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Abstract. Among the natural hazards, flash flooding is the
leading cause of weather-related deaths. Flood risk manage-
ment (FRM) in this context requires a comprehensive assess-
ment of the social risk component. In this regard, integrated
social vulnerability (ISV) can incorporate spatial distribution
and contribution and the combined effect of exposure, sen-
sitivity and resilience to total vulnerability, although these
components are often disregarded. ISV is defined by the de-
mographic and socio-economic characteristics that condition
a population’s capacity to cope with, resist and recover from
risk and can be expressed as the integrated social vulnerabil-
ity index (ISVI). This study describes a methodological ap-
proach towards constructing the ISVI in urban areas prone to
flash flooding in Castilla y León (Castile and León, northern
central Spain, 94 223 km2, 2 478 376 inhabitants). A hierar-
chical segmentation analysis (HSA) was performed prior to
the principal components analysis (PCA), which helped to
overcome the sample size limitation inherent in PCA. ISVI
was obtained from weighting vulnerability factors based on
the tolerance statistic. In addition, latent class cluster anal-
ysis (LCCA) was carried out to identify spatial patterns of
vulnerability within the study area. Our results show that the
ISVI has high spatial variability. Moreover, the source of vul-
nerability in each urban area cluster can be identified from
LCCA. These findings make it possible to design tailor-made
strategies for FRM, thereby increasing the efficiency of plans
and policies and helping to reduce the cost of mitigation mea-
sures.

1 Introduction

Flash floods are highly spatio-temporally localized flood
events that usually occur in small steep basins. They are
caused by a sudden increase in the stream flow, generally
due to spatially concentrated heavy rainfall, and characteris-
tically reach a high peak flow in a short period of time (i.e.
usually within a few hours of the onset of rainfall; Borga,
2013; Wilhelmi and Morss, 2013; Bodoque et al., 2015; Terti
et al., 2015). Because of their short duration, which limits
or even eliminates warning time, flash floods are considered
to be a destructive hazard with one of the greatest capacities
for generating risk, in terms of both the socio-economic im-
pact and the number of casualties on a global scale (Marchi
et al., 2010; Borga, 2013; Terti et al., 2015). According to
Barredo (2007), 40 % of flood-related casualties in Europe
between 1950 and 2006 were caused by flash floods.

The growth of exposed population, the allocation of eco-
nomic activities to flood-prone areas and the rise in extraor-
dinary event frequency over the last few decades (Hunting-
ton, 2006; Frigerio et al., 2016) have led to an increase in
flash-flood-related casualties and economic losses (Llasat et
al., 2008; Marchi et al., 2010). This highlights the need to
make people aware of risk and prepare them for living with
it (Birkmann, 2013). In this regard, the United Nations has
put a great deal of effort into promoting awareness of the
importance of disaster reduction. This initiative started in
1990 with the International Decade for Natural Disaster Re-
duction. The experience gained during this decade laid the
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foundations for the International Strategy for Disaster Re-
duction. This gave rise to different frameworks, of which the
Sendai Framework for Disaster Risk Reduction 2015–2030
is the most topical (UNISDR, 2015). This new approach has
enabled the flood risk management (FRM) to change from
an engineering-based perspective, which has proved to have
an ineffective response (Birkmann, 2013; Cutter et al., 2013;
Koks et al., 2015), to a disaster-resilient perspective, high-
lighting the need to build resilient communities through the
integration of vulnerability reduction approaches into risk re-
duction policies (Cutter et al., 2008; Birkmann et al., 2013;
UNISDR, 2015).

Much effort has been put into flood hazard analysis in the
past, but vulnerability assessment is still one of the biggest
constraints in flood risk assessment to date (Mechler et al.,
2014; Koks et al., 2015). Vulnerability assessment can be
defined as the analysis of the characteristics of a person or
group and their situation that influence their capacity to an-
ticipate, cope with, resist and recover from the impact of a
natural hazard (Birkmann, 2013). A hybrid approach is cur-
rently the one most frequently used for analysing vulnera-
bility. This comprises risk–hazard approaches, which con-
sider that vulnerability depends on biophysical risk factors
and the potential loss of a particular exposed population (e.g.
the hazards-of-place model of vulnerability; Cutter, 1996),
and political economic–ecological approaches, which em-
phasize the political, cultural and socio-economic factors ex-
plaining differential exposure, impacts and capacities to re-
cover from an event (e.g. the pressure and release model;
Blaikie et al., 1994). Taking into account the key parameters
for vulnerability research, outlined in the approaches men-
tioned above, vulnerability depends on the exposure and sen-
sitivity to stress of the social system (i.e. any characteristics
that increase vulnerability) as well as its capacity to absorb or
cope with the effects of these stressors (i.e. resilience; Adger,
2006; Eakin and Luers, 2006; Birkmann, 2013; Thieken et
al., 2014). Numerous papers have analysed the physical vul-
nerability component (Koks et al., 2014; Ocio et al., 2016).
However, the social aspects of vulnerability have often been
neglected (Cutter et al., 2003; Hummell et al., 2016), mainly
due to the difficulty of quantifying variables that are inher-
ently qualitative (Frazier et al., 2014). Social vulnerability
tries to explain how a certain natural hazard produces an un-
equal impact on exposed populations (Cutter et al., 2003;
Nelson et al., 2015). It can be characterized by any socio-
economic and demographic variables that influence a soci-
ety’s preparedness, response and recovery (Birkmann, 2013;
Cutter et al., 2013; Terti et al., 2015). Social vulnerability has
been assessed in different contexts (e.g. those of global envi-
ronmental change and natural hazards). However, not many
studies have focused exclusively on the context of flood risk
(Tapsell et al., 2002; Burton and Cutter, 2008; Fekete, 2010;
Mollah, 2016), and only a very few of these relate to flash
floods (Balteanu et al., 2015; Karagiorgos et al., 2016). Over-
all, in social vulnerability analysis a separate assessment of

vulnerability (Tapsell et al., 2002; Cutter et al., 2003; Nelson
et al., 2015) and resilience is made (Cutter et al., 2008, 2010;
Siebeneck et al., 2015). The approach has usually been based
on calculating composite indices from socio-demographic
and economic characteristics. Reductionist statistical tech-
niques, i.e. factor analysis and principal components anal-
ysis (PCA), have generally been used for this purpose (Clark
et al., 1998; Cutter et al., 2003; Dwyer et al., 2004; Fuessel,
2007; Grosso et al., 2015; Hummell et al., 2016; Rogelis et
al., 2016).

Less attention has been paid to the integrated analysis
of vulnerability components (i.e. using the hybrid approach
mentioned above). This considers the differential influence
of exposure (people and assets susceptible to harm), sensitiv-
ity (the extent to which people and assets can be damaged)
and resilience (the ability to absorb, cope with and recover
from the effects of a disaster) on total vulnerability (Fra-
zier et al., 2014; Pandey and Bardsley, 2015; Weber et al.,
2015). The above approach helps to identify which charac-
teristics contribute to increases or decreases in vulnerability
and where they are spatially represented. Accordingly, this
approach provides a much more holistic assessment of vul-
nerability, since it models the combined effects of its com-
ponents (Fuessel, 2007; Frazier et al., 2014). Although expo-
sure and vulnerability are assumed to be two different con-
cepts in the traditional risk framework, the inclusion of ex-
posure as a component for consideration is currently com-
mon practice when assessing social vulnerability as it pro-
vides a more holistic characterization (Turner et al., 2003;
Adger et al., 2004). If exposure is absent it is not possible
to talk about the potential for loss – in other words, vulner-
ability (Frazier et al., 2014). Moreover, it is worth mention-
ing that flash floods occur in mountainous areas where data
availability may be limited. Very few studies take this con-
straint into account. In some cases, it is addressed by aggre-
gating the variables under consideration in order to obtain
the vulnerability index (Balteanu et al., 2015). Determina-
tion of the vulnerability index requires vulnerability factor
weighting. To this end, equal weights have usually been as-
signed to all factors (Cutter et al., 2003, 2010), which may
not give a realistic result (Frazier et al., 2014). Differential
weights according to expert judgments have sometimes been
assumed (Zelenakova et al., 2015). This could in itself be a
limitation as experts’ judgments on the same issue may differ
(Asadzadeh et al., 2015). It is also worth mentioning that sta-
tistical methods, such as a correlation-based PCA (Mollah,
2016), are increasingly being used (Asadzadeh et al., 2015).

This paper aims to calculate an integrated social vulnera-
bility index (ISVI) for flash floods that considers the vulner-
ability components (i.e. exposure, sensitivity and resilience)
separately, analysing how each of them is involved in the to-
tal vulnerability. To address this, a set of variables were sta-
tistically analysed, firstly by means of a hierarchical segmen-
tation analysis (HSA) and secondly by performing a PCA.
This approach constitutes an alternative methodology to what
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Figure 1. Location of the region of Castilla y León. Sources: IGN raster cartography (available WMS server: http://www.ign.es/wms-inspire/
mapa-raster?request=GetCapabilities&service=WMS&; accessed on 4 December 2016); digital terrain model 200 m (available online: http:
//www.ign.es; accessed on 3 December 2016); regional boundaries (available online: http://www.ign.es; accessed on 7 December 2016);
municipal boundaries (available online: http://www.ign.es; accessed on 5 December 2016); rivers (available online: http://www.mapama.
gob.es; accessed on 5 December 2016); APSFRs (available online: http://www.mapama.gob.es; accessed on 5 December 2016); 500-year
flood areas (available online: http://www.mapama.gob.es; accessed on 5 December 2016).

is typically used in social vulnerability assessment, making it
possible to overcome the insufficient availability of data that
frequently occurs in mountainous areas. Tolerance statistics
were used as a variable weighting method. Latent class clus-
ter analysis (LCCA) was also carried out in order to identify
social vulnerability profiles within the study region.

2 Materials and methods

2.1 Study area

The methodology proposed here was applied in the region of
Castilla y León (Castile and León), which occupies almost all
of central northern Spain (Iberian Peninsula; Fig. 1). Castilla
y León is not only the largest region in Spain, but also in the
European Union, with its surface area of 94 230 km2 exceed-
ing that of seventeen of the 28 member states, including Por-
tugal, Austria and Belgium. Its relief is mainly composed of
a large plateau between 700 and 1100 m above sea level, sur-
rounded by large mountain systems with peaks up to 2600 m
high. The climate is a continental variation of the Mediter-
ranean type, with hot dry summers and cold relatively dry
winters. Average annual rainfall ranges from 300 to 600 mm
and falls primarily in spring and autumn, although in cer-
tain mountainous areas more than 1800 mm is not unusual.
Steep slopes, which limit the development of vegetation, and
spatially concentrated heavy rainfall in certain mountainous
areas favour the triggering of flash floods. With regard to de-
mographics, Castilla y León has a population of nearly 2.5
million, 5.5 % of whom are foreign born. Population densi-
ties range from 9 to 65 inhabitants per km2, giving a mean

population density for the region of 26, which is far lower
than the mean for Spain of 92 inhabitants per km2. The re-
gion is divided into 2248 urban areas. Of the total number
of urban areas, 94 % have fewer than 2000 inhabitants but
account for 26 % of the region’s population. It is also worth
mentioning that the region has an ageing population, with an
ageing index close to 2 (i.e. there are two people aged 65
or over for each person below the age of 15). In urban areas
with less than 2000 inhabitants, however, the ageing index is
higher than 5.

2.2 Methodological outline

The first step was to distinguish those urban areas of
the study region that were prone to flash flooding (see
Sect. 2.2.1). Next, a database of socio-demographic and
socio-economic variables was constructed for each of the ur-
ban areas studied (see Sect. 2.2.2). It was not possible to per-
form a PCA to define the ISVI, as is usual in the literature
(Fekete, 2010; Frazier et al., 2014; Hummell et al., 2016),
since the number of variables initially considered (71) out-
numbered the urban areas of interest (39; Sarstedt and Mooi,
2014). However, the database had previously been divided
into small subsets of variables (see Sect. 2.2.3) by means of
an HSA. This allowed a PCA to be performed on each one,
which in turn enabled extraction of the different vulnerability
factors (see Sect. 2.2.4) which go on to make up the ISVI (see
Sect. 2.2.5). Vulnerability factors were also used to identify
social vulnerability patterns within the study area by means
of LCCA (see Sect. 2.2.6; Fig. 2).
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Figure 2. Methodological outline containing the different steps followed in the construction of the ISVI and the social vulnerability patterns.

2.2.1 Identification of urban areas prone to flash
flooding

Flash floods occur in very specific areas. It was therefore nec-
essary to specify the urban areas prone to this type of event.
This was done by considering a number of simple but ro-
bust requirements. The first of these was to identify those
river reaches where the longitudinal slope across a given ur-
ban area was higher than 0.01 m m−1 (Bodoque et al., 2015).
A digital terrain model with a cell size of 200 m was used
to apply this criterion. It was provided by the Spanish Na-
tional Geographic Institute (IGN; layer generated in 2013)
and was used as input data for the Geospatial Hydrologic
Modeling Extension (HEC-GeoHMS 10.0; USACE, 2013)
from which the longitudinal slopes of the river were calcu-
lated. Secondly, we examined urban environments defined
by the basin water authorities as Areas with Potential Sig-
nificant Flood Risk (APSFRs; layer generated in 2015; Ca-
ballero et al., 2011) and flood hazard zones with low or ex-
ceptional probability (i.e. 500-year flood; layer generated in
2016), taking into account the river reaches selected in the
previous step. These were provided by the Spanish Ministry
of Agriculture and Fisheries, Food and Environment (MA-
PAMA). The low probability scenario was chosen because

it is the most comprehensive representation of urban areas
that could be affected by flash floods on a regional scale.
The 500-year flood zones were obtained from preliminary
flood risk assessments by competent water, coastal and civil
protection authorities, as stated in Directive 2007/60/CE on
flood risk assessment and management. The aforementioned
flooded areas were then contrasted with the river reaches se-
lected according to the first criterion in order to identify the
urban areas of interest, which resulted in a total of 39.

2.2.2 Database generation

Based on existing literature (Cutter et al., 2003; Frazier et
al., 2014; Hummell et al., 2016), a set of 71 variables was
initially characterized for each of the 39 urban areas iden-
tified above. A total of 42 socio-demographic and socio-
economic variables were extracted from state, regional or lo-
cal databases (e.g. population, education, buildings). How-
ever, another 29 variables were requested from certain public
organizations and councils. This information was obtained
from phone calls, from direct personal contact with a person
in charge (e.g. dependency, development and infrastructures)
or through personal research in which the variables were es-
timated from other non-specific sources of information (e.g.
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collective vulnerability, healthcare services). Collective vul-
nerability encompasses vulnerability aspects that are related
to the community as a potentially sensitive unit. Variables
were then normalized to a percentage or per capita (Hummell
et al., 2016). Redundant variables were removed after con-
ducting a correlation test (Cutter et al., 2003). Specifically,
those variables with a correlation coefficient above 0.9 were
not considered. As a result, 16 variables were eliminated
from the database and the methodological approach was con-
tinued with the other 55 variables (Table 1). These vari-
ables were classified into eight thematic information blocks:
(i) population (11 variables related to demography), (ii) de-
pendency (4 variables linked to elderly people), (iii) educa-
tion (2 variables associated with the level of educational at-
tainment), (iv) employment situation (5 variables related to
unemployment status), (v) healthcare services (8 variables
linked to medical system characteristics), (vi) development
and infrastructures (10 variables associated with the eco-
nomic potential of the region and its facilities), (vii) buildings
(13 variables related to construction features) and (viii) col-
lective vulnerability (2 variables linked to the availability of
infrastructures for evacuating population).

2.2.3 Exploring the dimensions of social vulnerability

Variables being considered were grouped together with the
HSA application, using SPSS (IBM-SPSS v.19) statistical
software. This is a multivariate statistical technique for auto-
matic data classification that divides an initial set of variables
into different groups. This division is based on minimizing
the distance between variables in the same group and max-
imizing the distance between variables in different groups
(Sarstedt and Mooi, 2014). The greater the distance between
variables, the less similar they are. The division of variables
into groups followed a hierarchical process in which initially
as many groups as variables were considered. Subsequently,
successive iterations of hierarchical algorithms enabled vari-
ables to converge in larger groups. Once the variables were
standardized (Cutter et al., 2003), the squared Euclidean dis-
tance was used as a measure of similarity, i.e. the square of
the square root of the sum of the differences between vari-
able values. In addition, Ward’s method was used as a group-
ing method. This seeks the least possible variability within
each group (i.e. the minimum variance) as an associative hi-
erarchical algorithm, which has been demonstrated to be one
of the most effective (Pérez, 2004), especially when the sam-
ple size is small (Martín et al., 2015). The number of groups
was determined by taking into account both the distance at
which groups were differentiated into the graphical output
of the HSA (i.e. the dendrogram) and the consistency and
homogeneity of the numbers of variables contained in them.
Finally, distinguishing variables into groups made it possible
to conduct a principal components analysis in each of them.

2.2.4 Identification of vulnerability factors

SPSS (IBM-SPSS v.19) was used to implement the principal
component analysis in each group differentiated by the HSA.
This aimed to reduce the number of variables to latent vari-
ables, which are not directly observable, and so-called princi-
pal components or factors, which are a linear combination of
primitive variables (Sarstedt and Mooi, 2014). The Kaiser–
Meyer–Olkin (KMO) statistic and Barlett’s test of spheric-
ity were estimated in order to evaluate the suitability of per-
forming PCA in the variables under consideration. For each
group, all the variables were initially examined using the fac-
tor extraction process. Variables with low communality (val-
ues below 0.5) were subsequently removed, and the factor ex-
traction process was repeated until all variables had commu-
nality values above 0.5. Communality indicates how much of
the variance of each variable can be reproduced by means of
factor extraction. In cases where a group presented more than
one factor, these were separated and a PCA was performed
on each one of them individually. The correlations between
factors and variables were represented by factor loadings,
which enabled each factor to be named. Finally, factor scores
were obtained using the regression method, which is the most
frequently used (Sarstedt and Mooi, 2014). Factor scores em-
body a linear combination of the primary variables. Thus,
each urban area was composed of as many factor scores as
social vulnerability factors identified.

2.2.5 Construction of the integrated social
vulnerability index (ISVI)

Factor scores for each vulnerability factor were saved as new
attributes in the data file. This allowed them to be used for in-
dex construction. Factor scores were standardized and took
positive or negative values depending on whether the char-
acteristic described by a certain factor in a given urban area
was above or below average (Sarstedt and Mooi, 2014). In
the ISVI, factors that express sensitivity or exposure are tra-
ditionally considered as positive values and those that ex-
press resilience are negative (Cutter et al., 2013; Frazier et
al., 2014; Hummell et al., 2016). In order to maintain this
criterion, the signs of some factor scores were reversed (i.e.
multiplied by −1).

The ISVI for each urban area was calculated according to
the following equation (adapted from Frazier et al. (2014):

ISVI= E+ S−R, (1)

where ISVI is the integrated social vulnerability index, E is
exposure, S is sensitivity and R is resilience. Each vulnera-
bility component was estimated using Eq. (2) (adapted from
Frazier et al., 2014):

VC =

n∑
f=1

wf× Sf, (2)
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Table 1. Set of variables used in the exploratory analysis of social vulnerability dimensions.

Category Variable Description Data source

Population

TPOP Total population Spanish Statistics Institute (2014)
FOREIG Foreigners Spanish Statistics Institute (2014)
POP0 Inhabitants aged 0–4 Spanish Statistics Institute (2014)
POP5 Inhabitants aged 5–14 Spanish Statistics Institute (2014)
POP15 Inhabitants aged 15–64 Spanish Statistics Institute (2014)
POP65 Inhabitants aged 65 or older Spanish Statistics Institute (2014)
PROJ_0 Population projection aged 0–4 for 2025 Spanish Statistics Institute (2014)
PROJ_5 Population projection aged 5–14 for 2025 Spanish Statistics Institute (2014)
PROJ_15 Population projection aged 15–64 for 2025 Spanish Statistics Institute (2014)
PROJ_65 Population projection aged 65 or older for 2025 Spanish Statistics Institute (2014)
NRESID New residents Spanish Statistics Institute (2014)

Dependency

DISABLED Disabled people Institute of Social Services and the Elderly (2013)
DEPRAT_M Dependency rates: males Spanish Statistics Institute (2014)
DEPRAT_F Dependency rates: females Spanish Statistics Institute (2014)
HOUSE_OLD Households where people aged 65 or older live Population and Housing Census (2011)

Education
ILLITER Illiterate people Population and Housing Census (2011)
LITER Literate people Population and Housing Census (2011)

Employment situation

LT_UNEMP Long-term unemployed people Regional Employment Observatory (2015)
UN_RAT Unemployment rates Spanish Public Employment Service (2014)
HS_0EMP Households where any employed people live Population and Housing Census (2011)
HS_0UNEMP Households where any unemployed people live Population and Housing Census (2011)
WORK_M People that work within urban area of residence Population and Housing Census (2011)

Healthcare services

HEALTH_C Health centres Spanish Ministry of Health, Social Services and Equality (2015)
DIST_HC Distance to the nearest health centre Google Maps consultation (2015)
TIME_HC Travel time to the nearest health centre Google Maps consultation (2015)
TYPE_H Type of healthcare (continuity) Telephone calls (2015)
H_BEDS Hospital beds Regional Statistics Information System (2014)
DIST_H Distance to the nearest hospital Google Maps consultation (2015)
TIME_H Travel time to the nearest hospital Google Maps consultation (2015)
MED_ST Medical staff Telephone calls (2015)

KINDERG Kindergartens Spanish Ministry of Education, Culture and Sport (2015)
ELEM_SCH Elementary schools Spanish Ministry of Education, Culture and Sport (2015)
SEC_SCH Secondary schools Spanish Ministry of Education, Culture and Sport (2015)
RET_HOME Retirement homes Spanish Ministry of Health, Social Services and Equality (2009)

Development and TOUR_AC Tourist accommodation Regional Statistics Information System (2014)
infrastructures CAMPSITES Campsites Internet search (2015)

DEBTS Municipal debt per inhabitant Spanish Ministry of Finance and Public Administrations (2014)
PC_INC Per capita income Spanish Institute for Fiscal Studies (2011)
FIX_INV Fixed investments per inhabitant Spanish Ministry of Finance and Public Administrations (2014)
BUDGET Municipal available budget per capita Spanish Ministry of Finance and Public Administrations (2014)

Buildings

BUILTAREA Built-up area per area without buildings Spanish cadastre (2015)
ABOVE_GR Above-ground built-up area Spanish cadastre (2015)
UNDER_GR Underground built-up area Spanish cadastre (2015)
POP_SETL Population per settlement area Spanish cadastre (2015)
CON_AGE Mean age of household construction Spanish cadastre (2015)
PERM_H Permanent households Population and Housing Census (2011)
VACANT_H Vacant households Population and Housing Census (2011)
NONACCES Non-accessible households Population and Housing Census (2011)
POORCOND Households in poor condition Population and Housing Census (2011)
GDCOND Households in good condition Population and Housing Census (2011)
ST_AGBG Households with 1 storey above ground level and/or Population and Housing Census (2011)

another storey below ground level
ST_AGL Households with 2 or more storeys above ground level Population and Housing Census (2011)
USE_AR Households’ mean useful area Population and Housing Census (2011)

Collective INTERS Potential intersections between evacuation routes and rivers GIS analysis (2015)
vulnerability EVACUAT Areas suited to population evacuation GIS analysis (2015)
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Figure 3. Dendrogram resulting from the HSA. Each rectangle corresponds to an identified group, with a total of five groups (G1, G2, G3,
G4 and G5).

where VC is the vulnerability component (exposure, sensitiv-
ity or resilience), wf is the weight allocated to the n factor
and Sf represents the factor scores of the n factor.

The value of a specific vulnerability component was
the sum of the factor scores multiplied by their respective
weights. The index construction method used was based on

the one developed by Frazier et al. (2014), although the tol-
erance statistic was used here as a weighting method instead
of the amount of explained variance. Tolerance is a statisti-
cal test to detect multicollinearity (Sarstedt and Mooi, 2014).
It reaches a maximum value of 1 when one factor has no
degree of multicollinearity with the other factors and a mini-
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Table 2. Vulnerability factors identified with the PCA and additional statistical information (PCA results). The sign of the variable loadings
indicates whether the correlation among variables making up a certain vulnerability factor is positive or negative.

Factor Variables KMOa/ Explained Loadings Factor name Component
correlation variance

coefficientb

1

TPOP Total population

0.846a 83.68

0.968

Total Social Exposure Exposure

HEALTH_C Health centres 0.886
H_BEDS Hospital beds 0.944
MED_ST Medical staff 0.949
KINDERG Kindergartens 0.918
ELEM_SCH Elementary schools 0.974
SEC_SCH Secondary schools 0.932
RET_HOME Retirement homes 0.757
TOUR_AC Tourist accommodation 0.886

2

POP_SETL Population per settlement area

0.681a 70.82

0.777

Exposure
VACANT_H Vacant households −0.932 Exposure in the Urban
UNDER_GR Underground built-up area 0.788 Built-Up Environment
PERM_H Permanent households 0.860

3
GDCOND Households in good condition

−0.431b 71.54
0.846

Constructive Resilience Resilience
BADCOND Households in poor condition −0.846

4

ST_AGBG Households with 1 storey above ground level

-0.655b 82.73

0.910

Constructive Exposure Exposure
and/or another storey below ground level

ST_AGL Households with 2 or more storeys −0.910
above ground level

5

POP0 Inhabitants aged 0–4

0.720a 78.03

0.898

Youth Social Sensitivity Sensitivity
POP5 Inhabitants aged 5–14 0.901
PROJ_0 Population projection aged 0–4 for 2025 0.827
PROJ_5 Population projection aged 5–14 for 2025 0.906

6
POP15 Inhabitants aged 15–64

0.791b 89.55
0.946

Mature Social Resilience Resilience
PROJ_15 Population projection aged 15–64 for 2025 0.946

7
UN_RAT Unemployment rates

0.692a 75.95
0.912

Labour Social Sensitivity SensitivityLT_UNEMP Long-term unemployed people 0.872
HS_0UNEMP Households where any unemployed people live −0.828

8

POP65 Inhabitants aged 65 or older

0.704a 70.01

0.944

Social Sensitivity due to Dependency Sensitivity

PROJ_65 Population projection aged 65 0.828
or older for 2025

DEPRAT_M Dependency rates: males 0.819
DEPRAT_F Dependency rates: females 0.860
HOUSE_OLD Households where people aged 65 or older live 0.808
ILLITER Illiterate people 0.748

9
FIX_INV Fixed investments per inhabitant

0.782b 89.08
0.944

Economic Resilience due to Investments Resilience
BUDGET Municipal available budget per capita 0.944

10
DIST_H Distance to the nearest hospital

0.863b 93.16
0.965

Social Hospital Sensitivity Sensitivity
TIME_H Travel time to the nearest hospital 0.965

11
DIST_HC Distance to the nearest health centre

0.869b 93.43
0.967

Social Health Sensitivity Sensitivity
TIME_HC Travel time to the nearest health centre 0.967

a KMO: Kaiser–Meyer–Olkin statistic (vulnerability factors with more than two variables). b Correlation coefficient: bilateral correlation (vulnerability factors with two variables).

mum value of 0 when one factor is a perfect linear combina-
tion of the others. Thus, vulnerability factors expressing less
redundant information would have more weight in the ISVI.

2.2.6 Identification of social vulnerability patterns

LCCA is a model-based clustering approach employed (us-
ing Latent Gold® 4.5) for the purpose of identifying social
vulnerability patterns within the study area. Urban areas of
interest were classified into clusters (Vermunt and Magid-
son, 2002), and the sources of vulnerability for each cluster
were shown by the statistical model. The classification was
made by creating a latent categorical variable. This measures
the probability of belonging to a certain cluster according to

the characteristics of the vulnerability factors. Factor scores
were used as indicators for identifying the different clus-
ters. A z-standardization of factor scores was implemented
before they were entered into the statistical software. Five
models integrating from one (sample homogeneity) to five
clusters (sample heterogeneity with 5 patterns) were exam-
ined. Information criteria based on the model log-likelihood
BIC (Bayesian information criterion) and CAIC (consistent
Akaike information criterion) were used as model selection
tools in order to choose the optimum model, based on the
minimum values of these two criteria (Morin et al., 2011).
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Figure 4. Factor scores for identified vulnerability factors. For exposure and sensitivity factors, very high categories are coloured in red,
while, for resilience factors, very high categories are coloured in blue. Source: municipal boundaries (available online: http://www.ign.es;
accessed on 5 December 2016).

3 Results

3.1 Integrated social vulnerability index (ISVI)

The dendrogram shows the five groups of variables that were
differentiated by the HSA (Fig. 3). Groups were homoge-
neous in both the number of variables (each comprising be-
tween 10 and 13 variables) and the type of variables included.
The first group contained variables mainly related to large
facilities. The second group of variables was connected to
types of construction and the region’s economic potential.
The third group was related to demographic characteristics

and the employment situation in the region. The fourth group
of variables was primarily associated with the elderly popu-
lation. Finally, the fifth group did not show a clear dominance
of any variables over others, although certain variables dis-
played significant correlation with at least one variable (i.e.
p<0.05).

A total of 11 vulnerability factors were extracted from
the groups of variables identified by the dendrogram (Ta-
ble 2): (1) total social exposure, (2) exposure in the urban
built-up environment, (3) constructive resilience, (4) con-
structive exposure, (5) youth social sensitivity, (6) mature
social resilience, (7) labour social sensitivity, (8) social sen-
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sitivity due to dependency, (9) economic resilience due to
investments, (10) social hospital sensitivity and (11) social
health sensitivity. In all cases, the KMO scores were higher
than 0.5 and the Barlett’s test of sphericity values were sig-
nificant (i.e. p<0.05). For vulnerability factors comprising
two variables, the value of the correlation coefficient was in-
dicated instead of the KMO score. Correlation coefficients
for these vulnerability factors were considered significant
(i.e. p<0.05). In addition, all identified vulnerability factors
showed a percentage of explained variance over 70 %. Fac-
tor loadings were used to allocate names to the vulnerability
factors. This enabled vulnerability factors expressing expo-
sure, sensitivity or resilience to be classified. Consequently,
factors number one, two and four were considered to express
exposure; factors number five, seven, eight, ten and eleven
expressed sensitivity; and factors number three, six and nine
expressed resilience.

Factor scores for each vulnerability factor were depicted
using the quintiles classification (i.e. 20, 40, 60 and 80th per-
centiles) with 5 classes: (i) very low, (ii) low, (iii) medium,
(iv) high and (v) very high (Fig. 4).

Figure 5 illustrates the ISVI value for each urban area us-
ing the quintiles classification. In this regard, ISVI has high
spatial variability, defining values that range from 0.085 to
−0.055. Urban areas with the highest ISVI values are mainly
concentrated in the northwest, while urban areas with the
lowest values are found in the east and northeast of Castilla
y León. Each urban area has an associated bar chart showing
the decomposition of each ISVI value into its components
(exposure, sensitivity and resilience). The direction of the bar
indicates whether the sign of the vulnerability component is
negative or positive. The height of the bar shows the value of
the vulnerability component (each vulnerability component
was calculated by combining any vulnerability factors that
contributed to each component, taking factor scores and dif-
ferent weights into consideration). In addition, the numbers
located in each bar show categories based on the classifica-
tion of the quintiles in which each vulnerability component is
found. Number 1 is associated with a very low category (i.e.
very low exposure, sensitivity and resilience) and number 5
with a very high category (i.e. very high exposure, sensitivity
and resilience).

3.2 Social vulnerability patterns

BIC and CAIC statistics were used to select the more parsi-
monious number of clusters (i.e. the number of clusters that
provides as much information as possible when the number
of estimated parameters are taken into account). The mini-
mum values of BIC and CAIC determined that the optimum
number of clusters of urban areas was three (Table 3).

In order to assess vulnerability factor usefulness in terms
of identifying these patterns, the parameters for each identi-
fied cluster are shown in Table 4. Neither the “Social Hos-
pital Sensitivity” factor nor the “Economic Resilience due

to Investments” factor was statistically significant when dis-
criminating among the three clusters of urban areas (p>0.05,
highlighted in bold in Table 4). The percentage given under
each cluster title shows the proportion of urban areas making
up each cluster.

Finally, Fig. 6 shows the three different clusters of iden-
tified urban areas, which help to characterize the profile of
each detected pattern. Moreover, each cluster is associated
with a bar chart depicting the cluster profile over the most
representative urban area in each of them. This is calculated
from the number of coincidences among the signs and the
minimum distances between factor scores for each urban area
and the mean factor scores for each identified cluster. The bar
charts include the standard deviation values from the mean
for each vulnerability factor (values that are located above
each bar). The direction of the bar is related to the sign of
these standard deviation values – that is positive values for
factors expressing exposure or sensitivity indicate more ex-
posure or sensitivity than the cluster mean, but positive val-
ues for factors expressing resilience indicate more resilience
than the cluster mean. Each cluster can be characterized as
follows:

– Cluster 1 comprises 51.1 % of urban areas of interest
(i.e. a total of 20) and is made up of urban areas with
the highest levels of constructive exposure and labour
social sensitivity factors.

– Cluster 2 comprises 30.9 % of urban areas (i.e. a total
of 12). It contains urban areas with the highest levels
of social health sensitivity and social sensitivity due to
dependency factors. On the other hand, with regard to
youth social sensitivity and labour social sensitivity fac-
tors, these urban areas show the lowest levels. Also in-
cluded here are urban areas with the lowest levels of
total social exposure and exposure in the urban built-
up environment. Regarding resilience factors, the lowest
levels of factors associated with constructive resilience
and mature social resilience are in the urban areas found
in cluster 2.

– Cluster 3 comprises 18.0 % of urban areas (i.e. a total of
7). It is made up of urban areas with the highest values
in factors related to total social exposure, exposure in
the urban built-up environment and youth social sensi-
tivity. These urban areas also show the highest values in
the constructive resilience factor and the lowest values
in the constructive exposure factor. On the other hand,
they show the lowest values in factors related to social
sensitivity due to dependency and social health sensi-
tivity. The highest values of the mature social resilience
factor are also found in these urban areas.

It seems that there is a relationship between the ISVI and
the clusters to which urban areas belong (Fig. 6). In this re-
gard, there are only significant differences between the ISVI
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Figure 5. ISVI values and its decomposition into vulnerability components. Source: municipal boundaries (available online: http://www.ign.
es; accessed on 5 December 2016).

Table 3. Model fit summary of the latent class cluster models initially considered.

Log-likelihood (LL) BIC (LL) CAIC (LL) Number of
parameters

One cluster −603.153 1286.904 1308.904 22
Two clusters −501.287 1167.435 1212.435 45
Three clusters∗ −440.610 1130.342 1198.342 68
Four clusters −407.146 1147.675 1238.675 91
Five clusters −381.371 1180.388 1294.388 114

∗ Best model according to BIC and CAIC.

values of clusters 1 and 2 (i.e. p<0.05; ANOVA analysis).
Moreover, it is verified that cluster 1 urban areas are more
vulnerable than cluster 2 urban areas, with an ISVI mean
value of 0.013 and −0.017, respectively.

4 Discussion

4.1 Data sources and methodology

Flash floods usually affect small mountainous urban areas
(Marchi et al., 2010; Terti et al., 2015). Generally, the infor-
mation available in these areas is limited, either because it is
not available in public databases (i.e. it has to be requested
from different councils) or because it is not generated on this
work scale (i.e. it is estimated from a bigger work scale).
This imposes limits on any assessment related to flash floods

(Ruin et al., 2009). However, this constraint does not usually
apply to studies on fluvial floods since, in terms of popu-
lation, these frequently affect significant urban areas, which
generally means greater availability of data and a larger num-
ber of event records. It is also worth mentioning that it is very
difficult not to include data from different years in this type of
analysis related to flash floods, since different databases are
usually consulted and each public agency has its own mech-
anisms for updating data.

This lack of information may condition the selected work
scale, which should coincide with the scale of planning for
flood risk mitigation (Cash and Moser, 2000). An insufficient
work scale could result in homogeneous vulnerability reduc-
tion measures being put in place in areas where the spatial
variability of vulnerability is high. This would reduce their
effectiveness and might not guarantee a uniform reduction in
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Figure 6. Characteristics of the urban areas that form the identified clusters. Bars with a meshed plot represent factors which were not
statistically significant in the discrimination of clusters of urban areas. Bars are sorted by vulnerability component (exposure, sensitivity and
resilience). Source: municipal boundaries (available online: http://www.ign.es; accessed on 5 December 2016).

Table 4. Parameters of urban area clusters associated with vulnerability factors. Vulnerability factors are sorted by vulnerability component
(exposure, sensitivity and resilience). Factors highlighted in bold were not statistically significant when discriminating among the three
clusters of urban areas (p > 0.05).

Vulnerability factors Cluster 1 Cluster 2 Cluster 3 Robust Wald p value R2

(51.1 %) (30.9 %) (18.0 %) statistic

Factor 1: Total Social Exposure −0.295 −0.549 0.844 9.794 0.008 0.244
Factor 2: Exposure in the Urban Built-Up Environment −0.054 −0.708 0.779 37.071 0.000 0.428
Factor 4: Constructive Exposure 0.659 −0.253 −0.406 13.871 0.001 0.240
Factor 5: Youth Social Sensitivity −0.012 −0.998 1.010 30.913 0.000 0.478
Factor 7: Labour Social Sensitivity 0.487 −0.740 0.253 16.665 0.000 0.303
Factor 8: Social Sensitivity due to Dependency 0.092 0.706 −0.798 38.442 0.000 0.262
Factor 10: Social Hospital Sensitivity 0.309 0.302 −0.611 3.363 0.190 0.127
Factor 11: Social Health Sensitivity −0.012 0.860 −0.848 34.559 0.000 0.350
Factor 3: Constructive Resilience −0.020 −0.418 0.438 6.017 0.049 0.087
Factor 6: Mature Social Resilience −0.204 −0.501 0.704 20.442 0.000 0.174
Factor 9: Economic Resilience due to Investments −0.307 0.593 −0.286 3.740 0.150 0.175

vulnerability (Eakin and Luers, 2006; Frazier et al., 2014).
In this study, the selected work scale was the urban area, as
this entity tends to be small and homogeneous in the region
of Castilla y León. Furthermore, sensitivity and resilience are
usually considered as static components (i.e. the results give
a snapshot of vulnerability) when in fact they vary over time

and space (Cutter et al., 2003; Eakin and Luers, 2006). The
identification of spatial patterns here represents a step for-
ward towards improving FRM on a regional scale. Regard-
ing temporal variability, we suggest periodic monitoring of
identified variables as an explanation of social vulnerability
to flash floods. Periodic recalculations would allow urban ar-
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eas to stay informed about the behaviour of SVI values over
time.

As regards calculation of the ISVI, it is crucial that ISVI
values should not be considered as absolute. This means that
the ISVI can be used qualitatively to determine whether one
urban area is more vulnerable than the others and, if so, to
what extent (Cutter et al., 2013). In the methodology pro-
posed here, conducting a preliminary HSA helps overcome
the limitations of the PCA sample size (Sarstedt and Mooi,
2014). Most published works either do not discuss this aspect
or tackle it by adding the variables directly (Balteanu et al.,
2015). The HSA enables the vulnerability variables to be di-
vided into groups. However, it did not provide information on
the relative significance of variables within each group, mak-
ing it necessary to subsequently perform a PCA (Cutter et
al., 2003, 2013; Fekete, 2009; Nelson et al., 2015; Hummell
et al., 2016). Regarding the weighting method used here, al-
though many authors support the idea of assigning the factors
equal weight (Chakraborty et al., 2005), it seems reasonable
to suppose that not all factors have the same importance in
the construction of the ISVI (Brooks et al., 2005; Eakin and
Luers, 2006; Liu and Li, 2016), especially when there may
be variations in the number of variables forming each fac-
tor and their explained variance. It is even possible that there
is a spatial variation in each factor’s importance. This can
be solved by carrying out a geographically weighted princi-
pal component analysis (Frazier et al., 2014; Gollini et al.,
2015).

4.2 Integrated social vulnerability and variables
involved

In spite of differences among variables, considered in litera-
ture as a means of explaining social vulnerability, there are
some key variables common to all the indicators examined,
such as age, gender, race, socio-economic status and living
conditions (Cutter et al., 2003; Adger et al., 2004; Penning-
Rowsell et al., 2005; Frazier et al., 2014). However, each
region has its own particular characteristics and constraints,
and these should be taken into consideration during the vari-
able selection procedure (Frazier et al., 2014). Vulnerabil-
ity factors identified in Castilla y León (see Table 2) reflect
the specific characteristics of this region, whose cartographic
representation gives us an idea of the spatial distribution of
vulnerability and helps us to spatially identify vulnerability
hotspots (see Fig. 4). Vulnerability factors making up the ex-
posure component (see Fig. 4a, b and d) are mainly related
to public buildings such as schools, kindergartens and health
facilities (“Total Social Exposure” factor). They are usually
occupied by sensitive people (e.g. small children, the elderly,
the sick), who generally require external assistance during an
evacuation due to flash floods. Moreover, the single-family
dwellings that abound in the study area tend to have base-
ments and ground floor rooms (i.e. living rooms, kitchens
and sometimes bedrooms; “Exposure in the Urban Built-up

Environment” and “Constructive Exposure” factors), spaces
which are both prone to flooding (Bodoque et al., 2016b;
Karagiorgos et al., 2016).

With regard to the vulnerability factors that make up the
sensitivity component (see Fig. 4e, g, h, j and k), urban areas
of interest have a mean dependency rate higher than 70 %
(“Social Sensitivity due to Dependency” factor). This is due
particularly to the presence of elderly people, who may hin-
der the population evacuation process as they tend to have
reduced mobility. Moreover, the elderly usually need eco-
nomic support during the post-disaster period (Cutter et al.,
2003). Unemployment is another vulnerability factor to be
considered (“Youth Social Sensitivity” and “Labour Social
Sensitivity” factors). It is related to the possible inability of a
household to invest economical resources in flood insurance
or in flood mitigation measures, all of which contribute to a
slower recovery (Cutter et al., 2003; Fekete, 2010). As far as
accessibility to health facilities is concerned (“Social Hospi-
tal Sensitivity” and “Social Health Sensitivity” factors), the
frequent lack of nearby medical services in the urban areas
studied may hamper the provision of immediate relief and
extend disaster recovery time (Cutter et al., 2003).

Finally, with regard to the resilience component (see
Fig. 4c, f and i), the structural capacity of households in
good condition to cope with flood impacts was considered
to be high (“Constructive Resilience” factor), so direct losses
and repair costs would be lower (Cutter et al., 2003). Inhab-
itants aged 15 to 64 were also deemed to be a resilient fac-
tor (“Mature Social Resilience” factor), since they are able
to help evacuate people during a flash flood event (Fekete,
2010). Lastly, urban areas with a higher public budget avail-
able per capita may implement a larger number of mitigation
measures aimed at reducing flood damage (“Economic Re-
silience due to Investments” factor). Fixed investments per
capita are related to the level of economic wealth, and this
can determine the ability to absorb losses and enhance re-
silience (e.g. through the implementation of individual flood
risk mitigation measures; Kunreuther et al., 2013; Haer et al.,
2016).

The integrated social vulnerability assessment analyses in-
teractions among the different vulnerability components and
even between these and the ISVI (see Fig. 5). In addition,
there is great heterogeneity in the combination of vulnerabil-
ity components that generate the different ISVI categories.
Despite this, the most vulnerable urban areas have the high-
est exposure component values. Urban areas in the high ISVI
category usually have higher values for the sensitivity com-
ponent than for exposure, although exposure quintile cate-
gories range from 2 to 5. Urban areas included in very low
and low ISVI categories have the highest resilience compo-
nent values, coinciding with the lowest levels of exposure.
Thus, the highest ISVI values are mainly controlled by the
exposure component.

These variations in ISVI values confirm the idea supported
by other authors that vulnerability has a high spatial vari-
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ability and therefore cannot be treated homogeneously (Cut-
ter et al., 2008; Frazier et al., 2014). Integrated social vul-
nerability assessments not only help identify which factors
should be acted upon to reduce vulnerability, but also which
of these factors should be strengthened to increase resilience.
In the same way, the identification of vulnerability patterns
(see Fig. 6) also helps us discern the sources of vulnerability
and resilience within each cluster of urban areas, in particular
whether these influences are direct or inverse and how strong
they are. This facilitates the development of specific FRM
strategies for each cluster. The optimum number of clusters
can be established from BIC and CAIC criteria (in this case
3 clusters). From a practical point of view, the above means
that an increase in the number of clusters from 3 to 4 or 5
would split a fairly homogeneous cluster of urban areas into
several subgroups which would not be very different from
each other. Therefore, a greater level of disaggregation would
not help improve the implementation of different flood risk
mitigation measures for each cluster of urban areas.

4.3 Policy implications

The high human and economic losses due to flash floods that
continue today (Wilhelmi and Morss, 2013) draw attention
to the need for a change in traditional FRM towards an in-
tegrated approach requiring comprehensive analysis of the
social risk component (Koks et al., 2015). It is therefore es-
sential to carry out a social vulnerability analysis from a
holistic point of view. It is important not only to identify
which socio-economic and demographic characteristics in-
crease population sensitivity to flash flood damage but also
to know which features increase a population’s capacity to
resist, cope with and recover from its impact (Cutter et al.,
2010; Frazier et al., 2014; Zhou et al., 2015), as demonstrated
here. This would enable local competent authorities to plan
and implement specific strategies to reduce vulnerability and
strengthen resilience, in addition to developing specific mit-
igation measures to reduce flood risks (Frazier et al., 2014;
Nelson et al., 2015; Hummell et al., 2016). It is an approach
that goes further than the traditional one of seeking to reduce
flood hazard by delineating flood-prone areas and designing
structural mitigation measures.

The identification of social vulnerability patterns can help
to identify the most suitable mitigation measures for each
cluster of urban areas identified by LCCA and also prior-
itize available resources. For instance, mitigation measures
for those urban areas included in cluster 1 should be targeted
towards improving physical resilience (e.g. raising the first-
floor elevation above ground level) and giving the popula-
tion financial help to put mitigation measures in place (e.g.
providing financial aid for dwellings located in flood-prone
areas). On the other hand, people living in the urban areas
included in cluster 2 are highly dependent on external assis-
tance due to the high rates of ageing population. Therefore,
different evacuation routes should be designed and clearly

defined by the emergency services and shelters constructed
near these urban areas. Finally, mitigation measures for ur-
ban areas included in cluster 3 should be aimed at collec-
tive facilities (e.g. carrying out flood emergency drills) and
should encourage the implementation of individual mitiga-
tion strategies (e.g. through a financial incentive system, such
as repayment of part of the money spent on municipal taxes).

However, in order to achieve greater effectiveness for
FRM plans, it is necessary for all stakeholders, both pub-
lic authorities and communities, to engage with them (Eakin
and Luers, 2006; Koks et al., 2015; Haer et al., 2016). This
is especially important in small mountainous areas prone to
flash flooding because they are managed by local administra-
tions where available economic resources tend to be limited.
This makes individual adaptation measures particularly rel-
evant as they partly depend on risk perception and the level
of awareness (Bodoque et al., 2016a). Furthermore, both in-
dividual social networks and social contexts are of key im-
portance in decision making related to public preparedness
(Haer et al., 2016). Since the social component plays a de-
cisive role, a suitable design is required for flood risk com-
munication strategies to accompany integrated social vulner-
ability analysis. Traditional top-down communication strate-
gies have proven ineffective, and a change towards people-
centred strategies is currently taking place, which seeks to
reflect population heterogeneity (Bodoque et al., 2016a; Haer
et al., 2016). Therefore, a comprehensive characterization of
the social component of flood risk requires not only an inte-
grated social vulnerability assessment, but also that the peo-
ple affected are aware of their situation and have the appro-
priate knowledge to reduce possible flood impacts at the indi-
vidual level (Albano et al., 2015), so that social learning can
be translated into disaster risk reduction (Cutter et al., 2008).

5 Conclusions

A comprehensive characterization of social vulnerability is
critical for an integrated FRM. The implementation of an
HSA helps to overcome the PCA sample size limitation. This
means using an alternative methodology to the one usually
used to construct an ISVI in areas where available data is lim-
ited. The results show the high spatial heterogeneity of social
vulnerability within the study region and the high variabil-
ity in ISVI scores regarding interactions between vulnerabil-
ity components, which give integrated analysis greater im-
portance. The identification of vulnerability patterns through
LCCA gives the sources of vulnerability in each urban area.
This simplifies the spatial heterogeneity analysis of social
vulnerability and indicates which aspects need to be im-
proved to decrease sensitivity and exposure and which as-
pects need to be reinforced to increase resilience. This allows
the ISVI results to be more effectively integrated into FRM
plans and policies, which in turn enables specific strategies
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of vulnerability reduction to be proposed, thereby increasing
their efficiency.

Data availability. The data on population (population by age, ed-
ucation, employment situation) and housing (characteristics and
types) can be downloaded from http://www.ine.es. Unemployment
rates can be downloaded from http://www.sepe.es, and data on
long-term unemployed people are made available upon request to
ecyl.empleo@jcyl.es. Information related to health centers is avail-
able at http://regcess.msssi.es. The data on hospital beds and tourist
accommodation can be downloaded from http://www.jcyl.es/sie. In-
formation related to education infrastructures is available at https:
//www.educacion.gob.es/centros. The data on retirement homes can
be downloaded from http://www.dependencia.imserso.es. The data
on municipal debts, fixed investments and municipal budgets can be
downloaded from http://www.minhafp.gob.es. Information related
to per capita income was generated from data requested through
http://www.ief.es. The data on buildings can be downloaded from
https://www.sedecatastro.gob.es. The entire database is available
upon request to Estefania Aroca-Jimenez.
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