water is
about 15 % less than that of buoy measured data, whereas
in shallow waters the ERA dataset overpredicts the maxi-
mum Hs by about 9 %. The underprediction in deep water
suggests that extreme events attained mainly during cyclones
are difficult to be captured by the model. The results show
thatHs of the model dataset is reliable in both deep and shal-
low water locations with a good degree of accuracy. The esti-
mates in this study are based on ERA-Interim wave hindcast
data, covering a period of 36 years (1979–2014). For near-
est intersection buoy locations, the data period was selected
based on buoy data availability.

2.2.2 Buoy data

The most reliable data for significant wave height are from
the buoy measurements. The available length of buoy data
is usually limited and the data prior to 1978 is scant. The
available buoy data further require significant quality con-
trol on account of large gaps of missing data and outlier
flagship measurements. In this paper data from two dif-
ferent buoys networks are processed: the Italian network
RON (Rete Ondametrica Nazionale) and the US National
Oceanic and Atmospheric Administration’s National Data
Buoys Center (NOAA-NDBC).
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The Italian buoys network (RON) started measurements
in 1989, with eight directional buoys located off the coasts
of Italy. Later it reached 15 buoys moored in deep water. For
each record, the data of significant wave height, peak and
mean period and dominant direction are given.

The NOAA manages the NDBC, which consists of many
buoys moored along the US coasts, both in the Pacific Ocean
and in the Atlantic Ocean. Some buoys were moored in the
late 1970s so that more than 35 years of data are available.
The historical wave data give hourly significant wave height,
peak and mean period. The NOAA buoy observations are
readily available and are of proven quality. The measure-
ments have passed through quality control by NOAA. It is,
however, always recommended to perform some basic qual-
ity checks.

The return value estimates acquired from the ERA-Interim
data are compared with that of NDBC stations 44005 and
46050 and at Alghero along the coast of central Mediter-
ranean Sea. Table 1 provides the coordinates and data details
of these buoy stations. ERA-Interim wave hindcast data have
been used to assess the estimates in Indian waters.

3 Extreme wave height estimation methods

3.1 General

The estimation models used in this study to obtain extreme
wave return values include the GEV and the GPD, which are
currently being adopted for the standard practice in main-
stream extreme statistics. Each distribution was fit to the data
using the maximum likelihood estimate (MLE) method and
the probability weighted moments (PWM) method. Further,
a new polynomial approximation (P-app) model prescribed
by Polnikov and Gomorev (2015) and ETS model (Boccotti,
2000) based on the concept of replacing the sequence of ac-
tual storms extrapolated from a given time series of Hs with
a sequence of equivalent triangular storms are used.

3.2 Generalized extreme value distribution model

According to extreme value theory, to form a valid distribu-
tion the sampled observations should be independent which
would mean that successive observations should not be cor-
related with one another and should be identically distributed
(Goda, 2000). In general, for the sampling of data to be used
for extreme wave analysis, three different approaches are
available. The first approach uses all the recorded data of Hs
during a number of years and fits a cumulative distribution
to these data. This approach is called the initial distribution
method (IDM). For the other two approaches, only the peaks
of wave heights are engaged. The method of block max-
ima consists of partitioning recorded data in blocks, wherein
the maximum value of each block is considered. Normally
a block could be chosen as 1 year (Lionello et al., 1992).
The POT method consists of the peaks of clustered data ex-

ceeding a given threshold. IDM observations violate the con-
ditions of identity and independence in distribution, which
invalidates the application of the common statistical meth-
ods as well as the definition of return values (Anderson et
al., 2001). The AM method and POT method both satisfy the
obligatory of independency.

According to theory of the GEV distribution, the sample
has been selected by means of AM method.

The GEV distribution for a given random variable H has
the cumulative distribution function (CDF) as

GEV(H ;µ,σ,ζ )=


exp
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where µ, σ and ξ represent the location, scale and shape
parameters of the distribution, respectively, and within the
range of −∞<µ<∞, σ > 0 and −∞<ξ <∞. By setting
the shape parameter, ξ , one can obtain the most common dis-
tributions like Gumbel (ξ = 0, Fréchet (ξ > 0) and Weibull
(ξ < 0).

The 1/T yr wave height return value, HT, based on the
GEV distribution model is given as
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3.3 Generalized Pareto distribution model

This approach is based on fitting the GPD to the POT sam-
pled data. The observations in a cluster above the threshold
are considered and calculating return values has been done by
taking into account the rate of occurrence of clusters (David-
son and Smith, 1990; Coles, 2001).

The cumulative distribution function of the GPD is given
as

GPD(H ;µ,σ,ζ )=
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1− exp
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where µ, σ and ξ represent the location, scale and shape
parameters of the distribution, respectively, and within the
range of 0<x <∞, σ > 0 and −∞<ξ <∞. When ξ = 0
the GPD is said to amount to the exponential distribution
with mean σ ; when ξ > 0, it is the Pareto distribution; and
when ξ < 0 it is a special case of the beta distribution.

The 1/T yr wave height return value based on the GPD
distribution model, HT, is given as

HT =

{
µ+

σ

ζ

(
1− (λT )−ζ

)
, for ζ 6= 0

µ+ σ ln(λT ), for ζ = 0,
(4)
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where λ=Nu/N , with Nu being the total number of ex-
ceedances above the selected threshold µ0 andN the number
of years in the record.

There are several parameter estimation methods for fit-
ting the above candidate distribution functions to the sampled
wave data (Goda, 2000). The method of moments (MM),
PWM method and the MLE are more preferred estimation
methods since these are more flexible, particularly when the
number of parameters is increased. The MM yields a large
bias particularly for small size samples and this method was
not used in the present study. The parameters of the above
distributions are derived according to the methods of MLE
and PWM.

The threshold selection in GPD analysis is an important
practical problem, which is analogous to the block size in
the block maxima approach. The threshold value represents
a compromise between bias and variance. Too low a thresh-
old violates the asymptotic basis of the GPD model, leading
to a bias. Too high a threshold will generate fewer values
of excess to estimate the model, leading to high variance.
There is extensive literature on the attempt to choose an opti-
mal threshold by Neelamani (2009) and Caires (2011). In this
study, the threshold selection is based on the mean residual
life plots introduced by Davison and Smith (1990).

The mean residual life plot is based on the theoretical
mean of the GPD given as

E[H ] = µ+
σ

1− ξ
, for ξ < 1. (5)

The mathematical basis for mean residual life plots method
is

E
[
H −µ0/X > µ0 > 0

]
=
σ + ζy

1− ζ
, (ζ < 1). (6)

If H is following GPD distribution, then the mean excess
over a threshold µ0 (for y >µ0) with slope ζ/(1− ζ ) is a
linear function of µ0. Thus, we can draw a plot in which the
ordinate is the sample mean of all excesses over that thresh-
old and the abscissa is the threshold.

A mean residual life plot consists in representing points:{(
µ0,

1
m

n∑
i=1

Hi,m−µ0

)
: µ0 ≤Hmax

}
, (7)

where m is the number of observations (Hi , i= 1, 2, m)
above the threshold µ0, and Hmax is the maximum of the
observations. According to the central limit theorem, confi-
dence intervals are added to this mean residual life plot as
the empirical mean to be normally distributed. However, this
normality does not hold for high threshold as there are less
and less excesses.

3.4 Polynomial approximation model

Polnikov and Gomorev (2015) proposed to use the extrapola-
tion of polynomial approximation constructed for the shorter

part of the tail of probability function to estimate the return
values of wind speed and wave height.

This method involves the construction of an analytical ap-
proximation Fap(H), aimed for its extrapolation beyond the
observed maximum value HM. The approximation should
be restricted to a shorter domain lying above the uppermost
mode of the histogram considered of the function F(H). The
domain suitable for approximation can be determined by the
condition

Hl ≤H ≤Hh ≤HM, (8)

whereHl andHh are the lower and the upper edges of the do-
main of F(H), used for constructing approximation Fap(H).
The number of points (NM) considered in the histogram is
HM/1H and NS is defined as

NS = (HM−Hh)/1H. (9)

The number of points (NT) used for building approximation
Fap(H) is defined as

NT = (Hh−Hl)/1H + 1. (10)

The approximation Fap(H) should be built in the logarith-
mic coordinates due to the existence of fewer data at the tail
of F(H), providing importance to the tail values. It allows
assessing the strong variability of the tail of function F(H)
near the maximum value of the series, depending on the
length of the series. To exclude the application of fixed statis-
tics, the approximation function Fap(H) in the form of a
polynomial of degree, n, is considered, the value of which
may vary. The varying n allows obtaining the approximation
Fap(H , n) with an accuracy higher than the case of using the
fixed statistical distributions.

The statistical distribution with the provision function is of
the form

Fap(H)= exp

[
i=n∑
i=0

akH
k

]
. (11)

Once the approximation function Fap(H) is obtained from
Eq. (11), the return value, HR, appearing once for NR years,
can be deduced by inverting the formula

F (HR)=1t/8760 ·NR, (12)

where 1t is the interval of discrete of data observations.
Another principal feature of polynomial approximation

Fap(W) is the standard deviation δ, defined by the formula(
1
NT

Hi=Hh∑
Hi=Hl

[
ln(F (Hi))− ln

(
Fap (Hi)

)]2)1/2

= δ. (13)

Obviously, the lower δ is, the higher accuracy of approxima-
tion can be achieved, which is more preferable.
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3.5 Equivalent Triangular Storm model

The ETS model (Boccotti, 2000; Arena and Pavone, 2006,
2009) is applied for calculating return values of significant
wave height for given thresholds of return period. The ETS
approach is based on the assumption that given a sequence
of actual storms it may be replaced by an equivalent storm
sequence maintaining the same wave risk. The validity of the
above assumption is guaranteed by the statistical equivalence
between the actual storm and the related equivalent triangu-
lar one. The ETS associated with a given storm is achieved
by means of two parameters: the triangle height a and its
base b (Fig. 2). The former is an intensity parameter and is
equaled to the maximum significant wave height during the
actual storm; the latter is a duration parameter and it is de-
termined following an iterative procedure that imposes the
equality between the maximum expected wave heights of ac-
tual and triangular storms. It has been numerically proven
that by imposing this equality not only is the area under the
exceedance probability curves of the maximum wave height
the same but those curves also tend to coincide (Boccotti,
2000; Arena and Pavone, 2006; Laface and Arena, 2016).

Considering all these aspects, it emerges that the actual
storm and the ETS sequences (actual and equivalent trian-
gular seas) have the same number of storms, each of them
characterized by the same maximum significant wave height
and the same probability P(Hmax>H) that the maximum
wave height is greater than a fixed threshold H . The con-
siderations above enable us to affirm that the return period
of a sea storm with given characteristics is the same if cal-
culated starting from the actual storm sequence or the ETS
one. Referring to the equivalent triangular sea, an analytical
solution for the calculation of the return period R(Hs>h)
of a sea storm whose maximum significant wave height is
greater than a given threshold h has been developed by Boc-
cotti (2000).

R(Hs > h)=
b(h)

hp (Hs = h)+P (Hs > h)
, (14)

where b(h) is the base-height regression function of
ETS, P(Hs>h) is the probability of exceedance of the
significant wave height Hs at the considered site and
p(Hs=h)=−

dP(Hs>h)
dh is the probability density function

of Hs.
The calculation of return values ofHs by means of Eq. (14)

requires the determination of two functions:

– the base-height regression function, b(h), which gives
the average value of the base b of ETS for a given storm
height h;

– the probability P(Hs>h).

The function b(h) is determined starting from the ETS se-
quence diving storm in classes of storm intensity a=h of

Figure 2. Typical representation of actual storm and associated
ETS.

1 m width and the taking the average bm of storm durations
and of storm intensities am. Then the data am and bm ob-
tained in this way are reported in a Cartesian plot and fitted
by an exponential law as the following:

b(a)= k1 exp(k2a), (15)

where k1 (h) and k2 (m−1) are parameters depending on the
characteristics of the storm at the considered site.

Concerning the distribution of the significant wave height
P(Hs>h), a three-parameter Weibull distribution is consid-
ered.

P (Hs > h)= exp
[
−

(
h−hl

w

)u]
, (16)

where u, hl and w are the characteristic parameters at the
considered location. In particular, u and hl are the shape pa-
rameters and w is the scale parameter of the distribution.

4 Results

In this study, return values from ERA-Interim data are com-
pared with the values obtained from buoy data at the same
location for different estimation models. Further study of
the various uncertainties due to the parameter estimation
method, the sample size, sample interval and location con-
ditions involved in this analysis are also examined.

4.1 GEV analysis

In the application of generalized extreme value distribution
to the sampled AM data, the scale, shape and location pa-
rameters can be used to make statements about the probabil-
ity of the annual maximum exceeding a particular level. A
change in any of the parameters can affect the long-period
return levels.

The parameter estimation is done by the MLE and PWM
methods (Hosking et al., 1985) and the obtained parameters
are shown in Table 2. It has been observed that the shape
parameter is positive for ERA-Interim data, indicating that
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Table 2. Estimated parameters from PWM and MLE methods for GEV model.

Data PWM method MLE method

ξ µ σ RMSE ξ µ σ RMSE

ERA IN-1 0.1125 3.1523 0.3849 0.053 0.1157 3.1572 0.3779 0.045
ERA IN-2 0.2085 1.9181 0.3108 0.081 0.4971 1.8838 0.2499 0.039
ERA IN-3 0.0311 2.8386 0.3279 0.032 0.0296 2.8413 0.3270 0.035
ERA IN-4 0.1169 3.6889 0.4553 0.033 0.1118 3.6975 0.4485 0.029
NOAA 44005 −0.1642 6.7735 1.0880 0.052 −0.1811 6.7958 1.0571 0.023
ERA 44005 −0.0866 5.0506 0.5649 0.031 0.0457 5.0706 0.5741 0.030
NOAA 46050 −0.1190 8.9863 1.5655 0.052 −0.1038 8.9429 1.6407 0.039
ERA 46050 −0.0251 7.1700 0.7646 0.047 0.0554 7.1705 0.7268 0.051
RON Alghero −0.5089 7.4373 1.4405 0.112 −0.4992 7.4498 1.3588 0.043
ERA Alghero 0.0746 5.555 0.6298 0.069 −0.0874 5.5719 0.6003 0.061

these data would follow the Frechét distribution and the tail
of the cumulative distribution function decreases gradually.

The influence of estimated parameters in fitting the data to
the GEV model is presented in Fig. 3a. It shows the level of
fitting of the empirical CDF with the GEV PWM and GEV
MLE models. The difference in the normal coordinates in
their fitting with empirical CDF is insignificant. Figure 3b
shows the variation in tail estimates of the PWM and MLE
parameter estimation methods in logarithmic scale. The re-
sults show that for buoy and ERA-Interim datasets the PWM
method of parameter estimation yields better estimates com-
pared to the MLE method.

The statistical parameter, root mean square error (RMSE)
was estimated in order to check the level of fitting of sampled
data to the GEV distribution model. The RMSE is a resid-
ual between the empirical cumulative distribution obtained
from the actual observed data and the theoretical GEV model
cumulative distribution. The lower the value of RMSE, i.e.
nearer to zero, the better the fit of sampled data to the GEV
distribution model. The fitting of GEV to buoy and ERA-
Interim data is found to be good for both PWM and MLE
methods. The RMSE values of the MLE estimates are usu-
ally smaller than those of the PWM estimates for both buoy
and ERA-Interim data.

4.2 GPD analysis

In POT method, the selection of a suitable threshold value
is the key in achieving a robust sample dataset. The mean
residual plot, between the mean excess GPD and threshold,
helps in determining a proper range of threshold to be se-
lected (Coles, 2001). Such plots with 95 % confidence for
the data ERA IN-1 (Fig. 4) appear to have two slopes with
the major transition at the threshold range of 1.5 to 2.5, in-
dicating the range of threshold could possibly be selected.
However, attention should be paid because too-high thresh-
olds can result in a less sampled dataset which results in a
higher variance of the GPD model.

The sample used in the peaks over threshold method has
to be extracted in such a way that the data can be modelled
as independent observations. A process of declustering helps
to collect only the peaks within the clusters of successive ex-
ceedances of a specified threshold and are retained in such a
way that they are sufficiently apart (so that they belong to “in-
dependent storms”). Specifically, in the present applications,
we have treated cluster maxima at a distance of less than
48 h apart as belonging to the same cluster (Caires, 2011).
Table 3 provides the selected threshold and the number of
exceedances of that specified threshold with a 48 h interval.
It is seen that the threshold values are observed to be depen-
dent on the length, location and interval of the datasets. The
major factor has to be the location since the higher latitude
locations are exposed to more severe wave and wind condi-
tions than those at the lower latitudes.

For parameter estimation, the PWM and MLE methods
are used. The MLE has a considerable statistical motivation
but can turn out to be poor estimators, especially in the case
where the number of estimated parameters is large. So the
approach chosen here was to utilize a variety of techniques
like PWM and MLE for exploratory fitting for the probability
model and choose the best possible parameters.

To verify the estimated parameters for the GPD model,
quantile–quantile (QQ) plots were used. In Fig. 5a, the QQ
plots for the dataset NOAA44005 are shown, comparing the
estimated GPD with the sample data for PWM parameter es-
timation method. In order to check the influence of param-
eters resulting from PWM and MLE parameter estimation
models, the RMSE was estimated for GPD model also and
presented in Table 3.

Comparing the estimates and the fits, one can conclude
that the MLE fits seem less adequate and that the shape
parameter estimates are lower than those of the PWM fits.
These results support the recommendations of Hosking et
al. (1985) to preferably use the PWM method for GPD or
GEV estimation from the relatively short duration of data
with limited heavy-tailed cumulative distributions. Figure 5b
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Figure 3. (a) Comparison of GEV model CDF to the empirical CDF for NOAA 44005 and ERA IN-4 and (b) variation of tail GEV model
CDF in logarithmic coordinates for NOAA 44005 and ERA IN-4.

shows the return value GPD plot of PWM fit to the dataset
NOAA44005.

4.3 Polynomial approximation method analysis

P-app method has a distinct advantage of selecting the opti-
mum choice of the parameters NS, NT and n. The detailed
analysis demonstrates that all approximation parameters (n,
NT and NS) are equally important. Figure 6 shows the appli-
cation of the P-app method for both buoy and ERA-Interim
data at Alghero buoy station. In the abovementioned figure,
the bottom level (ln(1−F )=−12.6) indicates the probabil-
ity of occurrence once every 100 years and can be deduced
by Eq. (12) with a 3 h interval of discrete data observations.
For 1 and 6 h intervals of data observations, the probability
of occurrence once in 100 years is −13.7 and −11.9 respec-
tively.

One can see the adaptation of P-app method to the real
behaviour of the tails for provision functions. For the Alghero
location buoy data, the optimized parameters obtained are
NS= 0, NT= 8 (points used for approximation) and n= 2

Figure 4. Mean residual plot for the dataset ERA IN-1 with 95 %
confidence limits.
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Table 3. Estimated parameters from PWM and MLE methods for GPD model.

Data Threshold No. of PWM method MLE method

µ0 exceedance σ ξ RMSE σ ξ RMSE

ERA IN-1 2.5 153 0.4429 0.0415 0.028 0.4489 0.0286 0.026
ERA IN-2 1.5 160 0.2515 0.1438 0.045 0.2471 0.1588 0.052
ERA IN-3 2.5 107 0.3350 −0.0485 0.036 0.3149 0.0143 0.025
ERA IN-4 3.0 154 0.5428 −0.0651 0.035 0.5200 −0.0206 0.025
NOAA 44005 5.0 227 1.3147 −0.1677 0.055 1.3396 −0.1892 0.063
ERA 44005 4.0 190 0.7335 −0.1159 0.201 0.6938 −0.0560 0.025
NOAA 46050 6.0 232 1.4608 −0.0200 0.019 1.5058 −0.0514 0.031
ERA 46050 5.0 203 1.5480 −0.3879 0.126 1.2886 −0.1654 0.066
RON Alghero 5.0 153 1.6541 −0.2957 0.100 1.6110 −0.2614 0.089
ERA Alghero 4.0 128 0.9342 −0.1474 0.053 0.9642 −0.1835 0.066

Figure 5. (a) Quantile–quantile plot of GPD model for
NOAA 44005 data and (b) return level plot of GPD model for
NOAA 44005 data.

Table 4. Selected optimum values of approximation parameters.

Data No. of n δ

points
used for

approximation
NT

ERA IN-1 6 2 0.176
ERA IN-2 6 3 0.044
ERA IN-3 5 3 0.032
ERA IN-4 7 3 0.063
NOAA 44005 8 2 0.118
ERA 44005 7 1 0.197
NOAA 46050 5 2 0.026
ERA 46050 6 1 0.200
RON Alghero 8 2 0.100
ERA Alghero 7 2 0.105

(degree of approximation function) to arrive at the optimum
return value as shown in Fig. 6.

The optimum choice of parameters will also depend on the
standard deviation δ (Eq. 13), which resembles the residual
between the actual tail of the provision function and the P-
app tail fitted to it. The lower the value of δ, i.e. nearer to
zero, the better the fit between the actual tail of the provision
function and the P-app with tail fitted. The parameters NS,
NT and n for all the datasets including the resulted standard
deviation, δ, are provided in Table 4.

4.4 Analysis of ETS model

The calculation of the 100-year return values via ETS model
is done by means of Eq. (14), the base-height regression
function Eq. (15) and the probability distribution Eq. (16)
of Hs at the examined location. The base-height regres-
sion function is determined starting from the storm sequence
at the considered site, while the probability distribution is
achieved processing the whole dataset of Hs. An important
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Figure 6. Polynomial approximation for series of wave heights Hs at Alghero buoy station for buoy and ERA-Interim datasets.

aspect to be taken into account in estimating the parameters
of both Eqs. (15) and (16) is the time interval between two
successive data of Hs. A value of 3 to 6 h should be appro-
priate for estimating the parameters of the probability dis-
tribution in order to guarantee the stochastic independence
between successive events, but this could be too high for de-
termining the parameters of the base-height regression func-
tion.

In fact, Arena et al. (2013) have shown that as the time in-
terval between two successive Hs increases, the peak of the
storm may not be well identified, involving flat storm history
that led to an increase of the duration b of ETSs with respect
to the case with the lower time interval between Hs data.
Such situations are those of wave model data. In this paper,
both wave model and buoy data are considered.

To determine the base-height regression function param-
eters, the actual storm sequence is identified starting from
Hs time series, and for each actual storm the parameters a
and b of ETSs are calculated (Boccotti, 2000). Then the ETSs
are divided into classes of Hs of 1 m width and the average
value am and bm of a and b for each class is considered.
The sequence am, bm is plotted in a Cartesian diagram and
fitted by an exponential law as the Eq. (15). The determi-
nation of the base-height regression function, despite being
very simple from a computational and mathematical point of
view, requires careful attention because of its sensibility to
the time interval between the data of Hs used in the analy-
sis. In this regard, it is worth noting that ETS duration pa-
rameter b is strongly dependent on the actual storm structure
close to the storm peak. Specifically, it tends to increase as
the storm structure becomes flat and it is quite small for steep
storms. When the data sampling interval is more than 1 to 3 h,
one may have very flat storms. Thus the calculation may lead
to huge values of duration b. This aspect can cause return
values of Hs to be underestimated (Arena et al., 2013). This
aspect strongly affects predictions when wave model data are
processed (3 to 6 h between two successive data of Hs). For

Table 5. Base-height regression parameters k1 and k2 calculated by
considering a storm sample with actual durations greater or equal to
18 h; probability distribution parameters u, w and hl.

Data u w (m) hl (m) k1 (h) k2 (m−1)

ERA IN-1 1.320 0.714 0.459 397.61 −0.251
ERA IN-2 0.773 0.142 0.481 255.73 −0.097
ERA IN-3 1.600 0.851 0.488 348.02 −0.086
ERA IN-4 1.504 1.099 0.498 397.6 −0.159
NDBC 44005 1.121 1.150 0.409 76.125 0.0308
ERA 44005 1.141 0.884 0.461 114.05 −0.071
NDBC 46050 1.333 1.945 0.480 154.9 −0.101
ERA 46050 1.625 2.321 0.000 106.94 −0.055
RON Alghero 1.155 1.299 0.000 318.37 −0.235
ERA Alghero 1.227 1.157 0.000 135.53 −0.035

this reason, a further step is required for the calculation of bm
when processing wave model data. A good practice is to do
the analysis in conjunction with buoy data close to the lo-
cation under study. In these cases, the base-height regression
function calculated from buoys is utilized to correct the base-
height regression function obtained from model data.

Specifically, considering an increase of b due to high time
interval between Hs data, the regression should be corrected
considering a reducing factor r , defined as the ratio between
the average values of the base calculated starting from buoy
data moored close to the considered site and the average
value calculated by means of wave model data. The regres-
sion parameters k1 and k2 at each considered site are summa-
rized in Table 5 in conjunction with the parameters u, w and
hl of the probability distribution Eq. (16).

5 Discussions

From the results, it is observed that the estimates from buoy
observations are higher compared to the estimates for ERA-
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Table 6. 30-year return value estimates (m).

Data Measured GEV GPD P-App ETS

maximum PWM MLE PWM MLE

ERA IN-1 4.91 4.8 4.8 4.9 4.8 4.6 4.7
ERA IN-2 3.59 3.5 4.1 3.3 3.4 3.6 3.3
ERA IN-3 4.83 4.0 4.0 3.9 4.1 4.6 4.3
ERA IN-4 6.17 5.6 5.5 5.1 5.5 5.9 5.9
NOAA 44005 10.10 9.6 9.5 9.5 9.4 10.6 9.9
ERA 44005 8.27 7.3 7.2 6.5 7.0 7.9 8.0
NOAA 46050 14.05 13.7 13.4 12.4 12.3 14.1 12.8
ERA 46050 10.93 9.9 9.9 8.0 9.0 10.2 9.5
RON Alghero 9.88 9.8 9.7 9.4 9.5 9.2 10.3
ERA Alghero 7.51 7.5 7.4 6.6 6.9 7.6 7.4

Table 7. 100-year return value estimates (m).

Data Measured GEV GPD P-App ETS

maximum PWM MLE PWM MLE

ERA IN-1 4.91 5.5 5.5 5.65 5.5 4.8 5.1
ERA IN-2 3.59 4.3 5.6 4.0 4.1 4.0 3.6
ERA IN-3 4.83 4.5 4.5 4.2 4.4 4.7 4.4
ERA IN-4 6.17 6.5 6.6 5.6 6.0 6.4 6.1
NOAA 44005 10.10 10.3 10.1 10.1 10.0 11.4 10.7
ERA 44005 8.27 8.3 8.0 7.2 7.9 9.0 8.4
NOAA 46050 14.05 15.1 14.6 14.2 14.1 15.2 13.8
ERA 46050 10.93 10.9 11.0 8.9 9.8 11.3 11.1
RON Alghero 9.88 10.1 10.0 9.9 10 9.7 12.5
ERA Alghero 7.51 8.5 8.0 7.7 8.0 8.2 8.7

Interim datasets. This trend is being observed from all the
estimation models. A variation of 20 to 30 % while compar-
ing maximum observed Hs of buoy data and ERA-Interim
at NOAA44005, NOAA46050 and Alghero locations is ob-
served. This, in turn, will result in underestimation of the re-
turn value of ERA-Interim data.

The underprediction of ERA-Interim data suggests that
high wave events mainly due to the cyclones are difficult to
capture by ECMWF numerical model. It is a familiar phe-
nomenon and challenge that the smoothing effect implanted
in the numerical model will lead to the flattened variability
at relatively high frequencies, resulting in the missing peaks.
An additional potential explanation for the underprediction
is that the simulated ERA-Interim data contains 6-hourly in-
tervals of Hs data. It is possible that, because of the lower
sampling rate, the maximum wave heights in a storm occur
between observations will not be recorded. To overcome this,
it is obvious that the ECMWF numerical modelling system
needs further improvement in correction or calibration of the
ERA-Interim data, especially when this hindcast is used for
the extreme wave analysis.

Final results on the 30- and 100-year extreme wave esti-
mates, obtained by the GEV, GPD, ETS and P-app methods

described above, are presented in Tables 6 and 7. The vari-
ation of these estimates from the measured maximum wave
heights will give a statistical validation of the performance
of the estimation models. The percentage of variation of 30-
and 100-year return value estimates from measured 36-year
maximum wave height is calculated for this analysis. Here
one can observe the following principal peculiarities from
the results of abovementioned statistical validation method-
ology.

The GEV and GPD methods show the 30-year return val-
ues smaller than the measured maximum Hs for all the loca-
tions mostly by an extent of 10 to 25 %. In the cases of sim-
ulated data, these models exhibit high deviations from mea-
sured maximumHs. This peculiarity is because of neglecting
the behaviour of the tails of provision functions, accepted in
GEV and GPD methods. As a result, this leads to underesti-
mating the return values. This is a reasonable shortcoming of
these methods, as far as one cannot forecast extreme smaller
return values one cannot forecast return values much smaller
than those observed already.

The GEV model with AM sample resulted in overestima-
tion of return values compared to the GPD model with peaks
over threshold approach. The GEV estimation model consid-

www.nat-hazards-earth-syst-sci.net/17/409/2017/ Nat. Hazards Earth Syst. Sci., 17, 409–421, 2017



420 S. Samayam et al.: Assessment of reliability of extreme wave height prediction models

ers only the highest Hs in the year, which might lead to the
overestimation of AM in comparison with the other method.
For most of the locations, there is not much variation in the
results of the PWM and MLE parameter estimated GEV and
GPD models. But Hosking et al. (1985) recommended to
apply the PWM parameter estimation method for GPD and
GEV distribution models from relative short datasets with not
too heavy-tailed distributions. Furthermore, PWM works for
a wider range of parameter values than MLE method.

The results from the P-app method are remarkably closer
to the measured maximum values than those obtained by
the GEV, GPD and ETS method, with variation ranges be-
tween 5 and −7 %. The P-app method shows consistency
in 100-year estimated return values for both simulated and
buoy wave height datasets, as these varies consistently be-
tween 7 and 13 % from the measured maximum values. GEV,
GPD and ETS methods fail in the abovementioned criterion
as variation is as high as 56 % and as low as−19 %, which is
not possible in nature.

This consistency of P-app method estimates is due to the
dependence of return values on the actual kind of the tail of
provision function, which is dependent on the entire sample
of the time series. The only disadvantage of the P-app method
(Fap(Hs, n)) is the necessity to control reliability of its ex-
trapolation, as far as the extrapolation of a polynomial with
the order n> 1 may have twists and extremes. This well-
known fact could be provided by a considerable variability of
the “tail” for F(W). Such an extrapolation is implausible, of
course. Therefore, it is necessary to vary the parameters NS,
NT and the order of polynomial n in such a manner that the
twists of extrapolation could be avoided.

6 Conclusions

In this study, we chose the simulated ERA-Interim wave data
for the two following reasons. First, they have more regular
coverage for the whole World Ocean, and the Indian coast in
particular. Second, numerically simulated datasets have long
and regular continuous series, which is very important for the
extreme value statistical aims.

This study focused on the estimation of the extreme signif-
icant wave heights only. The analyses carried out and result
obtained will aid in the development of a 100-year extreme
wave map for the Indian water domain, which may serve as
a quick guide to identify regions where extremes lie within
the design criteria of the coastal and offshore structures to be
constructed.

We have considered four different approaches of the re-
turn value estimation: the GEV distribution model based on
annual maxima sample, the GPD distribution model based on
peaks over threshold sample, the ETS model based on storms
and the P-app method based on extrapolation of the tail of the
provision function. All of them have their own advantages
and shortcomings.

The main drawback of the GEV and GPD methods is the
high variation in underestimating or overestimating return
values with respect to the measured maximum values in the
time series. The shortage of the P-app method is related to
the ambiguity of the return values estimations, obtained from
different parts of the full time series. It is also found that the
values estimated based on GEV model were slightly higher
than those from the GPD. However, the GPD method with
peaks over threshold sample is preferable in the locations of
multiple storm events in a single year. In turn, the estimates
through the P-app method, depend on the actual kind of tail
of provision function, showed the consistency in 100-year
estimated return values for both simulated and buoy wave
height datasets, as these vary consistently between 7 and
13 % from the measured maximum values.

It is observed that the return value estimates from buoy
observations are higher when compared to the estimates for
ERA-Interim datasets. The underprediction of ERA-Interim
data suggests that high wave events mainly due to the cy-
clones are difficult to capture by ECMWF numerical model.
To overcome this, it is obvious that the ECMWF numerical
modelling system needs further improvement in correction
or calibration of the ERA-Interim data, especially when this
hindcast is used for the extreme wave analysis.

7 Data availability

ERA-Interim significant wave height data produced by
the ECMWF can be accessed from http://apps.ecmwf.int/
datasets/data/interim-full-daily/levtype=sfc/. The National
Oceanic and Atmospheric Administration (NOAA)/National
Data Buoy Center (NDBC) buoy observations can be
accessed from http://www.ndbc.noaa.gov/station_history.
php?station=44005 and http://www.ndbc.noaa.gov/station_
history.php?station=46050.
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