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Abstract. Landslides have large negative economic and soci-
etal impacts, including loss of life and damage to infrastruc-
ture. Slope stability assessment is a vital tool for landslide
risk management, but high levels of uncertainty often chal-
lenge its usefulness. Uncertainties are associated with the nu-
merical model used to assess slope stability and its param-
eters, with the data characterizing the geometric, geotech-
nic and hydrologic properties of the slope, and with hazard
triggers (e.g. rainfall). Uncertainties associated with many of
these factors are also likely to be exacerbated further by fu-
ture climatic and socio-economic changes, such as increased
urbanization and resultant land use change. In this study,
we illustrate how numerical models can be used to explore
the uncertain factors that influence potential future landslide
hazard using a bottom-up strategy. Specifically, we link the
Combined Hydrology And Stability Model (CHASM) with
sensitivity analysis and Classification And Regression Trees
(CART) to identify critical thresholds in slope properties and
climatic (rainfall) drivers that lead to slope failure. We ap-
ply our approach to a slope in the Caribbean, an area that is
naturally susceptible to landslides due to a combination of
high rainfall rates, steep slopes, and highly weathered resid-
ual soils. For this particular slope, we find that uncertainties
regarding some slope properties (namely thickness and effec-
tive cohesion of topsoil) are as important as the uncertainties
related to future rainfall conditions. Furthermore, we show
that 89 % of the expected behaviour of the studied slope can
be characterized based on only two variables – the ratio of
topsoil thickness to cohesion and the ratio of rainfall inten-
sity to duration.

1 Introduction

Landslide hazards and their impacts on human lives,
economies and infrastructure present a growing challenge
globally (Dai et al., 2002). Approximately 300 million peo-
ple worldwide are estimated to be exposed to landslides (Dil-
ley et al., 2005) with the greatest absolute economic losses
experienced in Europe and the overwhelming majority of in-
juries and fatalities in Asia, South and Central America and
the Caribbean (UNU, 2006; Petley, 2012). The susceptibility
of slopes to landslides is known to increase with urban devel-
opment activities such as vegetation removal, construction of
earthworks (cuts and fills), buildings and roads, and altered
drainage (Smyth and Royle, 2000). Similarly, another major
factor affecting landslide occurrence is rainfall event inten-
sity. Climate change is projected to increase the occurrence
of extreme precipitation events in many regions worldwide,
and therefore may also have important implications for the
frequency of rainfall-triggered landslides (Ibsen and Bruns-
den, 1996; Borgatti and Soldati, 2010; Crozier, 2010; Kendon
et al., 2014).

Landslide hazard assessment forms the basis for disas-
ter risk reduction decisions such as the design of physical
landslide hazard mitigation measures, planning controls and
early warning systems for hazard avoidance, vulnerability
reduction (resilience) approaches, or insurance. The spatial
scale and the purpose of the hazard assessment, as well as
the data available, determine which methods or slope sta-
bility models can be applied. Available assessment meth-
ods include inventory-based susceptibility mapping or re-
gional forecasting, and statistical, heuristic and physically
based modelling (either spatially distributed or site specific)
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(Soeters and van Westen, 1996; Dai and Lee, 2001). These
methods require data in some or all of the following cate-
gories: (i) inventories of past landslide locations, types and
triggers; (ii) preparatory factors determining the inherent
susceptibility of a slope to landslides, such as slope geometry
(slope angles and heights, convergence/divergence, soil and
parent material depths), the geotechnical and hydrological
properties of slope material, and land-use; and (iii) triggering
factors such as rainfall intensity, duration and frequency.

The challenge of acquiring these data in sufficient quan-
tity, quality and resolution is currently hindering the produc-
tion of “actionable” landslide hazard information for deci-
sion makers (Aitsi-Selmi et al., 2015). With the exception
of particular regions such as Hong Kong, there is generally
a lack of systematic landslide data collection even in the
most landslide-prone countries (Corominas et al., 2014). Es-
pecially high-frequency, low-intensity events may be missed
out due to their small spatial scale and impact. Existing
databases are therefore often spatially and temporally biased
or incomplete (for discussion about landslide inventories, the
reader is referred to Malamud et al., 2004). Lack of data on
past landslides limits our ability to build inventory-based and
statistical models for predicting likely locations, timing or
impacts of future landslides. In comparison, the advantage
of physically based slope stability models is their smaller re-
liance on observations of past events and an ability to mech-
anistically represent the preparatory and triggering processes
driving slope failure. This latter characteristic also allows
them to assess the impact of higher intensity rainfall events
than a region might have experienced in the past, or of possi-
ble urbanization scenarios. Landslide hazard researchers and
civil engineers currently employ physically based models to
diagnose existing stability conditions, design new slopes and
determine landslide probabilities. Nevertheless, when using
physically based models to assess slope stability it is impor-
tant to note that care should always be taken to ensure that
the selected model adequately represents the key processes
determining slope stability for the chosen study site.

The mechanistic ability of physically based models comes
at a cost. The detailed representation of slope processes in the
model requires detailed information on slope properties such
as soils and topography. The more complex, high-resolution
and comprehensive the representation of slope processes in
the model, the more data regarding the physical site charac-
teristics are required. Parsimonious models are therefore of-
ten selected that are consistent with data availability and with
the required level of process representation. Even then, data
are rarely available in sufficient detail, and this introduces
uncertainty into the model parameterization. Sources of un-
certainty include those associated with slopes geometries and
material strata depths (Lumb, 1975; Corominas et al., 2014),
soil properties (Cho, 2007; Beven and Germann, 2013), and
a limited understanding of how measured variables relate
to model parameters (the commensurability issue – Beven,
1989; Wagener and Gupta, 2005; Beven, 2006). The lack in

accuracy of forcing boundary conditions, such as the tem-
poral and areal variability of historical rainfall, introduces
further uncertainty that needs to be considered (Minder et
al., 2009; von Ruette et al., 2014). Studies have assessed the
impact of uncertainties associated with such models (Hall et
al., 2004; Arnone et al., 2016) for both site-specific and spa-
tially distributed landslide hazard predictions – though such
information is rarely used to support risk reduction decision-
making.

Additional uncertainty is introduced by the poorly known
potential implications of future climate or land use change.
Such uncertainties are different from the ones listed above,
because they cannot be easily characterized by probability
distributions that different experts could agree on, i.e. they
are often called deep uncertainties (Bankes, 2002; Lempert
et al., 2003; Stein and Stein, 2013). The standard approach
to dealing with deep uncertainties is through scenario-led
strategies, also called top-down approaches. In these ap-
proaches, climate change projections of a general circula-
tion model (GCM) are downscaled to derive local rainfall in-
tensities and frequencies, as well as other climatic variables.
These scenarios are then used to drive a slope stability model
in a top-down manner (Collison et al., 2000; Melchiorre and
Frattini, 2012). Studies that have attempted to quantify the
uncertainty in the estimation of climate variables derived in
this manner have found them to be prohibitively large in
many cases (e.g. Collins et al., 2012; Ning et al., 2012). As a
result, one usually finds that the uncertainty in the final pre-
dicted impacts is also quite large and that a wide range of
possible outcomes is feasible, which is of little practical use
for decision-making or for identifying an “optimal” manage-
ment solution (Bankes, 2002; Wilby and Dessai, 2010; Hal-
legatte et al., 2012; Herman et al., 2014). To reduce the range
of possible outcomes, a smaller subset of the many possible
potential future scenarios can be selected. However, this ap-
proach is problematic as arbitrary selection of scenarios or of
the downscaled simulations will undermine the credibility of
the results (e.g. Kim et al., 2015).

Given that such deep uncertainties are unavoidable, a shift
from “top-down” to “bottom-up” approaches has been sug-
gested to derive actionable information for decision makers
(Groves and Lempert, 2007; Wilby and Dessai, 2010; Singh
et al., 2014; Ray and Brown, 2015). While “top-down” ap-
proaches simulate system behaviour under potential future
conditions in a predictive manner (e.g. to estimate probabil-
ity of slope failure given one or more climate change scenar-
ios), “bottom-up” approaches focus on exploring the vulner-
abilities of the system, i.e. on finding those combinations of
factors values that would produce unwanted outcomes (e.g.
slope failure). Bottom-up approaches are therefore stake-
holder driven since they start with the stakeholder who has
to define what threshold separates acceptable from unwanted
outcomes. A wide range of possible values of the uncer-
tain factors can then be considered (i.e. propagated through
the model) and mapped onto the regions of vulnerability of
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the output space. We can use statistical data-mining algo-
rithms to quantify the link between inputs and outputs, i.e.
the mapping stage. Commonly used algorithms to imple-
ment the mapping required for bottom-up approaches include
Friedman and Fisher’s (1999) Patient Rule Induction Method
(PRIM) and Classification and Regression Trees (CART) de-
veloped by Breiman et al. (1984). The bottom-up strategy is
very similar to the problem of mapping in Global Sensitivity
Analysis, where one tries to understand which parts of the in-
put factor space produce a particular model output, for exam-
ple output values exceeding a certain threshold (e.g. Saltelli
et al., 2008; Pianosi et al., 2016).

In this study, we apply a bottom-up approach to a landslide
hazard assessment model in order to address the following
three questions:

1. Can we identify the dominant preparatory and trigger-
ing factors driving slope instability (i.e. slope geome-
try, geotechnical and hydrological parameters or rainfall
drivers) in data-scarce locations?

2. Does deep uncertainty in future landslide triggers, such
as climate change, exceed other uncertainties, such as
those related to slope properties, in determining our
ability to predict slope failure?

3. What are the implications of uncertainty for data acqui-
sition and assessment of future hazard?

2 Model and study site

We select a physically based model and study site to repre-
sent the landslide hazard assessment and risk reduction chal-
lenges typical of data-scarce and resource-limited locations
(Fig. 1). The model is representative of those used by civil
engineers and slope stability modellers. It can be parame-
terized using study site data and has a track-record of suc-
cessful application in data-scarce locations (references pro-
vided in Sect. 2.2). The methodology we develop around this
case study is transferable to other locations and other types
of physically based slope stability assessment models.

2.1 An urban study site in the humid tropics

The selected study site is situated on the lower slope of a
ravine on a hillside in the city of Castries, Saint Lucia (east-
ern Caribbean), in which informal construction of houses
has led to increased landslide risk. The slope section is ap-
proximately 50 m in height and has an overall angle of about
30◦. The material strata comprise up to 6 m of residual soils
overlying a similar depth of decomposed rock (weathering
grades III–IV; after GEO, 1988) overlying volcanic bedrock.
As is typical for the humid tropics, the dominant landslide
trigger in the Caribbean is rainfall (Lumb, 1975; De Graff et
al., 1989), and shallow rotational slides are the most com-
mon type of landslide in the deep weathered tropical residual

Figure 1. Typical informal housing on a landslide-prone slope in
the eastern Caribbean (photograph by Holcombe, 2007).

soils on the mid to lower slopes of steep hillsides (Migon,
2010). Such locations tend to be the only land available to the
most socio-economically vulnerable families, so even small
landslide events can have a high societal impact (UNISDR,
2015). These “everyday disasters” are also increasingly seen
as indicators of risk accumulation (low disaster resilience)
and represent a potential hindrance to national economic de-
velopment (Bull-Kamanga et al., 2003).

In 2011 a landslide hazard reduction project was imple-
mented at the study site location using a community-based
approach – Management of Slope Stability in Communities
(Mossaic) – developed by Anderson and Holcombe (2006).
At the time, estimates of geotechnical, hydrological and ge-
ometrical parameters for the study site were derived from a
combination of: topographic maps, site surveys, interviews
with residents to estimate soil strata depths and weathering
grades (based on their experiences of excavating the soils to
construct house foundations), elicitation of local engineering
knowledge of soils, and information from shear box and ring
infiltrometer testing of similar soils in Saint Lucia. Soil prop-
erties were also benchmarked against extensive triaxial and
permeameter test data for similar undisturbed tropical resid-
ual soils in Hong Kong (GCO, 1982).

2.2 A physically based model for rainfall-triggered
landslides

Deterministic physically based modelling of slope stability
has previously been carried out at the study site using the
Combined Hydrology And slope Stability Model (CHASM)
to diagnose landslide drivers and estimate the benefit–cost
ratio of landslide mitigation (Holcombe et al., 2012). In a
validation exercise in Hong Kong CHASM was shown to
be numerically robust and capable of correctly classifying
78 % of failed slopes and 68 % of stable slopes (i.e. true pos-
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itives, TP= 78 %; false positives, FP= 22 %; true negatives,
TN= 68 %; false negatives, FN= 32 %) for a specified rain-
fall event (Anderson, 1990), corresponding to an accuracy of
72.5 % ((TP+TN) / (total observed failed slopes+ total ob-
served stable slopes)). This is comparable with, or exceeds,
the performance of spatially distributed GIS-based models
such as a statistical analysis of landslide susceptibility in
Central America (using the Hurricane Mitch landslide in-
ventory) that attained an accuracy of 68 % (Kirschbaum et
al., 2012); and a physically based infinite-slope analysis (us-
ing modified SINMAP) in the data-rich region of Calabria,
Italy, that achieved a maximum TP rate of 71 % and accuracy
of 72 % (Formetta et al., 2014, p. 639). This level of accu-
racy might typically enable disaster risk managers and prac-
titioners (such as engineers and planners) to identify slopes
exhibiting potentially high hazard and prioritize further in-
vestigation and/or risk reduction accordingly. CHASM has
been extensively used by slope stability researchers and prac-
titioners to assess landslide hazards along roads and in ur-
ban and rural areas, and to propose appropriate mitigation in
Malaysia, Indonesia, the eastern Caribbean, United Kingdom
and New Zealand (Anderson et al., 1997; Lloyd et al., 2001;
Wilkinson et al., 2002a, b).

A brief overview of CHASM is given here – full descrip-
tions of the numerical scheme and principal equations can
be found in Anderson and Lloyd (1991) and Wilkinson et
al. (2002b). CHASM represents the slope cross-section as
a regular two-dimensional mesh of columns and cells with
geotechnical and hydrological parameters specified for each
soil type (Fig. 2). Initial hydrological conditions are the ma-
tric suctions (negative pore pressure) in the top cells of each
column and the water table position. Subsequent dynamic
forcing conditions are rainfall events of specified intensities
and durations imposed on the top cells. For each hydrological
time step (usually 10–60 s) a forward-explicit finite differ-
ence scheme is used to solve Richards’ equation (Richards,
1931) and Darcy’s law (Darcy, 1856) for rainfall infiltration,
unsaturated and saturated groundwater flows. Cell moisture
conditions, pressure heads and unsaturated hydraulic con-
ductivities are updated at each time step using soil mois-
ture characteristic curves and the Millington–Quirk proce-
dure (Millington and Quirk, 1959). At the end of each simu-
lation hour the pressure head fields are used to calculate pore
water pressures (positive and negative) for input to a two-
dimensional limit equilibrium method (LEM) calculation of
slope stability. In LEM analysis the slope factor of safety
(F ) is calculated as the ratio of destabilising forces to resist-
ing forces for a potential landslide slip surface location, such
that F<1 indicates failure. In CHASM either Bishop’s sim-
plified circular method of slices (Bishop, 1955) or Janbu’s
non-circular method (Janbu, 1954) is implemented using an
automated search algorithm to identify the location of the slip
surface with the minimum value of F for that hour.

3 Methods

Our study aims to advance understanding of the critical un-
certainties driving rainfall-triggered landslides. To this end,
the simulation model, CHASM, is run with 10 000 differ-
ent combinations of values for the 28 uncertain input fac-
tors. Such combinations are generated via random sampling
from a set of probability distributions that characterize the
uncertainty in the slope properties, and uniform distribu-
tions with very wide ranges for the intensity and duration
of future rainfall events, so as to reproduce the (practically)
unconstrained nature of “deep” uncertainties. Model simu-
lations are performed using the BlueCrystal Phase 3 high-
performance cluster at the University of Bristol, which con-
tains 16× 2.6 GHz Sandy Bridge cores. Each simulation is
classified as corresponding to stable or unstable slope based
on the resulting slope factor of safety, F (model output) be-
ing above or below 1 at any stage during the simulated time
period. We first perform a preliminary visual analysis of the
simulations to identify influential factors that lead to slope
failure. We then apply Classification And Regression Trees
(CART) to formally determine combinations of factors and
their thresholds values for which the model predicts slope
failure in a bottom-up strategy. The Matlab SAFE toolbox
(Pianosi et al., 2015) and the CART functions in the Matlab
Statistics and Machine Learning Toolbox (Mathworks, 2015)
are used to perform our analysis.

3.1 Characterization of uncertain input factors

The study site slope cross-section, as represented in
CHASM, is illustrated in Fig. 2. Slope input factors (slope
geometry, geotechnical and hydrological properties) are as-
sumed to be random variables characterized by different sta-
tistical distributions. These distributions and their statistical
parameters have been obtained from different sources as de-
scribed in Sect. 2.1, and summarized in Table 1. For each
set of CHASM input factors generated via random sampling,
checks are undertaken to ensure that any combination of
the input factor values that is physically unrealistic (for ex-
ample, with saturated unit weight smaller than unsaturated
unit weight) is discarded from further analysis (and replaced
by another randomly generated, feasible combination). The
complete list of such feasibility checks is given in the foot-
note of Table 1. For the purposes of this study the model
discretization parameters – such as the cell size (1 m× 1 m),
hydrological time step (60 s), and slip search grid location
and dimensions – and physical and mathematical constants
are not varied. These discretization parameters are selected
based on preliminary model simulations and our previous ex-
perience of applying CHASM to similar slopes, and they en-
sure the numerical stability and conservation of mass (water)
of the hydrological component throughout the simulation pe-
riod. These choices are thus meant to minimize the number
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Figure 2. Conceptual model of the experimental slope. CHASM uses the Bishop method of slices to perform slope stability analysis, which
involves a numerical search for the slip surface.

Table 1. CHASM parameters and their distributions.

Parameter Symbol/Unit Values

Grade V–VIa Grade III–IVa Grade I–IIa

residual soil (0) weathered material (1) bedrock (2)

Slope height H (m) U (48, 49)
Slope angle δ (degrees) U (27, 30)
Thickness of strata Hi (m) U (2, 6) U (2, 6)
Depth of initial water tableb DWT (%) U (60, 95)
Saturated hydraulic conductivity Ks (m s−1) ln N (−11.055, 0.373) ln N (−13.357, 0.373) 1× 10−8

Saturated soil moisture content θs (m3 m−3) N (0.413, 0.074)
Van Genuchten suction–moisture curve α α (m−1) ln N (1.264, 1.076)
Van Genuchten suction–moisture curve nc n (–) ln N (0.364, 0.358)
Residual soil moisture contentd θr (m3 m−3) ln N (−1.974, 0.376)
Initial surface suction 9init U (−1.5, −0.5)
Dry unit weighte γd (kN m−3) U (16, 18) U (18, 20) 23
Effective cohesionf c′ (kPa) N (8, 3.3) N (25, 1.7) 80
Effective friction angle φ′ (degrees) N (25, 1.7) N (35, 3.3) 60

a Weathering grades defined according to GEO (1988).
b Water table height is defined as a percentage of slope height measured to the toe of the slope.
c n is always greater than 1.
d θr is always greater than 0; θs greater than θr.
e γs = γd + 2, where γs is the saturated unit weight.
f Effective cohesion is always greater than 0.
U , uniform distribution; N, normal distribution; ln N, log-normal distribution.

of failed model runs during the Monte Carlo simulation pro-
cess.

The dynamic hydrological scheme of CHASM requires
the specification of hourly rainfall intensities to drive the
dynamic hydrological component of CHASM for the se-
lected hydrological time step (60 s). While the uncertainties
in slope properties are characterized by probability distribu-
tions based on past experience of applying the model to the
study area, the potential variability of future rainfall is diffi-

cult to define with a probability distribution, hence the term
of “deep” uncertainty. We therefore represent our lack of
knowledge by varying rainfall intensity–duration combina-
tions widely to ensure that any feasible future design storm in
a changing climate is captured in our sampling. The ranges of
rainfall intensity and duration used in this analysis are based
on intensity–duration–frequency (IDF) relationships derived
for the design of the Roseau Dam in Saint Lucia (Fig. 3). En-
gineering consultants, Klohn-Crippen (1995), applied Gum-
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Figure 3. Rainfall intensity–duration–frequency curves for Saint
Lucia developed by Klohn-Crippen (1995) using Gumbel analysis
of 40 years of hourly rainfall data from 15 rainfall gauges.

bel analysis of 40 years of daily rainfall data from weather
stations around the island to estimate the intensities and dura-
tions of 1 : 5 to 1 : 500-year return periods events. From these
IDF relationships we define ranges of possible rainfall inten-
sities of 0 to 200 mm h−1 and durations of 0 to 72 h, which
we sample independently and uniformly.

For this experiment the first 168 h of rainfall forcing are set
to an intensity of 0 mm h−1 to allow the moisture distribution
within the unsaturated zone to be established based on the
suction–moisture curve. This is necessary because the initial
moisture content in each unsaturated cell at time step zero is a
linearly interpolated value between the initial surface suction
and position of the estimated water table (where the pressure
head is 0 m). Then after the first iteration of the hydrolog-
ical function in CHASM the Millington–Quirk equation is
used to update the moisture content based on the suction–
moisture curve. The implementation of a 168 h start-up (zero
rainfall) period should be sufficient to establish a representa-
tive moisture distribution and potentially steady-state seep-
age (equilibrium). However, if hydrological equilibrium is
not attained, this is still an acceptable representation of the
physical processes that may be observed in such slopes. For
instance, it may replicate the high groundwater tables that of-
ten exist in our study area towards the end of a rainy season.

Rainfall of the selected intensity and duration is then im-
posed on the slope to determine the stability of the slope for
that storm event. In the absence of information on typical
hourly rainfall rates for events longer than 1 h, rainfall in-
tensity is assumed to be uniform across the rainfall duration
sampled. The storm is followed by a further 168 h of zero-
rainfall simulation time to consider the continued effects of
the groundwater response on slope stability.

3.2 Classification and regression trees (CART)

While different algorithms have been used to implement
the mapping step in bottom-up approaches in past studies,
we have chosen to use classification and regression trees
(CART). Comparison between the most popular algorithms,
CART and PRIM, did not show either algorithm to be supe-
rior (Lempert et al., 2008), while CART has the advantages
of simplicity and an ability to work with minimal input from
the user. CART is a machine-learning method for construct-
ing prediction models from data (Breiman et al., 1984). In
our application, such model takes the form of a binary tree,
where a categorical dependent outcome (i.e. slope failure ver-
sus stability) is predicted from a set of continuous indepen-
dent variables (i.e. slope and design storm properties). The
tree is composed of nodes and branches. At each node, an if-
then condition is applied to one of the independent variables
(e.g. “slope angle above or below 30 degrees”) to generate
two different branches. Several strata of nodes and branches
compose the tree up to a stratum of terminal nodes (leaf
nodes) where a prediction of the categorical dependent out-
come is made (e.g. “slope fails”).

A CART is constructed through a recursive algorithm ap-
plied to a sample of independent variables (inputs) and as-
sociated categorical outcomes (outputs). In this study, the in-
put/output sample is generated by the Monte Carlo simula-
tion of CHASM. The algorithm automatically selects which
input variable and threshold value to use at every node. The
selection is based on maximizing the homogeneity of the out-
put samples in the subsequent nodes. The level of homogene-
ity can be measured by different criteria. Here, we use the
Gini impurity measure, which is defined as

1−
m∑
i=1

p2 (i) , (1)

where m is the number of categories for the output (2 in our
case), and p(i) is the fraction of output samples in the node
belonging to category i. A Gini impurity index equal to 0 cor-
responds to a pure node, i.e. a node where all output samples
belong to the same category. In general, pure nodes cannot
be obtained, but the algorithm seeks to minimize the Gini
impurity index.

A key question in constructing a classification tree is that
of the optimal sizing (i.e. number of nodes and branches).
Increasing the size of the tree generally increases its predic-
tive accuracy over the sample used for its construction, but it
might reduce its ability to generalize to new samples (overfit-
ting). Moreover, a tree with simpler structure might be easier
to interpret and communicate. Once a CART has been con-
structed, a machine learning technique called “pruning” can
be applied to reduce the size of the tree by removing sections
that provide little classification power. More details about the
pruning technique can be found, for example, in Hastie et
al. (2009).
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4 Results

In this section, we analyse the outputs from the
10 000 CHASM simulations to determine which fac-
tors control slope stability and whether critical thresholds
exist beyond which slope failure will occur.

We perform an initial evaluation of the factors controlling
slope stability by comparing the marginal distributions of the
input factors that cause slope failure with those that do not.
The approach is generally referred to as regional sensitiv-
ity analysis (first proposed by Spear and Hornberger, 1980;
for a general introduction see Pianosi et al., 2016). We split
the 10 000 model simulations into two sub-sets: those that
produce slope failure (F<1) and those that simulate a sta-
ble slope (F>1). For each input factor, the (marginal) em-
pirical cumulative distribution functions of the two sub-sets
are computed. Figure 4 shows these distributions for a se-
lection of factors. The grey dashed line is the distribution
corresponding to a stable slope and the black solid line is
the one corresponding to slope failure. The grey and black
lines clearly deviate (i.e. the two distributions are different)
for thickness of topsoil, effective cohesion of topsoil, rainfall
intensity and rainfall duration, implying that these factors are
important determinants of slope failure. For all other factors
(including those not shown in Fig. 4), the two lines essen-
tially overlap, implying that the factors have no direct influ-
ence on determining failure (although they still may have in-
fluence through interactions, see Saltelli et al., 2008). Besides
identifying the influential factors, Fig. 4 also provides infor-
mation on the ranges of influential factors associated with
slope failure. For example, the top left panel shows that the
model is unlikely to predict failure when thickness of topsoil
is smaller than 3 m, as the black solid line is nearly flat to-
wards the smallest values of the original range of this factor.
This initial analysis suggests that relatively few input factors
have a significant impact on slope stability. Furthermore, it
also provides initial guidance about which values of those
factors are more likely to produce failure.

CART analysis provides a systematic way to quantify the
thresholds separating slope failure and stability. Figure 5
shows the classification tree obtained from the same set of
simulations (see Appendix A for details on pruning). CART
results are consistent with the initial analysis of input distri-
butions, as evidenced by the fact that the main factors emerg-
ing in the classification tree of Fig. 5 are the same that were
shown as influential in Fig. 4. From the 28 analysed factors
(26 model parameters plus the two design storm properties),
five factors alone (thickness of topsoil, effective cohesion of
topsoil, rainfall intensity, rainfall duration and initial depth
of water table) are sufficient to correctly classify 89 % of the
simulations. Figure 5 also illuminates the critical thresholds
in slope properties and rainfall drivers that separate slope
failure and stability. For example, the leftmost branch shows
that if the thickness of the topsoil is less than 2.9 m and ef-
fective cohesion of this stratum is below 2.1 kPa, the land-

Figure 4. Cumulative probability distributions (cdf) of slope fail-
ure and stability predicted by CHASM for several different input
factors. Note that the Van Genuchten suction–moisture curve α is
shown in logarithmic scale.

slide model tends to predict slope failure. This happens re-
gardless of what values rainfall intensity and duration take.
The black/grey-shaded bar at the end of each node visualizes
the fraction of input factor combinations that produce fail-
ure/stability respectively. It therefore provides a visual indi-
cator of the predictive performance of the tree at each node
and shows the high predictive performance achieved.

Effective cohesion and thickness of topsoil appear multi-
ple times in the same branch in Fig. 5 (for example, at the
leftmost and the rightmost branches), which may indicate
that these two factors interact with each other. This suspicion
is confirmed if we look at the scatter plot of the effective co-
hesion of topsoil samples versus the thickness of topsoil sam-
ples for simulations that lead to slope failure (black) and sta-
bility (grey) (Fig. 6a). The triangular pattern in Fig. 6a clearly
indicates that these two factors interact to produce slope fail-
ure, i.e. a slope with more cohesive soil can be thicker with-
out experiencing failure. Visualizing the thresholds identi-
fied from the CART analysis (Fig. 5) in this scatter plot (red
dashed line in Fig. 6b) shows the inability of CART to char-
acterize this interaction, i.e. CART attempts to reproduce the
interaction through a sequence of vertical and horizontal sep-
arations. One can approach this problem either by rotating
the axes of this graph or by creating a new auxiliary vari-
able combining the interacting factors (Dalal et al., 2013).
We create a new auxiliary variable, the ratio between effec-
tive cohesion and thickness of the topsoil, because we believe
that it is a physically meaningful variable. We then generate
a new tree based on the original factors plus the new auxil-
iary variable. The resulting tree, pruned for a similar error as
the original tree, is shown in Fig. 7. It still classifies 89 % of
the simulations correctly but using a much simpler structure
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Figure 5. Classification tree of slope response. Each interior node corresponds to one of the analysed uncertain input factors (model param-
eters, boundary conditions and design storm properties). The bar under each leaf shows the proportion of simulations that resulted in slope
failure (black) or stability (grey) for that leaf.

than the tree in Fig. 5. Figure 7 shows that when the ratio
of cohesion to thickness of the topsoil is above 2.0 kPa m−1,
CHASM predicts a stable slope most of the time (4611 simu-
lations correspond to a stable slope and only 385 simulations
produce slope failure). When the topsoil cohesion to thick-
ness ratio is below 2.0 kPa m−1 then rainfall characteristics
need to be taken into account to predict slope stability. Fig-
ure 6c also shows that the new separation line (red dashed)
between failure and stability is now more consistent with the
underlying scatter plot.

We further expect rainfall intensity and duration to interact
in the context of slope stability. Indeed, numerous field ob-
servations in the literature, and empirical relationships used
in regional landslide early warning systems worldwide, show
that both high-intensity/short-duration rainfall combinations
and low-intensity/long-duration combinations can result in
slope failure (Lumb, 1975; Crosta, 1998; Martelloni et al.,
2012). Empirical rainfall intensity–duration (I–D) thresh-
olds are typically obtained by plotting observed landslide
events according to their triggering rainfall intensity and du-
ration, and are generally linear, with a negative gradient,
when logarithmic scales are used. This log–log relationship
can also be seen in Fig. 8, which shows a separation be-
tween the rainfall I–D combinations that can trigger land-
slides (black dots) and those that do not (grey crosses). We
therefore create a second auxiliary variable – the negative
ratio between the logarithm of rainfall intensity and the log-

arithm of rainfall duration (−log(I )/log(D)) – and repeat the
CART analysis to see whether it is possible to further sim-
plify the tree. The resulting tree (Fig. 9) is pruned based on a
similar error to previous trees (Figs. 5 and 7), but with a sig-
nificantly simplified structure. We consider this final classifi-
cation tree as the most effective output of the CART analysis,
since its simplicity facilitates communication with stakehold-
ers, while preserving the same information content.

5 Discussion

We have shown that the application of a mechanistic model
such as CHASM in a combined Monte Carlo and CART
analysis framework can help identify the dominant prepara-
tory and triggering factors driving slope instability in a data-
scarce location. Our method goes beyond previous studies
by accounting for both site-specific preparatory factors (ge-
ometrical, geotechnical and hydrological conditions) and fu-
ture uncertain rainfall triggers. Results for our study site indi-
cate that targeted geotechnical data acquisition could help to
constrain uncertainties in cohesion and soil depths; and the
effects of different rainfall intensities and durations should
be represented to capture both current and potential future
hazard scenarios.
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Figure 6. (a) Sampled values of effective cohesion of topsoil versus
thickness of topsoil. Black points correspond to simulations result-
ing in slope failure, while grey crosses correspond to simulations
resulting in a stable slope. (b) As panel a, with the additional red
dashed line representing the thresholds derived from the classifica-
tion tree in Fig. 5. (c) As panel a, with the additional red dashed
line representing the thresholds derived from the classification tree
in Fig. 9.

5.1 Preparatory and triggering factors driving slope
instability

For our study site the ratio of the topsoil stratum’s effective
cohesion to stratum thickness is shown to be a dominant fac-
tor in the stability of the slope. Inspection of selected model
outputs indicates that the critical slip surface generally tends
to be located within this top stratum (weathering grade V–
VI) with the deepest part of the slip circle at the interface
with the weathered material stratum (grade III–IV), as illus-
trated in Fig. 2. The slip surface location within the topsoil
stratum is explained by the site-specific parameters (Table 1)
in which: (i) the higher strength weathered material stratum
constrains the failure surface to within the weaker soil stra-
tum above; and (ii) as rainfall infiltrates, the lower hydraulic
conductivity of the weathered material is likely to cause loss
of soil matric suction and thus a reduced apparent strength at
the soil/weathered material interface.

Of the two topsoil stratum strength parameters, it is effec-
tive cohesion, rather than angle of friction, that shows up in
the CART analysis because the study site slope is likely to
be cohesion controlled rather than friction controlled – i.e.
the slope angle is typically greater than the friction angle.
Figure 6 shows that when the topsoil stratum is thin it can
remain stable even for very low values of effective cohesion,
whereas, thicker soils tend to require a much higher effective
cohesion for stability. This result is in keeping with other
physically based modelling studies of the relationships be-
tween the geometry of slopes, strata and shallow landslides
in cohesion controlled slopes (Frattini and Crosta, 2013;
Milledge et al., 2014). Ignoring the effects of water table lo-
cation and pore water pressures, the greater self-weight of
soil at the base of a thicker soil stratum generates higher
shear stresses and requires greater shear resistance for sta-
bility than in a shallower soil.

The importance of cohesion for the stability of tropical
residual soil slopes, such as our study site, and its inclusion in
stability analysis is the subject of an ongoing debate amongst
geotechnical engineering, researchers and practitioners. Lab-
oratory analysis of the shear strength of remoulded clays
show that the value of the effective cohesion parameter is
affected by measurement uncertainties (Parry, 2004) and that
peak cohesion is lost with seasonal cycles of dilatancy (Take
and Bolton, 2011). The known sensitivity of slope stability
to cohesion and the uncertainties associated with its measure-
ment thus lead some engineers to adopt a highly conservative
approach to the value of effective cohesion used in slope de-
sign – often assigning it a value of zero (Schofield, 2006).
Yet, landslide hazard assessment scientists and engineering
practitioners in the humid tropics argue for its inclusion as
an observable strength parameter in the analysis of existing
slopes comprised of undisturbed tropical residual soils which
exhibit relict structures from the weathered parent rock (Bur-
land et al., 2008). For the study site, our modelling approach
supports the inclusion of non-zero values of effective cohe-
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bar, left hand number) or a stable slope (grey bar, right hand number).

sion in the analysis to account for its observable stability in
the field. Our results also indicate that any data acquisition
strategy for this site should target both soil thickness and ef-
fective cohesion values (both undisturbed and remoulded) to
improve landslide hazard predictions.

The second most important factor in the stability of our
study site is the nature of rainfall events in terms of their
intensity and duration. As noted in Sect. 4, when the pre-
dicted failed and stable slopes are plotted on log–log axes of
associated rainfall intensities and durations (Fig. 8) a neg-
ative linear threshold is found above which landslides are
more likely to occur. This relationship is observed in land-
slide inventories which are widely used to generate empirical
regional rainfall intensity–duration (I–D) thresholds of the
form I= a1 D−a2, where a1 and a2 are parameters specific
to a site or region (e.g. Larsen and Simon, 1993; Guzzetti et
al., 2007). In the absence of empirical data, physically based
models may be used to generate synthetic thresholds using
Monte Carlo methods (e.g. Peres and Cancelliere, 2014). Our
method thus demonstrates the importance of representing the

dynamic hydrological processes involved in triggering land-
slides, while also providing a starting point for generating
site-specific rainfall I–D thresholds in data-scarce locations.

We have to reiterate that our results are valid within the
context of the assumptions made in our study. For example,
changing a particular input factor distribution may influence
the importance of other factors. This is not a limitation of our
study only, but of any model-based study and sensitivity anal-
ysis application. Particularly relevant for our study is that we
evaluate the occurrence of slope failure for individual rain-
fall events and we do not consider explicitly the impacts of
varying initial hydrological conditions that may result from
sequences of rainfall events. This limitation is partially mit-
igated by the fact that we jointly vary the intensity–duration
of individual events and the initial depth of water table. The
approach presented here is a useful contribution for identi-
fying dominant landslide preparatory and triggering factors,
guiding data acquisition and refining the hazard assessment.
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Figure 8. Sampled values of rainfall intensity versus rainfall du-
ration when effective cohesion over thickness of topsoil is smaller
than 2.0 kPa m−1.

5.2 Can deep uncertainty in future rainfall exceed
other uncertainties?

In this study, we have evaluated how uncertainty about slope
characteristics and future rainfall change may influence risk
of slope failure. Our findings have demonstrated that, for our
study site, physical slope properties, namely effective cohe-
sion and thickness of the topsoil, are significant drivers of
slope stability. For this slope, these physical properties have
a more significant impact on landslide hazard risk than vari-
ability in future rainfall intensity and duration. Extending this
type of study to other slopes would allow further exploration
of the complex interactions between soil depth, permeability,
rainfall intensity-duration, antecedent rainfall and the result-
ing slide depth (see, for example, Lumb, 1975; van Asch et
al., 2009).

Our findings have a number of important implications for
landslide hazard research. Previous studies typically have
analysed the impacts of uncertainty related to slope char-
acteristics and future climate independently. For example,
Dehn and Buma (1999), Collison et al. (2000) and Ciabatta
et al. (2016) consider the impacts of climate change on slope
stability, but ignore uncertainty around soil properties; while
Rubio et al. (2004) account for uncertainty introduced by
slope hydrology and geotechnical properties, but ignore un-
certainty relating to design storms. However, our results sug-
gest that the failure to consider both sources of uncertainty
simultaneously may lead to a significant underestimation
of slope susceptibility to landslides under potential climate
change. Furthermore, we have demonstrated how physically
based models, like CHASM, can be utilized to rapidly assess
the impacts of multiple interacting and uncertain drivers of
landslide occurrence in ways that would not be possible us-
ing simpler statistical models (e.g. Dixon and Brook, 2007).

To date, only Melchiorre and Frattini (2012) have at-
tempted to analyse slope failure considering both uncertainty
arising from slope properties and future climate. Their re-
search used a top-down approach to quantify the impacts of
multiple uncertainties. Specifically, they used Monte Carlo
simulations and sensitivity analysis to assess the impacts of
uncertainty in soil properties on predictions of slope stabil-
ity for a pre-defined set of precipitation scenarios. We con-
clude that deep uncertainty due to potential future climate
characteristics is not yet fully considered in landslide haz-
ard assessment, and, as a result, policy recommendations
may lead to undesirable outcomes given the difficulty in
predicting impacts of climate change on future rainfall. In
contrast, bottom-up approaches, such as that proposed in
this study, consider a much wider range of possible system
drivers (rainfall) and other uncertainties, without introducing
assumptions regarding the probability of future precipitation.
This insight is particularly relevant for small islands like the
Caribbean, where the variety of different processes that con-
tribute to rainfall change, some of which are poorly resolved
by GCMs, make it very difficult to provide projections of fu-
ture rainfall (Seneviratne et al., 2012).

5.3 Implications for data acquisition and assessment of
future hazard

Bottom-up approaches to natural hazard risk assessment pro-
vide valuable knowledge to inform management decisions
and to target data acquisition, especially in situations where
resources may be limited. This study has shown how domi-
nant physical slope properties driving landslide occurrence
for a particular class of slope can be identified. As a re-
sult, decision makers may seek to provide funding for tar-
geted data acquisition to reduce uncertainty about the values
of these parameters (e.g. thickness and effective cohesion of
topsoil) in order to improve understanding of how likely a
slope is to fail. Decision makers could also use the knowl-
edge gained from CART to target management practices to
improve slope stability (e.g. improving slope drainage or
land cover) or to develop options to mitigate consequences
of slope failure (e.g. restricting development in high-risk ar-
eas). In this regard, the methodology developed in this study
could be used to quantify the impact of different manage-
ment options on landslide occurrence thresholds, providing
an objective measure of the potential value of each strategy
that can support debate amongst disaster risk reduction prac-
titioners.

CART also has the distinct advantage that trees can pro-
vide useful knowledge for decision makers even when un-
certainties about future changes in climate are large, as is the
case with rainfall projections in the Caribbean islands that
are predominant areas where landslides occur globally. Any
available climate information can be used a posteriori to as-
sess the plausibility of threshold tipping points being crossed,
and support the discussion whether improved management is
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required to improve slope stability in the future. Ultimately,
the decision to implement any given action depends on how
risk averse stakeholders are and how much they are willing
to spend on an adaptation strategy. However, CART provides
the tools and information to enable managers to make in-
formed choices that are robust under a wide range of plausi-
ble future conditions, reducing the risk of wasted investment
and/or unanticipated negative outcomes.

6 Conclusions

In this study, we used a combination of physical-based mod-
elling and empirical CART analysis to quantify the impor-
tance of different sources of uncertainty when predicting
landslide hazards for an example case study in the Caribbean.
Contrary to common assumptions, our findings have showed
that prediction of landslide occurrence may be more strongly
influenced by uncertainty related to physical slope properties
(e.g. cohesion and thickness of the topsoil) than by (deep) un-
certainty associated with future changes in rainfall patterns
due to climate change. We suggest that failure to account
for uncertainty related to both slope properties and climate

change therefore will lead to a significant underestimation of
landslide risks and associated impacts on human populations.

The methodology developed in this paper has demon-
strated that bottom-up approaches, implemented here us-
ing CART, can provide valuable information for assessment
of landslide hazards even in data-sparse environments. Our
bottom-up approach illuminates dominant drivers of slope
instability, enabling stakeholders and decision makers to tar-
get data acquisition to reduce model prediction uncertainty.
Moreover, CART analysis provides estimates of critical rain-
fall thresholds at which slope failure is predicted to occur.
Using this knowledge, decision makers can assess whether
it is likely these threshold tipping points being crossed in
the future given available climate change information, and
they can determine whether improved management may be
required to ensure long-term slope stability in the face of cli-
mate change.

The factors identified as drivers of slope failure in this
study are specific to the slope investigated and valid under
the assumptions made about the system representation, i.e.
the choice of the CHASM model and its resolution (spatial
and temporal). While we cannot generalize our findings, our
proposed methodology can be easily applied to other sites to
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assess the dominant factors affecting slope stability. Future
work will seek to expand our analysis to a broader range of
slope conditions found in a wider study region, for exam-
ple to analyse effects of variable slope angles and heights on
slope stability.

7 Data availability

This study did not involve any underlying data.
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Appendix A: Tree pruning

To avoid overfitting of data we pruned the tree using cross-
validation. Figure A1 shows the cross-validation error (i.e.
the proportion of misclassified data on the validation dataset)
for different pruning levels. The smallest cross-validation er-
ror is obtained for pruning level 23, which corresponds to a
tree with 51 leaf nodes. However, Fig. A1 shows that choos-
ing a much simpler tree, for example one with 25 leaf nodes
(pruning level 31), also results in a very small error. Simpler
trees are easier to interpret, and therefore in this study we se-
lect the tree with 25 leaf nodes, which has a cross-validation
error equal to 0.119.

Pruning level
0 10 20 30 40

C
ro

ss
 v

al
id

at
io

n 
er

ro
r

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

Root
node

Interpretability

Unpruned
tree

Figure A1. Cross-validation error of the classification tree for in-
creasing pruning level. The cross-validation error is computed by
splitting the available training data (10 000 CHASM model simula-
tions in our case) at random into 10 subsets. Ten different classifica-
tion trees are then constructed, where each tree is trained using 9 of
the 10 subsets and its misclassification rate on the remaining subset
is evaluated. The average of these 10 misclassification rates is the
cross-validation error (black line). The minimum cross-validation
error is equal to 0.110 and is obtained at pruning level 23, which cor-
responds to 51 leaf nodes. For the pruning level 31 (25 leaf nodes)
the cross-validation error is 0.119.
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