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Abstract. Drought management frameworks are dependent
on methods for monitoring and prediction, but quantify-
ing the hazard alone is arguably not sufficient; the nega-
tive consequences that may arise from a lack of precipi-
tation must also be predicted if droughts are to be better
managed. However, the link between drought intensity, ex-
pressed by some hydrometeorological indicator, and the oc-
currence of drought impacts has only recently begun to be
addressed. One challenge is the paucity of information on
ecological and socioeconomic consequences of drought. This
study tests the potential for developing empirical “drought
impact functions” based on drought indicators (Standardized
Precipitation and Standardized Precipitation Evaporation In-
dex) as predictors and text-based reports on drought impacts
as a surrogate variable for drought damage. While there have
been studies exploiting textual evidence of drought impacts,
a systematic assessment of the effect of impact quantifica-
tion method and different functional relationships for mod-
eling drought impacts is missing. Using Southeast England
as a case study we tested the potential of three different
data-driven models for predicting drought impacts quanti-
fied from text-based reports: logistic regression, zero-altered
negative binomial regression (“hurdle model”), and an en-
semble regression tree approach (“random forest”). The lo-
gistic regression model can only be applied to a binary im-
pact/no impact time series, whereas the other two models can
additionally predict the full counts of impact occurrence at
each time point. While modeling binary data results in the
lowest prediction uncertainty, modeling the full counts has
the advantage of also providing a measure of impact sever-
ity, and the counts were found to be reasonably predictable.
However, there were noticeable differences in skill between

modeling methodologies. For binary data the logistic regres-
sion and the random forest model performed similarly well
based on leave-one-out cross validation. For count data the
random forest outperformed the hurdle model. The between-
model differences occurred for total drought impacts and for
two subsets of impact categories (water supply and freshwa-
ter ecosystem impacts). In addition, different ways of defin-
ing the impact counts were investigated and were found to
have little influence on the prediction skill. For all mod-
els we found a positive effect of including impact informa-
tion of the preceding month as a predictor in addition to the
hydrometeorological indicators. We conclude that, although
having some limitations, text-based reports on drought im-
pacts can provide useful information for drought risk man-
agement, and our study showcases different methodological
approaches to developing drought impact functions based on
text-based data.

1 Introduction

Drought is a major natural hazard with manifold impacts on
the environment, the economy, and wider society. While the
hazard itself can rarely be avoided, drought risk assessment
and management are important tools for responding to the
hazard to mitigate impacts and for proactively planning for
future droughts (Wilhite et al., 2000). Risk is commonly un-
derstood as a combination of the probability of an event and
its negative consequences (UNISDR, 2009). Hence, it is im-
portant to better understand and predict not only the hazard
but also the likely consequences of the hazard, which depend
on the vulnerability of the exposed people and assets at risk.
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Much research on drought has focused on characterizing the
hazard (Briffa et al., 1994; McKee et al., 1993; Stagge et al.,
2015a), and less on drought impacts (Bachmair et al., 2016a;
Naumann et al., 2015). Also, most drought early warning
systems monitor and/or forecast the hazard but do not pro-
vide information on when and where a precipitation deficit
may turn into negative consequences. In a review of flood
risk assessment, the authors state that hazard assessment re-
ceives much more attention than the assessment of negative
consequences or damage, which “is treated as some kind of
appendix within the risk analysis” (Merz et al., 2010). In
comparison to drought, however, there have been consider-
able efforts to assess and model flood damage (e.g., Jongman
et al., 2012; Merz et al., 2013; Schröter et al., 2014; Spekkers
et al., 2014; Thieken et al., 2005).

A common approach for assessing the negative conse-
quences of natural hazards is the use of damage functions,
variously called vulnerability functions or stage–damage
curves depending on the damage variable used and on author
conventions (e.g., Michel-Kerjan et al., 2013; Papathoma-
Köhle et al., 2015; Tarbotton et al., 2015). Such damage
functions are usually continuous curves relating the hazard
intensity (e.g., inundation depth or wind velocity) to the neg-
ative effects of the hazard, often expressed as a damage ratio
of buildings. Transferring the concept of (empirical) dam-
age functions to drought risk assessment presents many chal-
lenges and has only recently begun to be addressed (Nau-
mann et al., 2015). The main challenges can be conceptu-
alized as follows: first, what is a suitable indicator charac-
terizing the drought hazard (abscissa in Fig. 1a)? Drought is
known as a multidimensional hazard affecting different do-
mains of the hydrological cycle and with different response
times (Wilhite and Glantz, 1985). Second, what is a suit-
able damage variable for drought effect/damage (ordinate in
Fig. 1a)? This is particularly challenging given that many
negative consequences of drought, hereafter drought impacts,
are non-structural and hard to quantify or monetize (e.g., lo-
cal water supply shortages or restrictions on domestic water
use, impaired navigability of streams, or ecological impacts
such as irreversible deterioration of wetlands or fish kills)
(Logar and van den Bergh, 2013). Also, there is a paucity
of drought impact data with sufficient spatial and temporal
resolution except for the agricultural sector (Bachmair et al.,
2016b). The third challenge is identifying an adequate func-
tional relationship for relating hazard intensity to a damage
variable (red lines in Fig. 1a).

Regarding the first challenge (hazard intensity variable),
several authors have empirically assessed which drought
indicators are best linked to certain drought impact types
such as, for example, vegetation stress and agricultural im-
pacts, restrictions regarding water supply, or power gener-
ation (e.g., Bachmair et al., 2016a; Blauhut et al., 2016;
Lorenzo-Lacruz et al., 2013; Stagge et al., 2015b; Stahl et
al., 2012; Vicente-Serrano et al., 2013). These drought in-
dicators tend to be measures of hydrometeorological vari-

Figure 1. (a) Schematic examples of drought impact functions (red
lines), and (b) location of the Southeast England study area (blue
shading) among the NUTS1 regions of the UK.

ables which are relatively easy to quantify objectively, such
as rainfall. Regarding the second challenge (drought damage
variable), studies include a variety of data types representing
the drought impact, including crop yield (e.g., Hlavinka et
al., 2009; Naumann et al., 2015; Potopová et al., 2015; Quir-
ing and Papakryiakou, 2003), wildfire occurrence (e.g., Gud-
mundsson et al., 2014), drought-induced building damage
(Corti et al., 2011), and hydropower production (Naumann
et al., 2015). While the above data relate to one specific type
of drought impact, text-based reports on drought impacts as
assembled by the US Drought Impact Reporter (DIR) (Wil-
hite et al., 2007) and the European Drought Impact report
Inventory (EDII) (Stahl et al., 2016) provide information on
different types, including indirect and non-market impacts
(e.g., ecological impacts, impacts on human health). How-
ever, for empirical damage functions such qualitative data
need to be quantified, although this transformation inevitably
introduces uncertainties. A few studies exploited text-based
impact reports from the EDII by converting them into binary
time series of impact occurrence (Blauhut et al., 2015b, 2016;
Stagge et al., 2015b). Building on these efforts, Bachmair
et al. (2015, 2016a) derived the number of impacts based
on text-based data, providing a surrogate measure of impact
severity. The suitability of these different impact quantifica-
tion methods has not yet been systematically assessed.

Regarding the third challenge, different data-driven mod-
els have been deployed depending on the probability distribu-
tion of the drought impact variable and the relation with the
hazard indicator (e.g., linear regression, logistic regression,
power law functions; e.g., Blauhut et al., 2015b; Naumann et
al., 2015). In addition to parametric models, non-parametric
approaches such as classification and regression trees have
been successfully applied for flood damage modeling (Merz
et al., 2013; Spekkers et al., 2014). While an ensemble re-
gression tree approach has also been tested for modeling text-
based drought impacts (Bachmair et al., 2016a), assessing the
performance of different functional relationships remains an
unmet challenge.
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The aim of this study is to develop empirical “drought im-
pact functions” based on text-based reports from the EDII
as surrogate information on drought damage and thereby as-
sess possibilities and limitations of transferring the concept
of damage functions to drought. Specifically, we test

– the effect of different methods of quantifying text-based
drought impact information and

– the predictive performance of three data-driven models
for linking drought intensity with drought impacts.

We use a selection of standardized hydrometeorological
indices as drought hazard indicators.

2 Data

2.1 Study area

We selected Southeast England (SEE) as a case study for
developing the drought impact functions (Fig. 1b). This is
a level 1 region of the Nomenclature of Units for Territo-
rial Statistics (NUTS1), a spatial unit used in the European
Union. The reasons for choosing SEE include the good data
availability in the EDII for this region and the importance
of drought risk assessment for this area given the severe
droughts that have occurred in southeastern UK in the past
(e.g., Kendon et al., 2013; Marsh, 2007). The southeast is
one of the driest parts of the UK, but with some of the highest
water demands. The region hosts a large population, approx-
imately 9 million (Office for National Statistics, 2017), and
high concentrations of commercial and industrial activity.
Consequently, parts of the region are already water stressed,
with pressures on the water environment expected to increase
in future (Environment Agency, 2017). The EDII drought im-
pacts for the SEE study area mainly consists of impacts on
the water supply and on freshwater ecosystems.

2.2 Predictors

As candidate predictors we selected the commonly used
drought indicators Standardized Precipitation Index (SPI)
(McKee et al., 1993) and Standardized Precipitation Evap-
oration Index (SPEI) (Vicente-Serrano et al., 2010) of ac-
cumulation periods of 1–6, 9, 12, and 24 months (hereafter
SPI-n or SPEI-n). The SPI (SPEI) compares the total pre-
cipitation (climatic water balance) of a certain location over
a period of n months with its multiyear average (Vicente-
Serrano et al., 2010; Zargar et al., 2011), so that negative val-
ues of the SPI and SPEI indicate dryer than average condi-
tions and positive values indicate wetter than average condi-
tions. SPI and SPEI are based on E-OBS gridded rainfall and
temperature data (v12.0, 0.25◦ spatial resolution) (Haylock
et al., 2008). We used the R package “SCI” (Gudmundsson
and Stagge, 2014) for SPI and SPEI calculation (gamma dis-
tribution for SPI; generalized logistic distribution for SPEI;

standardization period for both variables: 1970–2012). Evap-
otranspiration was determined using the Hargreaves–Samani
method (Hargreaves and Samani, 1982). For each month
we calculated the regional average of all E-OBS grid cells
falling within the polygon covering SEE. The regional av-
erage was chosen since Bachmair et al. (2015) found little
difference between the performances of different regional in-
dicator metrics. The SPI/SPEI accumulation durations reflect
the water deficit accumulated in the SEE area over that dura-
tion. As additional predictors, used to account for temporal
trend and seasonality, we chose the year (Y ) and the month
(M , expressed as a sinusoid) of impact occurrence (Bach-
mair et al., 2016a). For parts of the analysis the impact data
of the preceding month were introduced as a further predictor
to address autocorrelation of residuals (see Sect. 2.3 for how
impact data were prepared). All predictor time series have
monthly resolution. That is, although most of the SPI and
SPEI accumulation periods are longer than a month, each in-
dex is calculated for a moving window that is shifted one
month at a time.

2.3 Drought impacts

Drought impact information for our SEE case study region
comes from the EDII (Stahl et al., 2016), accessible at http:
//www.geo.uio.no/edc/droughtdb/. The EDII contains text-
based reports on drought impacts. Each report states (i) the
location of occurrence (making reference to administrative
regions at different NUTS levels), (ii) the time of occurrence
(at least the start and end year), and (iii) the type of im-
pact (assignment to predefined impact categories and sub-
types). For quantitative analysis these reports need to be con-
verted into time series of impact information. We tested three
different approaches of impact counting to address the un-
certainty associated with impact report quantification. The
general procedure follows previous studies (Bachmair et al.,
2015, 2016a). For our analysis monthly time series are used.
Not all impact reports state the start and end month of impact
occurrence; if only information about the season was avail-
able, we assumed drought impact occurrence during each
month of this season (winter is DJF, spring is MAM, sum-
mer is JJA, fall is SON). Impact reports only stating the year
of occurrence, or with incomplete information about impact
category or subtype, were omitted.

The impact counting methods are as follows:

1. Only presence versus absence of drought impacts per
month is considered (Blauhut et al., 2015b, 2016;
Stagge et al., 2015b), resulting in binary time series of
impact occurrence (hereafter I ).

2. All impact reports are counted. If an impact report states
n impact subtypes, there are n impact counts for each
specified month (Bachmair et al., 2015, 2016a). This
results in time series of number of impact occurrences
(hereafter NI ). For instance, for impact category “pub-
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lic water supply” seven impact subtypes may be speci-
fied, ranging from local water supply shortage (e.g., dry-
ing up of springs/wells, reservoirs, streams) over bans
on domestic and public water use (e.g., car washing, wa-
tering the lawn/garden, irrigation of sport fields, filling
of swimming pools) to increased costs/economic losses
(Stahl et al., 2016). In total, there are 15 different impact
categories in the EDII, each with its own set of subtypes.

3. An impact report assigned to one impact category only
counts once, independent of how many impact subtypes
are specified. The resulting time series shows the same
dynamic as for method 2 but has lower NI .

NI provides a measure of impact severity, but the infor-
mation is likely more uncertain than binary data. For our
analysis we considered total impacts in SEE (all impact cat-
egories) and two different subsets: water supply impacts and
impacts related to freshwater ecosystems. These two impact
categories make up the dominant part of the total impacts in
SEE. As a consequence of the specific counting decision as
well as the dynamic nature of the EDII, to which new entries
may have been added and amendments or correction to ex-
isting entries may have been made in the meantime, the time
series used in this study may differ slightly from those used
in previously published studies.

3 Methods

3.1 Data-driven models

To establish a functional relationship between drought indi-
cators (and further predictors) and drought impacts I or NI ,
we tested three different models:

1. logistic regression (LG) for the presence or absence of
impact data as a binary response variable (Blauhut et al.,
2015b, 2016; Stagge et al., 2015b);

2. zero-altered negative binomial regression; this paramet-
ric model for count data is also known as a “hurdle”
model (HM) (Zeileis et al., 2008); and

3. a “random forest” (RF) model (Breiman, 2001), which
is an ensemble of regression trees.

Logistic regression was selected because it has been pre-
viously used for drought impact modeling (Blauhut et al.,
2015b; Gudmundsson et al., 2014). For modeling count data
we aimed to explore the predictive performance of one para-
metric model and a non-parametric alternative. Since the im-
pact data contain many zeros, we selected the HM, which is
capable of dealing with excess zeros (Zeileis et al., 2008).
The HM has been successfully applied to ecological datasets
with zero inflation (Ver Hoef and Jansen, 2007; e.g., Potts
and Elith, 2006). The RF model represents a flexible machine

learning approach that can handle non-linearities and pre-
dictor interactions (Breiman, 2001; Liaw and Wiener, 2002).
The RF model has been extensively used for many applica-
tions in environmental science (e.g., Bachmair et al., 2016a;
Catani et al., 2013; Oliveira et al., 2012; Park et al., 2016;
Valero et al., 2016).

LG belongs to the class of generalized linear models (Zuur
et al., 2009a). The (logit-transformed) probability of impact
occurrence (π ) is modeled as a linear function of the predic-
tors xi following Eq. (1):

log
(

π

1−π

)
= α+

∑
i

βixi . (1)

The left-hand side represents the logit transformation; the
model parameters α and β are estimated by maximum likeli-
hood (McCullagh and Nelder, 1989).

The HM consists of two parts: a hurdle part for model-
ing zero versus larger counts and a truncated count part for
modeling positive counts (Zeileis et al., 2008). We selected a
binomial model with logit link for the hurdle part (see LG);
since the impact data are overdispersed (variance larger than
theoretically expected, in this case larger than the mean) we
selected a negative binomial model for the count part with
log link. For details of this model see Zeileis et al. (2008)
and Zuur et al. (2009b). We used the R package “pscl” for
the implementation (Jackman, 2015).

The RF model is a machine learning algorithm where a
large number of regression trees are grown on bootstrapped
subsamples of the data (Breiman, 2001). We used the R pack-
age “randomForest” (Liaw and Wiener, 2002). The default
values were kept for all model parameters; the variable ntree
was set to 1000. Details about drought impact modeling us-
ing RF can be found in Bachmair et al. (2016a). For this
study, however, we found that results are best when applying
a square root transformation to the response variable for the
binary part of the time series and no transformation for the
count part. We obtain the final modeled time series by run-
ning the RF model twice with (a) square-root-transformed
data and (b) untransformed data. The back-transformed out-
put from model (a) is replaced with the output from model
(b) if the modeled number of impacts from (a) is ≥ 1. Raw
residuals refer to the difference between this final modeled
time series and observed data.

3.2 Modeling approach

The predictors for LG and HM were selected using step-
wise regression (backward and forward selection with the
Bayesian information criterion as the selection criterion;
Schwarz, 1978). The models contain an intercept and linear
terms for each predictor. For the two-part HM we considered
each model part separately and for each part kept only pre-
dictors that were significant (p < 0.05) for that particular part
of the model. A further criterion was applied when the cross
correlation between two predictors exceeded 0.7. To avoid
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colinearity between the predictors, only the predictor show-
ing the best correlation with the predictand (i.e., the impacts)
was kept.

For RF there is no prior predictor selection; best perform-
ing predictors are identified within the algorithm. Confidence
intervals for LG and HM are computed using bootstrapping
(resampling with replacement). For RF, confidence intervals
are based on the predictions of all individual RF trees; each
tree is constructed based on a bootstrapped subsample con-
taining two-thirds of the data (Liaw and Wiener, 2002) .

For the analysis we used a censored time series based on
years with drought impact occurrence rather than the entire
time series (see Bachmair et al., 2015, 2016a). The rationale
is that there may be a lack of impact reporting for certain
drought events; hence we only focus on parts of the time se-
ries with reported drought impacts. All months of all years
with drought impact occurrence were selected plus an ad-
ditional 6-month buffer before and after the drought year to
include sufficient variability for model training. This resulted
in n= 234 months for total impacts, n= 198 for water sup-
ply impacts, and n= 174 for freshwater ecosystem impacts.

To assess the model’s predictive performance we per-
formed leave-one-out cross validation, i.e., each month is
left out once for model training, and a prediction is made
for this omitted month. We evaluated the model performance
regarding its capability of predicting binary data and count
data (HM and RF). For the binary performance evaluation
we rounded the time series of LG; for HM and RF, data
points < 1 were rounded, and data points > 1 were truncated
to 1. We used the following performance metrics: hit rate
(i.e., the proportion of predictions for which the presence
or absence of impacts is correctly identified), false posi-
tive, and false negative rate. The model performance met-
ric for the count part of HM and RF is the Kling–Gupta ef-
ficiency (KGE), which is based on the difference in mean,
standard deviation, and correlation between the observed and
the leave-one-out predicted series (Gupta et al., 2009). KGE
lies between 1 (perfect fit) and negative infinity (worst fit).

4 Results

4.1 Selected predictors

The stepwise approach (see Sect. 3.2) resulted in the follow-
ing predictors being selected for the LG model: SPI-6, SPEI-
24, and M for modeling total impacts; SPI-6 and SPI-24 for
water supply impacts; SPI-3, SPI-6, SPI-24, and Y for fresh-
water ecosystem impacts. The selected predictors for the HM
are SPI-6 and SPEI-24 for the hurdle part and SPI-6 and Y
for the count part (total impacts for both methods of impact
quantification). For water supply and freshwater ecosystem
impacts different predictors were automatically selected for
both model parts and methods of impact quantification (water
supply impacts: SPI of short, medium, and long accumula-

tion periods; freshwater ecosystem impacts: SPI and SPEI of
short, medium, and long accumulation periods, and Y ). For
RF, all predictor are used, yet similar predictors as for LG
and HM were identified as most important during regression
tree construction.

4.2 Fitted models

Figure 2 shows the dependence of the observed or modeled
response variable (total impacts, NI quantified after method
3) on the selected predictors; note that only the dependence
on SPI-6 and SPEI-24 is displayed although the models in-
clude further predictors (e.g., M and Y ). The top panels re-
veal a complex relationship between drought indicators and
observed I or NI . Impact counts occur not only for nega-
tive drought indicator values: there are a few instances of
I for positive values of both drought indicators (front left
quadrant), and several data points with impact counts yet
negative indicator values for only one of SPI-6 or SPEI-24.
The panels showing fitted data and an additional interpo-
lated surface to aid visualization can be regarded as a three-
dimensional version of the common two-dimensional dam-
age functions based on one predictor. For LG, the fitted data
reveal a comparably smooth increase of the likelihood of im-
pact occurrence from positive to negative values for both se-
lected drought indicators. For HM and RF, the response sur-
face is more rugged. The RF model better captures observed
NI than HM, especially for cases with negative SPEI-24 but
less negative SPI-6; HM strongly underestimates these NI .
Figure 3 additionally shows time series of observed versus
fitted I orNI and confidence intervals. Both count data mod-
els tend to underestimate medium to high NI . HM addition-
ally shows estimates of impact occurrence when none oc-
curred. The confidence intervals for LG and HM are rather
narrow, whereas they are wider for RF. Note that for the im-
pact quantification method 2 (same dynamics but higherNI ),
the underestimation of high NI by RF is less pronounced,
whereas it is much more pronounced by HM (not shown).

An analysis of the residuals revealed significant autocor-
relation up to a lag of 8 months depending on the model and
impact quantification method (see examples in Fig. 4). For
RF, the autocorrelation of the residuals is less pronounced
than for LG and HM. To take the autocorrelation into ac-
count, impact information for the preceding month was in-
cluded in the model. For the binary part of the model, this
meant whether or not impacts occurred in the preceding
month. For the count part, the number of impacts in the pre-
ceding month was added as a predictor. The inclusion of this
autoregressive part in the model generally resulted in a con-
siderable decrease in the autocorrelation of the residuals. For
HM, however, it also caused significant overprediction of NI
for two data points (see HM b) in Fig. 4.
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Figure 2. Top row: dependence of the observed response variable (black dots) on SPI-6 and SPEI-24 (total impacts;NI : impact quantification
method 3). Bottom rows: fitted models (only SPI-6 and SPEI-24 are displayed although the models include further predictors).

4.3 Predictive performance

For each of the different models, the predicted series from
the leave-one-out cross validation was compared with the ob-
served series. The evaluation of the predictive performance
considering binary data and count data (HM and RF) sepa-
rately yielded the following findings (Fig. 5):

1. noticeable differences between models,

2. small differences between impact counting methods
(i.e., all types of response data are equally well pre-
dicted),

3. a positive effect of including impact information of the
preceding month as an additional predictor, and

4. similar results regarding between-model differences for
different impact subtypes.

Generally, for binary data, LG and RF perform similarly
well with a hit rate of roughly 0.8; the hit rate of the hurdle
model is distinctly lower (Fig. 5, columns 1–2). For count
data, RF is superior to HM. The temporal dynamics of NI
are better reproduced by RF than HM (see Fig. 6). However,
underprediction of higher impact counts for the RF model
lead to a lower mean and standard deviation than observed,
resulting in KGE values less than 0.6. The HM shows an
even stronger underprediction of high NI and frequent im-
pact occurrence predictions despite absent impacts, result-
ing in KGE values less than 0.4. The impact quantification
method (Fig. 5, column 1 vs. 2) has hardly any effect on RF
performance for either binary or count data. For HM, count-
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Figure 3. Observed versus fitted time series of I or NI (total im-
pacts; NI : impact quantification method 3).

ing method 3 (lowerNI ) leads to a small but notable increase
in performance.

For all the models there is generally a positive effect of
including the impact information from the preceding month
as an extra predictor variable (Fig. 5, column 1 vs. 3). The
hit rate of LG and RF increases to > 0.9, and KGE values in-
crease by ca. 20 %. For HM, however, strong overestimation
can be noticed for summer 2006 (Fig. 5). When subsetting
the total impacts on water supply and freshwater ecosystems,
respectively, the same general picture of between-model dif-
ferences as for total impacts is seen. That is, RF and LG
are similar regarding binary data, and RF is superior to HM
for the count part (Fig. 5, columns 4–5). However, apart
from this the results are varied. There is either a slightly in-
creased or decreased predictive performance depending on
the model, impact counting method, and binary versus count
data performance metric (only impact counting method 2 is
shown). Notable is a decreased performance of HM for wa-
ter supply impacts, yet an increase for freshwater ecosystem
impacts, compared with the prediction of total impacts.

Figure 4. Raw residuals for both count data models (total im-
pacts; NI impact quantification method 3). (a) Models based on
selected predictors (see Sect. 3.2); (b) NI of preceding month as
additional predictor.

5 Discussion

Previous studies exploiting impact data from the EDII have
primarily used impact occurrence information coded as a
binary variable (presence versus absence of impacts). This
method of impact quantification has several advantages: it is
simple to implement and communicate and contains fewer
subjective decisions and lower uncertainty. However, it does
not provide information about the severity (in some quantita-
tive sense) of the drought impacts. For characterizing drought
onset and termination binary data may be sufficient. Once
in drought, however, there is less possibility of identifying
specific times or regions more severely affected than oth-
ers. Although the number of drought impacts is undeniably
more uncertain than a simple measure of presence/absence
of impacts, it provides a measure of impact severity and was
reasonably predictable. We therefore conclude that there is
value in using the number of impacts as a variable to express
drought damage. The fact that the differences between both
methods of impact counting were mostly small demonstrates
that either approach is useful and relatively robust. For the
hurdle model, however, the method resulting in lower im-
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Figure 5. Model performance metrics based on leave-one-out cross validation for total impacts and impacts on water supply and freshwater
ecosystems. (a)NI after impact quantification method 2; (b)NI after impact quantification method 3; (c) as (a) but includingNI of preceding
month as additional predictor.

pact counts (only differentiating between impact categories
but not subtypes) yielded better results. Overall, we recom-
mend interpreting impact counts as a severity metric rather
than as representing the true number of observed impacts.
Since information about impact severity, in a quantitative (or
at least systematically and objectively estimated) sense, is
currently not available from the EDII database, exploring dif-
ferent methods for counting the number of impact reports as
we do here is in our opinion the best way currently to address
impact severity.

Further sensitivity tests on the assumptions during im-
pact quantification are desirable in future research, e.g., test-
ing the effect of assigning a time of occurrence when im-
pact reports only provide an approximate time indication.
Testing three data-driven models revealed the superiority of
RF with respect to predictive model performance. The dis-
criminatory power of LG and the RF (based on square-root-
transformed data) was comparable, with about 80 % of the
binary data correctly predicted. However, in addition the RF
model also provides information about impact severity. The

machine learning algorithm seems to be most capable of fit-
ting “difficult” data points. For example, water supply re-
lated impacts may persist because of low groundwater lev-
els, despite shorter-term wet conditions. These cases mani-
fest themselves as high observed NI for very negative values
of SPEI-24, but positive or only slightly negative values of
SPI-6 (see Fig. 2). In fact, the selection of predictor variables
for most of the models include a combination of such shorter-
term and longer-term timescales of SPI or SPEI, sometimes
together with the month (for seasonality) or year (for trend)
of impact occurrence. While for the RF model all predictors
are used, the above-named ones were identified as the most
important ones.

The HM showed the lowest predictive performance re-
garding both the binary and the count parts, with both
frequent false alarms and underprediction of high impact
counts. One could argue that text-based drought impact in-
formation is vaguer or fuzzier than, e.g., data representing
ecological processes, where HM was found to be suitable
(Ver Hoef and Jansen, 2007; e.g., Potts and Elith, 2006).
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Figure 6. Examples of observed versus modeled time series based on leave-one-out cross validation. (a) NI after impact quantification
method 2; (b) as (a) but including NI of preceding month as additional predictor.

An increased performance of HM for more conservatively
counted impact data (method 3) supports this speculation.
One can infer that for text-based drought impact data non-
parametric methods may be most suitable. Future work could
test other machine learning or flexible approaches that have
been applied to drought modeling (e.g., Morid et al., 2007).
However, a slight improvement of HM performance by re-
assessing the predictor selection may not be ruled out; we do
not claim to have identified the optimal model by automatic
predictor selection. Nevertheless, small tweaks regarding the
in- or exclusion of certain predictors only yielded marginal
differences. It can be noted that the study region is very di-
verse geologically, which affects the response time of river
flows to rainfall. The SPI duration showing the strongest re-
lationship with monthly mean streamflow can vary greatly
between catchments even over short distances due to the ge-
ological heterogeneity of the southeast (Barker et al., 2016).
For most catchments, Barker et al. (2016) found the cor-
relation with streamflow to be strongest for SPI durations
less than a year, but for very permeable catchments with
a large groundwater contribution to flows, correlations re-
mained strong up to the longest duration studied: 2 years.
Hence, it seems reasonable to include SPI predictors repre-
senting both the fast and the slow response to rainfall (the
latter including groundwater as well as streamflow in perme-
able catchments).

The between-model differences discussed above also ap-
ply when subsetting the total impacts on water supply and
freshwater ecosystem impacts. We expected that using sub-
sets of the total impacts would lead to more homogeneous
data and thus a closer relation between drought intensity and
impact occurrence. However, the analysis did not generally
support this. Possible explanations include that the rainfall
response of streamflow in very permeable catchments (af-
fecting freshwater ecology) can be as slow as that of ground-
water (affecting water supply). Another reason may be that
the subsets may result in less representative data than the
lumped data. Data-driven models need sufficient data for
training. Because of this we limited the development of
drought impact functions to impact categories with many
data points and the larger-scale region SEE. The suitability
of our methods for constructing local-scale drought impact
functions needs further investigation. For smaller regions
there are less data available in the EDII. A previous study
found decreased RF performance for regions with lower data
availability (Bachmair et al., 2016a). To overcome the data
scarcity, a number of suggestions appear possible given the
will and resources. Options include semiautomated newspa-
per clippings and other big data approaches as well as trained
observer networks as explored with the USA drought mon-
itoring (see, e.g., Smith et al., 2014). They also include a
more directed and targeted monitoring of drought impacts in
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general as part of routine environmental and water resources
monitoring. For example, on a more localized (catchment)
scale it may be possible to develop impact functions using
ecological response data (for example, in the case of SEE re-
ported here), capitalizing on regular monitoring undertaken
in the National Drought Surveillance Network (Dollar et al.,
2013).

There are a range of potential applications for impact
functions in water resources management, with two obvious
examples being: long-term strategic drought and water re-
sources planning and real-time monitoring and early warn-
ing to support operational decision-making during drought
events. For the case of long-term drought and water resources
planning, in particular, scenarios provide a common tool to
test and improve existing drought plans (for example, in re-
lation to England as in this case study: Watts et al., 2012;
Anderton et al., 2015). Currently such tests are mostly done
at the level of individual water suppliers, with very specific
failure functions, and generally such approaches focus on se-
curity of water supply; Watts et al. (2012) argued that social
or environmental impacts should be incorporated into such
tests in future to enable the consequences of management de-
cisions to be appreciated and thereby provide a more realistic
test of Drought Plans. Similarly, impact functions may facili-
tate more regional- to country-scale assessment of the risk of
certain sectors to drought and hence enable the coordination
of drought management plans across sectors. In a real-time
context, an impact function enables the interpretation of a
given drought index as a threshold or trigger of action. Im-
pact functions thereby translate drought intensity expressed
by a hydrometeorological indicator into the possibility of ex-
periencing socioeconomic or ecological effects, based on his-
torical experience. Currently, operational systems like the US
Drought Monitor or the European Drought Observatory al-
low the user to select different drought indices. We propose
that in the future users should ideally also be able to select an
index that provides information on whether socioeconomic
or ecological effects can be expected for this drought in-
tensity, which could be addressed by impact functions. This
would go some way to countering a recognized deficiency in
current monitoring and early warning systems, i.e., a capac-
ity to quantify and eventually predict impacts on society and
ecosystems (Bachmair et al., 2016b).

If near-real-time monitoring of drought impacts is avail-
able, as is the case for the US DIR, impact predictions could
be supported by impact information of the preceding time
steps. Our analysis revealed an increase in predictive per-
formance when including such knowledge. Furthermore, im-
pact functions as surrogates for damage functions could be
used with hazard scenarios to derive an estimate of risk (e.g.,
Stoelzle et al., 2014). However, drought impact functions
represent a (rather loose) measure of severity; monetary risk
estimates could only be derived by coupling them with ap-
proaches to quantify the willingness to pay for the restora-
tion of certain (ecosystem) services (Banerjee et al., 2013;

Logar and van den Bergh, 2013; Mens et al., 2015). Addi-
tionally, hydro-economic models or engineering approaches
could be tested against such empirically derived impact func-
tions. A caveat is that our impact functions do not incorporate
dynamics of vulnerability; i.e., the link between hydrometeo-
rological indicators and impacts may change over time due to
adaption and preparedness measures (Blauhut et al., 2015a),
for example the increasing resilience of water supply sys-
tems to drought. For monetary losses such changes may be
accounted for (e.g., by price adjustment; Kron et al., 2012).
In our case the variable Y (year) may cater for trends in vul-
nerability or impact reporting to some extent as suggested by
Stagge et al. (2015b). Interestingly, the year is included as a
predictor for all the models of freshwater ecosystem impacts,
whereas the LG and HM use only SPI of different durations
for estimating water supply impacts. However, clearly the in-
clusion of a linear trend by year is necessarily an approxima-
tion, and resilience changes episodically, with major events
themselves being major catalysts for improvements in wa-
ter governance or water supply system resilience. To better
account for the dynamics of vulnerability, expert elicitation
could be used to gain an understanding of the dynamics of
adaption measures over time for a specific application and
region. One would need to test whether quantifying such in-
formation and adding it as further predictor variable would
improve the reliability of impact functions.

In assessing the most suitable impact function for any ap-
plication, further evaluation criteria may be useful in addi-
tion to the predictive performance, such as the capability of
extrapolation beyond the training data, interpretability and
simplicity of communication, and ease of application. Es-
pecially the ability of RF to predict impact occurrence for
yet unexperienced drought scenarios needs to be explored
Although the RF method means that complicated relation-
ships between the (many) predictors and the predictand can
be incorporated, the fewer predictors used in the LG and HM
approaches make interpretation of the link between indica-
tors and impacts more transparent. In the choice of modeling
methodology, a balance therefore needs to be struck between
these several different criteria.

6 Conclusion

This study tested the potential for developing empirical
“drought impact functions” based on hydrometeorological
drought indicators and text-based reports on drought impacts
as a surrogate variable for drought damage. With a view to
transferring the concept of damage functions (widely used
in other hazards) to drought, we tested different methods
for quantifying text-based information and three data-driven
models for linking hazard intensity with the derived drought
impact variables for one example region in Southeast Eng-
land. We conclude that although having some limitations,
text-based reports on drought impacts can provide useful in-
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formation for drought risk management. While the conver-
sion of text-based reports into number of drought impact oc-
currences is undeniably more uncertain than binary data of
presence/absence of impact occurrence, it provides an ad-
ditional measure of impact severity that was found reason-
ably predictable. Unlike more commonly used damage func-
tions linking one hazard variable to one particular type of
damage, modeling the impacts of the multifaceted hazard of
drought requires several drought indicators (in our case dif-
ferent accumulation periods of SPI and SPEI). Out of the
three models tested, the random forest model generally per-
formed best. While logistic regression and the random forest
model showed a similar discriminatory power for binary im-
pact data, the random forest additionally predicts count data
and thus information about impact severity. When using sub-
sets of the total impacts (impacts on water supply and im-
pacts on freshwater ecosystems) similar between-model dif-
ferences are revealed. While the flexible machine learning
algorithm seems most suitable for modeling the complex re-
lation between drought indicators and text-based data, we
do not claim to have generally identified the best model.
Instead, our study showcases different methodological ap-
proaches to developing drought impact functions based on
text-based data, depending on data availability and purpose
of analysis.
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