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Abstract. Bootstrap resamples can be used to investigate the
tail of empirical distributions as well as return value esti-
mates from the extremal behaviour of the sample. Specifi-
cally, the confidence intervals on return value estimates or
bounds on in-sample tail statistics can be obtained using
bootstrap techniques. However, non-parametric bootstrap-
ping from the entire sample is expensive. It is shown here that
it suffices to bootstrap from a small subset consisting of the
highest entries in the sequence to make estimates that are es-
sentially identical to bootstraps from the entire sample. Simi-
larly, bootstrap estimates of confidence intervals of threshold
return estimates are found to be well approximated by using
a subset consisting of the highest entries. This has practical
consequences in fields such as meteorology, oceanography
and hydrology where return values are calculated from very
large gridded model integrations spanning decades at high
temporal resolution or from large ensembles of independent
and identically distributed model fields. In such cases the
computational savings are substantial.

1 Introduction

Bootstrap resamples of time series are commonly used to ob-
tain non-parametric confidence intervals (CIs) on return val-
ues (Naess and Clausen, 2001; Naess and Hungnes, 2002)
and to investigate the behaviour of the tail of the empirical
distribution (Coles, 2001; Beirlant et al., 2006; Qi, 2008).
Although non-parametric CIs tend to be too narrow, see Ky-
selý (2008), the procedure itself is algorithmically and nu-
merically straightforward to implement and is thus a conve-
nient technique for rapidly assessing the width of CIs with-
out having to assume a certain parametric distribution. How-
ever, this approach quickly becomes cumbersome for large

data sets as it demands random draws from the entire sam-
ple which subsequently must be sorted to get to the upper
percentiles. When handling long model integrations in mete-
orology, hydrology and oceanography with spatially gridded
fields of typically 106 grid points this brute-force approach
becomes impractical. Such quantities are regularly encoun-
tered when estimating return levels from atmospheric reanal-
yses (Kalnay et al., 1996; Saha et al., 2010; Compo et al.,
2011; Dee et al., 2011; Poli et al., 2016), wave hindcasts
(Swail and Cox, 2000; Caires and Sterl, 2005; Gaslikova
and Weisse, 2006; Breivik et al., 2009; Reistad et al., 2011;
Aarnes et al., 2012) and long climate integrations that cover
decades or even centuries (Hersbach et al., 2015). When even
larger data sets are used, such as the ensembles of seasonal
integrations (Stockdale et al., 2011; Molteni et al., 2011), as
was done by Van den Brink et al. (2005) on a sample amount-
ing to nearly 1000 years, finding ways to reduce the size of
the samples becomes essential. That is the subject of this pa-
per.

We will present a simple argument for why it is sufficient
to retain only a small subset K0 consisting of the highest en-
tries in a sample when estimating tail statistics such as return
levels and their associated CIs by means of non-parametric
bootstrapping. These highest entries will normally only rep-
resent a small fraction of the total sample. This reduces the
need for sorting and storage by several orders of magnitude.
The method also reduces the task of sorting the original sam-
ple as only the K0 highest entries are kept.

This paper is organized as follows. Section 2 presents the
binomial argument for why we can bootstrap from a small
subset consisting of the highest entries in the original sam-
ple. Section 3 presents three examples of bootstrapped CIs
of various tail statistics for a data set of significant wave
height from the central North Sea. Here we also show how
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the method laid out in Sect. 2 can be used in practice to de-
termine how many entries must be kept in order to perform
an unbiased bootstrap. Section 4 summarizes the results and
presents the conclusions.

2 Bootstrapping from the K0 highest entries in a
sample

Consider the sample D0 of independent and identi-
cally distributed (iid) random numbers X1,X2, . . .,XN .
Let XN,1 ≤XN,2 ≤ ·· · ≤XN,N denote the order statis-
tics on D0. When investigating a statistic θ which is
a function of the k highest entries in D0, i.e. θ =

f (XN,N−k+1,XN,N−k+2, . . .,XN,N ), it is common to form
M bootstrap resamples D1,D2, . . .,DM , each of length N
(Diaconis and Efron, 1983; Efron and Gong, 1983). This
method can be used to compute the CIs around extreme
value estimates (Breivik et al., 2013, 2014). The proce-
dure is computationally intensive and memory consuming,
as it involves bootstrapping and storing M ×N numbers
and performing M sorts, each a process of O(N log2N)

operations (Press et al., 2007, pp. 423–427). Since we
are only interested in combinations of the k highest en-
tries in the resamples D1,D2, . . .,DM , we will explore
the possibility of instead resampling from only the high-
est XN,N−K0+1,XN,N−K0+2, . . .,XN,N−k+1, . . .,XN,N en-
tries in D0 (K0 > k). This will be referred to as the resample
threshold and is sometimes more conveniently written as the
percentage of data left out, P0 = 100(1−K0/N).

The probability of drawing one of the highestK0 entries in
D0 is a binomial problem with probability p =K0/N . The
probability of making exactly k draws (with replacement)
from the highest K0 in N draws is thus given by the bino-
mial probability mass function (Zwillinger, 1996, p. 581)

fbinom(k;N,p)= P(X = k)=

(
N

k

)
pk(1−p)N−k, (1)

where X is a random variable representing the number of
draws. The probability of drawing fewer than the required k
entries from the highestK0 is given by the binomial cumula-
tive distribution function

Fbinom(k− 1;N,p)= P(X < k)=
k−1∑
i=0

(
N

i

)
pi(1−p)N−i . (2)

A full bootstrap resample Di of length N from D0
will contain Ki entries from the highest K0, and Ki ∼

Binom(N,p) where E[Ki] =K0 since the expected (mean)
value of the binomial distribution (Eq. 1) is

µbinom =Np =K0. (3)

The variance is

σ 2
binom =Np(1−p)=K0−K

2
0/N ≈K0 when K0�N.

(4)

Denote a short bootstrap resample from theK0 highest en-
tries in D0 as D̃i . Two conditions must be met for D̃i to be
an unbiased substitute for Di :

1. The number K0 must be set large enough that the prob-
ability that we miss entries smaller than XN,N−K0+1 in
D0 is below a chosen threshold pc.

2. The length K̃i of D̃i must have the same mean and vari-
ance as Ki (Eqs. 3–4).

To fulfil condition (1) it is sufficient to decide on an accept-
able level for pc. This probability can be found by consulting
Eq. (2). It is important to note that choosingK0 too small will
bias the statistic θ̃ = f (D̃i) since it will be estimated from
bootstrap samples that miss entries smaller thanXN,N−K0+1.
We will for this reason refer to pc as the probability of con-
tamination as it gives the probability that the bootstrap es-
timate is biased because we have kept too few entries from
the original sampleD0. A very conservative bound on p, and
thus on K0 =Np, can be found quickly by consulting Ho-
effding’s formula (Hoeffding, 1963),

F(k;N,p)≤ exp
(
−2
(Np− k)2

N

)
, (5)

valid when k ≤Np. A useful quantity is the ratio r =K0/k

of upper entries retained (K0) and the minimum number k
required to form a bootstrap estimate of the statistic in ques-
tion for a given probability of contamination pc. This can be
found from Eq. (2), but when N is large the Poisson distri-
bution is a good approximation and more practical to work
with,

FPoisson(k− 1;rk)= P(X < k)= e−rk
k−1∑
i=0

(rk)i

i!
. (6)

Figure 1 shows the minimum acceptable ratio K0/k as a
function of k for levels of pc ranging from 10−5 to 0.05. The
probabilities can be computed from Eq. (2) (or more conve-
niently from Eq. 6). As can be seen, for all values of k, the
ratio is comfortably below 15, and for values of k larger than
10 a ratio of 3 is sufficient even for a confidence level of
10−5. See the Appendix for a more detailed explanation of
the ratio curves used throughout.

Condition (2) can be handled by randomly perturbing the
size of the resamples, K̃i , such that it mimics the number of
draws, Ki ∼ Binom(N,p), that would have been made from
the upper K0 entries of D0 in a full bootstrap Di . In practice,
as we shall see, the statistics are quite insensitive to these per-
turbations as long as K0 has been chosen sufficiently large.

3 Bootstrapping confidence intervals

Here we present worked examples of how the two conditions
presented above can reduce the problem of estimating CIs on
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Figure 1. The ratio K0/k as a function of k, the minimum number
of bootstrapped entries needed for the statistic in question, for lev-
els of probability of contamination ranging from 10−5 (uppermost
curve) to 0.05 (lowermost curve). The curve representing 1 % prob-
ability of contamination is marked in red (with diamonds) as it is a
reasonable confidence level.
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Figure 2. Histogram of the significant wave height from archived
ensemble forecasts in the central North Sea (Ekofisk, 56.5◦ N,
003.2◦ E) at +240 h lead time. Entries above P99.1, corresponding
to threshold U0, are coloured red whilst entries exceeding P99.7,
corresponding to the upper threshold, u, are in black. The highest
entries are individually marked with asterisks.

tail statistics for a data set of independent ensemble forecasts
at long lead time (N = 330000). We use archived ensemble
forecasts (Molteni et al., 1996) of significant wave height in
the central North Sea (near the Ekofisk oil field at 56.5◦ N,
003.2◦ E; a histogram of the data set used is shown in Fig. 2)
at a forecast lead time of 240 h. One-hundred-year return val-
ues from these ensembles have previously been reported by
Breivik et al. (2013, 2014).

3.1 Example 1: confidence intervals on in-sample
return estimates

Consider as an example the problem of how to calculate in-
sample return estimates from the sample of independent fore-
casts presented above. These forecasts can be considered iid
(as they are not from correlated time series). An in-sample
return estimate is calculated directly from the tail of the em-
pirical distribution rather than by applying extreme value
analysis. As explained by Breivik et al. (2013) the indepen-
dent forecasts presented in Fig. 2 add up to the equivalent
of 229 years under the assumption that each forecast repre-
sents a time interval 1t = 6 h. A 100-year return estimate is
then a linear interpolation betweenXN,N−1 andXN,N−2 (the
second and third highest entries in D0),

H100 = 0.67XN,N−1+ 0.33XN,N−2. (7)

Now, clearly k = 3 since we need the second and third high-
est entries in our resamples to form a return estimate. Let
us now tentatively keep the K0 = 1000 highest entries and
bootstrap from these instead of from the entire sequence to
compute the CIs on the linear combination of the second
and third highest entries given by Eq. (7). The size K̃i of
the resamples, D̃i , is drawn from the binomial distribution
(Eqs. 3–4) with µ=K0 and σ 2

≈K0. What is the probabil-
ity pc that one of the three highest entries in a bootstrapped
sequence should not have come from the 1000 highest entries
that we have retained (i.e. should depend on entries contained
in the bulk of the sample that we discarded)? It is clear that
the probability of drawing one of the highest 1000 entries is
p = 1000/330000, and from Eq. (2) we find that the prob-
ability of picking too few (< 3) entries from the K0 highest
is

F(2;330000,p)= P(X ≤ 2)=
2∑
i=0

(
330000
i

)
pi(1−p)330 000−i, (8)

which is indistinguishable from zero to double precision. Re-
ducing the number K0 to 10 (r ≈ 3) raises the probability
of contaminating the resamples by entries from the lower
N −K0 to 0.002. This can also be confirmed by consult-
ing Fig. 1 for the combination k = 3, r = 3. For M = 1000
resamples we may thus expect on average two resamples to
be contaminated by values from the lower N −K0 values in
the original sequence. A very safe compromise in this case is
K0 = 100 (r ≈ 33). Consulting Fig. 1 shows that for k = 3,
r = 33 we are well below a probability of contamination of
10−5. The quantile–quantile (QQ) plot in Fig. 3 shows that
resampled return estimates of significant wave height from
the full sample D0 (see Fig. 2) have practically the same dis-
tribution as resamples from the upper K0 = 100 entries.

Condition (2) given above states that the size of the re-
duced resamples D̃1,D̃2, . . .,D̃M should be randomly per-
turbed around the mean value K0. In practice this condition
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Figure 3. A quantile–quantile comparison of 10 000 bootstrapped
direct 100-year return estimates of significant wave height taken
from a forecast ensemble (Breivik et al., 2013) versus a bootstrap
from the upper 100 entries in the sample. The 45◦ line is shown in
red.
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Figure 4. A quantile–quantile (QQ) comparison of M = 10000
bootstraps D̃1,D̃2, . . .,D̃M of variable length K̃1, K̃2, . . ., K̃M
against bootstraps of fixed length K0, all from the upper 100 en-
tries in the original sequence D0. The difference is very small.

turns out to be rather insignificant as long as K0 is cho-
sen sufficiently large. This is demonstrated in the QQ plot
in Fig. 4 where we see that perturbed-length estimates (ab-
scissa) closely match the distribution of fixed-length esti-
mates (ordinate). However, choosing K0 too small will bias
the statistic in question. This is illustrated in Fig. 5 where
we see that bootstrap estimates from too-short subsets of the
original sample (K0 chosen too small) are biased high. As
K0 approaches 30 (r = 10), the mean and standard devia-

tion of the return estimates approach their asymptotic values.
These findings are in accordance with what we find by con-
sulting Fig. 1 where we see that k = 3, r = 10 has a prob-
ability of contamination pc less than 10−5. It is also of in-
terest to investigate just how many bootstrap resamples are
actually needed to obtain CIs from a non-parametric boot-
strap technique. In Fig. 5 we chose M = 10000. As Fig. 6
shows, this is clearly excessive for reasonable thresholdsK0.
In fact, Efron and Tibshirani (1993) state that 200 resamples
are normally enough. We find this to be on the low side in
our case, as Fig. 6 shows. However, 1000 resamples is suffi-
cient in this case, but this should be investigated in each case.
Breivik et al. (2014) found (see their Supplementary Fig. 7)
that for a similar data set, 500 resamples would be sufficient
when employing a generalized Pareto distribution (GPD) on
threshold exceedances.

3.2 Example 2: confidence intervals on upper
percentiles

A similar problem to the estimation of CIs for in-sample
return values is how to obtain the CI for the highest per-
centiles, e.g. the 99th percentile (P99). The upper percentile
is frequently used when investigating trends in for example
the wind and wave height climate (see e.g. Wang and Swail
(2001, 2002)). In order to construct a bootstrap estimate of
P99 brute force it is necessary to resample the entire sam-
ple D0 and sort the bootstrap to get to the N/100th high-
est entry. However, Fig. 1 tells us that when k =N/100 is
large (as it will be when N is large), we can with extremely
high certainty say that keeping the K0 = 2k highest entries
is enough to perform a bootstrap resample exercise for the
CI on P99. In fact, K0 = 1.2k is sufficient for all significance
levels plotted in Fig. 1. This means that in order to obtain a CI
for P99 we need only find the entryXN,N−k that corresponds
to P99 from the original sample D0 and retain entries higher
than XN,N−1.2k . Figure 7 shows how the ratio r decreases
as the sample size N increases. It is clear that for all prob-
abilities of contamination investigated, a ratio of K0/k = 2
is sufficient when N is larger than 2000. Obviously, samples
smaller thanO(103) do not pose computationally demanding
problems anyway and are of no interest to us in this context.
Figure 8 illustrates for a fixed probability of contamination
pc = 0.01 that even as we go to higher percentiles (the up-
permost curve shows P99.9), a ratio K0/k = 2 is sufficient as
the sample size N exceeds 104 (see the Appendix for more
details on the ratio curves).

3.3 Example 3: confidence intervals on return
estimates from threshold exceedances

Consider now the problem of estimating CIs for return esti-
mates from threshold exceedances from a data set of inde-
pendent forecasts. This differs from a peaks-over-threshold
approach which is how correlated time series must be han-
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Figure 5. Mean and standard deviation on 100-year in-sample re-
turn estimates based onM = 10000 bootstrap resamples for various
choices of resample threshold K0 for the sample in Fig. 2. A min-
imum of k = 3 entries are required to form the return estimate (see
Eq. 7). For choices of K0 smaller than 30 (corresponding to a ratio
r =K0/k = 10) the bootstrap resamples are biased high.
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Figure 6. Mean and standard deviation on 100-year in-sample re-
turn estimates with a threshold K0 = 1000 as a function of number
of bootstrap resamples, M . For M > 1000 the CIs are quite stable.

dled to estimate return levels (Coles, 2001). GPD gives
the relevant extreme value distribution for independent ex-
ceedances above a threshold u (Coles, 2001, 75–77),

H(y)= 1−
(

1+
ξy

σ̃

)−1/ξ

. (9)

Here y =Xi − u, y > 0 are exceedances above a threshold
u=XN,N−k+1 (remember that XN,N−k+1 is the kth highest
entry in the sample D0) and σ̃ is a scale parameter which is
a function of the threshold u, and ξ is the shape parameter.
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Figure 7. Bootstrapping the 99th percentile, P99. The ratio r =
K0/k is shown as a function of sample size N . Here, the mini-
mum number of entries required is simply the upper 1 % (P99), so
k =N/100. Various levels of probability of contamination pc are
shown, and for sample sizes larger than approximately 2000, a ra-
tio r = 2 is sufficient. The curve representing 1 % probability of
contamination is marked in red (with diamonds) as it represents a
reasonable confidence level.

A brute-force approach would be to make N draws from
D0 (with replacement) and repeat this procedure M times.
Then, GPD return estimates would be computed for each of
the resulting bootstrap sequences D1,D2, . . .,DM . Say we
want to try to instead retain only the K0 entries exceeding
a threshold U0, where U0 < u, corresponding to the entry
XN,N−K0+1 in the original sample D0. From these we need
to draw at least k entries, from which we will make return
estimates. The question is again how many entries (K0) must
be kept to arrive at an acceptably low probability pc that the
statistic should really be based on entries below the threshold
U0.

This problem arises when estimating GPD return values
from the independent ensemble forecasts (Fig. 2). For such
a sample all exceedances above a given threshold can be
used to form GPD return value estimates (Eq. 9). CIs on
the return values can likewise be obtained by bootstrapping
from all entries exceeding this threshold. For a large sample
this is orders of magnitude faster than bootstrapping from
the entire sample. Assume again that we have kept all fore-
casts exceeding P99.1, i.e. theK0 = 3000 highest entries (see
Fig. 2). To form a return estimate we assume that we need
at least k = 1000 entries, corresponding to P99.7. The proba-
bility of drawing (with replacement) k or fewer entries from
the highest K0 in N draws can again be found from Eq. (2)
and is indistinguishable from zero to double precision with
the given choice of N , K0 and k. This is easy to verify by
consulting Fig. 1 where we see that for k = 1000, r = 3 we
are well above the 10−5 level. Figure 9 shows that the confi-
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Figure 8. Bootstrapping the upper percentiles P =

P90,P95,P97,P99 and P99.9. The ratio r =K0/k is shown
as a function of sample size N . Here, the minimum number of
entries required is k = (1−P)N/100. The probability of con-
tamination is kept fixed at pc = 0.01. At sample sizes larger than
approximately 104, a ratio r = 2 is sufficient for all percentiles
investigated. The curve representing the 99th percentile is marked
in red (with diamonds) and corresponds to the red curve in Fig. 7.

dence interval and the mean return value based onM = 1000
bootstrap resamples for various choices of resample thresh-
old 100(1−K0/N) (i.e. the percentage of data omitted) are
practically identical to the CIs based on D0 (marked as as-
terisks). Only when r =K0/k comes close to unity do we
experience fluctuations and biases (i.e. the resample thresh-
old nearly coincides with the number of tail entries required
to form a return estimate, in this case the threshold P99.7).

4 Conclusions

CIs and other statistics of the extremes and the tail of empir-
ical distributions are commonly found using non-parametric
bootstrap techniques. Here we have shown that it is unnec-
essary to bootstrap from the entire original sample. The ac-
tual number K0 highest entries that must be kept to make
unbiased bootstrap estimates for the tail of an empirical dis-
tribution depends on K0 =Np as well as on the number k
highest entries that are required for the statistic in question.
The examples in the previous sections calculated pc given a
predetermined number K0 of tail entries that have been kept.
This is a realistic approach as in practice we often retain a
larger part of the tail of an empirical distribution than what
is strictly needed since the same data set is used to compute
other statistics. It is then sufficient to consult Eq. (2) to de-
termine whether K0 is sufficiently large. A quick estimate of
the probability of contamination can be made by consulting
Fig. 1.

Figure 9. The upper and lower 95 % CIs and the mean 100-year re-
turn estimates (dashed) based onM = 1000 bootstrap resamples for
various choices of resample threshold K0 for the sample in Fig. 2.
Upper panel: a GPD with shape parameter ξ = 0 (exponential distri-
bution). Lower panel: a GPD with freely varying shape parameter.
Individual bootstrap estimates are marked in grey. Estimates based
on the full sample D0 are marked as asterisks on the ordinate.

The advantages of restricting resamples to a small subset
K0 consisting of the highest entries inD0 can be summarized
as follows. First, only the upper K0 entries need be kept and
sorted in the original data set. This offers substantial sav-
ings in cases like those described by Breivik et al. (2013,
2014) where a very large number of forecasts (> 300000)
are handled, each consisting of more than 60000 grid points
in space. Second, the size of the resamples is also reduced
from N to an average size K0, where K0 is usually a very
small fraction of N , typically less than 1 %. Third, this re-
duction in resample size also means that the cost of sorting
the resamples to get to the highest entries is greatly reduced,
as the problem is now linear in the number of bootstrap re-
samples M since each sort is O(K0log2K0), which is now a
constant number independent of the size of the original sam-
ple (or a small fraction of it, as in the 99th percentile shown
in Example 2).

We have investigated the conditions that must be met to
form a non-parametric bootstrap for tail statistics such as re-
turn levels (which depend on all three parameters of the gen-
eralized extreme value distribution or the GPD) from a small
subset of the highest entries in the original sample. As men-
tioned in the Introduction, an important question is whether
non-parametric bootstraps yield CIs with sufficient coverage,
i.e. CIs that are wide enough. This has been extensively stud-
ied by Kyselý (2008) who found that non-parametric boot-
straps in particular, but also parametric bootstraps, tend to
have too low coverage. This problem is not addressed by
our study, and it is clear that alternative methods are often
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called for. In particular, the test inversion bootstrap (Carpen-
ter, 1999) is a promising method where the test inversion
refers to the duality between hypothesis testing and confi-
dence intervals. Schendel and Thongwichian (2015, 2017)
show how this method, originally developed for estimation
of statistics of single parameters in the presence of nuisance
parameters, can be extended to handle return levels which
depend on three parameters for both the generalized extreme
value distribution and GPD by utilizing a maximum likeli-
hood technique. However, non-parametric bootstraps repre-
sent a quick and hypothesis-free approach to obtaining CIs,
and as the results presented show we can comfortably as-
sume that the results will remain unchanged if we select a
small subset of the original sample, provided we follow the
procedure outlined in Sect. 2.

Data availability. The data sets presented in this study are archived
in the MARS database of the European Centre for Medium-
Range Weather Forecasts (ECMWF); see http://apps.ecmwf.int/
archive-catalogue/?class=od.
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Appendix A: Consulting the ratio curves

The ratio curves presented in Figs 1, 7 and 8 are conve-
nient for quickly establishing how many entries (K0) must
be kept in order to form an unbiased resample that depends
on the highest k entries. The relationship between Fig. 1 and
Fig. 7 can be illustrated as follows. If we assume N large
we can use Fig. 1. In practice we can choose N = 2× 103

without violating the assumption that N is large. Now as-
sume that the statistic in question is the 99th percentile, i.e.
k =N/100= 20. Let us choose a probability of contamina-
tion pc = 0.01 (this corresponds to the red curve marked with
diamonds in Fig. 1). We find the ratio to be 1.6, i.e. we will
need to keep 60 % more entries than the entry corresponding
to P99. The corresponding curve in Fig. 7 is also marked in
red. Here, the location on the x axis to read off isN = 2×103,
which lies on the y axis, and the ratio is again found to be
1.6. A more realistic example in terms of sample size would
be N = 105 (and k =N/100= 103). Now we find from ei-
ther Fig. 1 or Fig. 7 that with a probability of contamination
pc = 0.01 that the ratio is 1.13, i.e. we need only keep 13 %
more entries than the one representing the 99th percentile.
Figs. 1, 7 and 8 clearly illustrate that in almost all cases it is
sufficient to retain at most twice as many entriesK0 from the
tail of the sample distribution D0 than what is required (k)
for the statistic in question.
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