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Abstract. The operational medium-range weather forecast-
ing based on numerical weather prediction (NWP) models
are complemented by the forecast products based on ensem-
ble prediction systems (EPSs). This change has been recog-
nised as an essentially useful tool for medium-range forecast-
ing and is now finding its place in forecasting the extreme
events. Here we investigate extreme events (heatwaves) us-
ing a high-resolution NWP model and its ensemble models
in union with the classical statistical scores to serve verifi-
cation purposes. With the advent of climate-change-related
studies in the recent past, the rising number of extreme events
and their plausible socio-economic effects have encouraged
the need for forecasting and verification of extremes. Apply-
ing the traditional verification scores and associated meth-
ods to both the deterministic and the ensemble forecast,
we attempted to examine the performance of the ensemble-
based approach in comparison to the traditional deterministic
method. The results indicate an appreciable competence of
the ensemble forecast at detecting extreme events compared
to the deterministic forecast. Locations of the events are also
better captured by the ensemble forecast. Further, it is found
that the EPS smoothes down the unexpectedly increasing sig-
nals, thereby reducing the false alarms and thus proving to be
more reliable than the deterministic forecast.

1 Introduction

Reliable weather forecasting plays a pivotal role in our every-
day activities. Over the years numerical weather prediction
(NWP) systems have been employed to serve this purpose.
While the NWP models have demonstrated an improved

forecasting capability in general, they still have a challenge in
the accurate prediction of severe weather/extreme events. Se-
vere weather events (thunderstorms, cloudburst, heatwaves
and cold waves, etc.) usually involve strong non-linear inter-
actions, often between small-scale features in the atmosphere
(Legg and Mylne, 2004), for example the development of
deep convection and thunderstorms in the tropics. These
small-scale interactions are difficult to predict accurately
(Meehl et al., 2001) and a small deviation in these could
lead to completely different results, as a result of the fore-
cast evolution process (Lorenz, 1969). The inherent uncer-
tainty in the weather and climate forecasts can be well han-
dled by employing ensemble-based forecasting (Buizza et
al., 2005). The ensemble prediction systems (EPSs) (Mureau
et al., 1993; Molteni et al., 1996; Toth and Kalnay, 1997)
were first introduced in the 1990s in an effort to quantify
the uncertainty caused by the synoptic-scale baroclinic in-
stabilities in the medium-range weather forecasting (Legg
and Mylne, 2004). Ensemble forecasting has emerged as a
practical way of estimating the forecast uncertainty and mak-
ing probabilistic forecasts (Buizza et al., 2005; Ashrit et al.,
2013). It is based on multiple perturbed initial conditions, en-
semble approach samples and the errors in the initial condi-
tions used to estimate the forecast uncertainty (spread among
member forecasts). The skill of the ensemble forecast shows
a marked improvement over the deterministic forecast when
comparing the ensemble mean to the deterministic forecast
after a short lead time (Buizza et al., 2005).

The new EPS at the NCMRWF has been running for oper-
ational purposes since November 2015. This global medium-
range weather forecasting system has been adopted from the
UK Met Office (Sarkar et al., 2016). Generally, the model
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and the ensemble forecast applications in addition to their
verifications are used for prevalent events with a limited fo-
cus on the rare extreme weather events. It would be for the
first time that the EPS technique has been employed to study
the heatwave events from this model output for the extreme
events over India. The heatwave is considered if the maxi-
mum temperature of a station reaches at least 40 ◦C or more
in the plains and at least 30 ◦C or more for hilly regions.
Based on the departure from the average, a station is declared
to have heatwave conditions if the departure from the average
is 4.5 to 6.4 ◦C and severe heatwave if the departure from the
average is > 6.4 ◦C. In terms of the actual maximum tempera-
ture, a station is under a heatwave when the actual maximum
temperature ≥ 45 ◦C and severe heatwave when the maxi-
mum temperature is > 47 ◦C. There has been increasing inter-
est among the general public, media and local administration
in predicting extremes such as the heatwave and cold wave
events in India due to the associated loss of life. An increas-
ing number of extreme temperature events over India were
documented in several recent studies (Alexander et al., 2006;
Kothawale et al., 2010; Hartmann et al., 2013; Rohini et al.,
2016; Mehdi and Dehkale 2016). A climatological study of
heatwaves and cold waves shows that over the Indian subcon-
tinent between 1969 and 2013 there were more frequent cold
waves and heatwave events over the Indo-Gangetic plains of
India. In another study, carried out for the whole of southern
Asia, Sheik et al. (2015) reported that warm extremes have
become more common and cold extremes less common.

The global temperatures have exhibited a warming trend of
about 0.85 ◦C due to anthropogenic activities between 1880
and 2012 (Hartmann et al., 2013; Rohini et al., 2016). Similar
trends were also observed in India with the annual air surface
temperature rising during the 20th century. This is evident
from the detailed study presented in Kothawale et al. (2010)
based on the data from 1901 to 2007. The study (Kothawale
et al., 2010) shows that Indian mean, maximum and min-
imum annual temperatures have significantly increased by
0.51, 0.71 and 0.27 ◦C per 100 years respectively, during
1901–2007. However, accelerated warming was observed
during 1971–2007, mainly due to the decade 1998–2007.
The study (Kothawale et al., 2010) highlights that the mean
temperature during the pre-monsoon season (March–May)
shows an increasing trend of 0.42 ◦C per 100 years. On the
other hand, a recently reiterated by Hartmann et al. (2013)
noted “unequivocal” proof of the increasing warming trend
globally, which could be associated with variations in the cli-
mate system. This indicates a need to comprehend the heat-
wave events on weather and climatic scales.

The current paper attempts to demonstrate the capability
and strength of predicting such events using both the en-
semble and deterministic models. The present study investi-
gates the heatwave events during the summer months, March,
April and May (MAM), 2016 in India. This study uses two
cases to demonstrate the strengths and weaknesses of the
EPS approach in predicting such extreme events.

With these factors in mind, we can say that tempera-
ture (minimum and maximum) forms a vital component of
weather and climatic studies, which are becoming increas-
ingly important and challenging. Reliable projections of such
changes in our weather and climate are critical for adap-
tion and mitigation planning by the agencies involved. The
knowledge would undoubtedly be useful for laymen and
wider society. Forecast verification plays an important role
in addressing two main questions: how good is a forecast and
how much confidence can we have in it?

Verification by employing statistical scores is a well-
established and recommended method by the World Meteo-
rological Organization (WMO) that was adopted in this study
(WMO, 2008). It is challenging when one needs to decide
how much confidence can be placed in a model. Depending
upon the statistical characteristics of the variable addressed,
the score type is chosen and is employed for the verification.
This offers the choice and challenge of adopting the most
compatible score type. The set of verification scores used
here are listed and briefly discussed in the next section.

In this paper, we investigate the utility of the ensemble pre-
diction system over the deterministic forecast in studying ex-
treme events like heatwaves. This forms the first documented
study of the 2016 heatwave events over India which was ver-
ified using the deterministic and the ensemble forecasts. This
also provides some important insights into the use of the en-
semble forecast over the deterministic forecast in predicting
extreme events like heatwaves. However, this study is unable
to encompass an entire discussion on the efficiency of the
EPS in general, as it examines a narrow range of phenomena
over a not so wide region.

The paper begins with a brief explanation of the observed
temperature (Tmax and Tmin) data sets, model description and
the methodology used. It will then go on to the results sec-
tion which encompasses two case studies from the 2016 heat-
wave events in India, followed by the verification results and
finally ending with the discussions and conclusions.

2 Observation, model description and verification
methodology

2.1 Observed temperature (maximum and minimum)

IMD developed a high-resolution daily gridded tempera-
ture data set at 0.5◦× 0.5◦ resolution, which is available to
the users (http://www.imdpune.gov.in/Seasons/Temperature/
max/Max_Download.html). The data processing procedure
has been well documented (Srivastava et al., 2009). IMD
has compiled, digitised, quality controlled and archived these
data at the National Data Centre (NDC). Based on maximum
data availability, some stations were subjected to quality-
control checks like rejecting values greater than known ex-
treme values, minimum temperatures greater than maximum
temperatures, the same temperature values for many consec-
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utive days, etc. After these quality checks, 395 stations were
selected for further development of gridded data. IMD used
measurements at these selected stations and interpolated the
data into grids with the modified version of Shepard’s an-
gular distance weighting algorithm (Shepard, 1968). In this
study, we have used IMD’s real-time daily gridded (Shepard,
1968; Piper and Stewart, 1996; New et al., 2000; Kiktev et
al., 2003; Rajeevan et al., 2005; Caesar et al., 2006; Srivas-
tava et al., 2009) temperature (maximum and minimum) data
to verify the real-time forecasts based on NCMRWF uni-
fied model (NCUM; deterministic) and NCMRWF ensemble
prediction system (NEPS) ensemble mean forecast temper-
atures. The verification is carried out for the entire period
from March 2016 to May 2016 at 0.5◦× 0.5◦ resolution over
India.

2.2 NCMRWF unified model (NCUM)

The unified model (John et al., 2016), operational at
NCMRWF consists of an observation processing system
(OPS 30.1), four-dimensional variational data assimilation
(VAR 30.1) and unified model (UM 8.5). This analysis sys-
tem makes use of various conventional and satellite observa-
tions. The analysis produced by this data assimilation system
is being used as the initial condition for the daily operational
high-resolution (N768L70) global NCUM 10-day forecast
since January 2016. The horizontal resolution of NCUM sys-
tem is 17 km and has 70 levels in the vertical extends from
surface to 80 km height. The NCUM model forecast tem-
perature (Tmax and Tmin) data have been interpolated to the
0.5◦× 0.5◦ resolution using a bilinear interpolation method
to match the resolution and grids of the observed data.

2.3 NCMRWF ensemble prediction system (NEPS)

NEPS is a global medium-range ensemble forecasting sys-
tem adapted from the UK Met Office MOGREPS system
(Bowler et al., 2008). The configuration consists of four cy-
cles of assimilation corresponding to 00Z, 06Z, 12Z and 18Z,
and 10-day forecasts are made using the 00Z initial con-
dition. The N400L70 forecast model consists of 800× 600
grid points on the horizontal surface and has 70 vertical lev-
els. The horizontal resolution of the model is approximately
33 km in the midlatitudes. The 10-day control forecast run
starts with the operational NCUM (N768L70) analysis and
44 ensemble members start from different perturbed initial
conditions consistently with the uncertainty in the initial con-
ditions. The initial perturbations are generated using the en-
semble transform Kalman filter (ETKF) method (Bishop et
al., 2001). Uncertainty in the forecasting model is taken into
account by making small random variations to the model and
using a stochastic kinetic energy backscatter scheme (Ten-
nant et al., 2010).

2.4 Verification metrics

There are several scores available for the categorical veri-
fication of forecasts (Wilks, 2011). However, in the current
study, we have used the probability of detection (POD), false
alarm ratio (FAR), equitable threat score (ETS), Hanssen and
Kuipers score (HK score) and symmetrical extremal depen-
dence index (SEDI). A brief description of these scores is
presented here.

2.4.1 Probability of detection (POD), also known as hit
rate (H)

The POD tries to answer the question, “What fraction of the
observed yes events were correctly forecasted?” It is very
sensitive to hits, but ignores false alarms, and very sensitive
to the climatologically frequency of the event. It is good for
rare events and can be artificially improved by issuing more
yes forecasts to increase the number of hits. Its value varies
from 0 to 1 for perfectly forecasted events POD= 1 and it is
computed by Eq. (1):

POD=
hits

hits+misses
. (1)

2.4.2 False alarm ratio (FAR) (F)

What fraction of the predicted yes events actually did not
occur? FAR is sensitive to false alarms, but ignores misses,
very sensitive to the climatological frequency of the event
and should be used in conjunction with the probability of
detection. FAR is computed by Eq. (2):

FAR=
hits

hits− falsealarms
. (2)

2.4.3 Hanssen and Kuipers score (HK)

It reveals the true skill statistic and focuses on how well the
forecast separates the “yes” events from the “no” events. HK
uses all elements in the contingency table and does not de-
pend on climatological event frequency. The score ranges be-
tween −1 to 1. This includes 0, which indicates no skill and
1 denotes a perfect skill. It is computed by Eq. (3):

HK=
[

hits
hits+misses

]
−

[
falsealarms

falsealarms+ correctnegatives

]
, (3)

This score is efficient at verifying the most frequent events.
Temperature possesses continuous values like precipitation
amount and a few other NWP variables. In such cases
mean error, mean square error (MSE), root mean square er-
ror (RMSE), correlation and anomaly correlation are most
suitable (4th international verification methods workshop,
Helsinki, June 2009). Categorical values, for instance pre-
cipitation occurrences, are well suited to verification anal-
ysis using POD, FAR, Heidke skill score, equitable threat
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score and HK score statistics. However, in order to take ad-
vantage of these scores for our continuous variable, temper-
ature (maximum and minimum), we categorise it using the
temperature ranges 30–32, 32–34, 34–36, 36–38, 38–40 and
40–42 ◦C.

2.4.4 Equitable threat score (ETS)

It is also known as the Gilbert skill score and describes how
well the forecasted yes events agree with the observed yes
events, thus exploring the hits by chance. This score ranges
between −1/3 and 1; 0 shows no skill and 1 denotes the per-
fect skill. The score expresses the fraction of observed or the
forecasted events projected accurately and ETS is computed
by the following Eq. (4):

ETS=
hits− hitsrandom

hits+ false alarms− hitsrandom
, (4)

where hitsrandom =
(hits-misses)(hits+ false alarms)

total .

2.4.5 Symmetric extremal dependence index (SEDI)

It expresses the association between a forecast and the ob-
served rare events. It ranges between −1 and 1, where
the perfect score is 1. This score converges to (2X− 1) as
the event frequency advances towards 0, where X denotes
the variable that specifies the hit rate convergence to 0 for
the rarer events. SEDI is not influenced by the base rate
SEDI score approaching 1 and is computed by the follow-
ing Eq. (5):

SEDI=
lnF − lnH + ln(1−H)− ln(1−F)

lnF + lnH + ln(1−H)+ ln(1−F)
. (5)

Here H is hit rate (POD) and F is FAR.

3 Results and discussions

The verification of temperature forecasts is presented in this
section. The models run operationally and provide the fore-
casts every day for 10 days. The verification is confined to
MAM 2016 over six different temperature thresholds. For
Tmax, the temperature thresholds are 32, 34, 36, 38, 40 and
42 ◦C, and for the Tmin, however, it is 22, 24, 26, 28, 30 and
32 ◦C. The panels in Fig. 1a, b show the observed and fore-
cast (day 3) frequency distribution for Tmax and Tmin. For
lower temperature thresholds, the forecast underestimates
the frequency, while both deterministic and ensemble mean
converge towards observed relative frequency, especially for
the temperature exceeding 38 ◦C. The NEPS performs better
than the NCUM forecast (Fig. 1a), indicating better perfor-
mance of the ensemble model.

From the spatial map Fig. 2, the frequency of the observed
maximum temperature Tmax≥ 40 ◦C over Maharashtra and
adjoining regions shows a maximum (more than 70 counts)

Figure 1. Frequency distribution of observed and forecast (NCUM
and NEPS) (a) Tmax (◦C) and (b) Tmin (◦C) over India during
March to May 2016 (NCUM stands for NCMRWF unified model
and NEPS stands for NCMRWF ensemble prediction system; ob-
served data from India Meteorological Department and forecast
data from NCMRWF). Both panels indicate that the forecasts have
a lower frequency compared to observations at lower thresholds.
At higher temperature thresholds (> 40 ◦C for Tmax and > 28 ◦C for
Tmin), there is better agreement.

over the entire period of MAM 2016, which is picked up by
both deterministic and ensemble forecasts. However, the de-
terministic forecast shows more frequency spread over Mad-
hya Pradesh (MP), Uttar Pradesh (UP) and Bihar, Odisha,
Andhra Pradesh (AP) and adjoining states from day 1 to
day 9. As forecast lead time increases from day 1 to day 9
the heatwave frequency increases from central India to the
northern and eastern India. Consequently, a higher number
of heatwave extremes were predicted by NCUM over east-
ern UP, Bihar, West Bengal, Odisha, Jharkhand, Chhattisgarh
and AP. On the other hand, NEPS (Fig. 3) prediction for the
day 1 to day 9 is much more subdued than in the NCUM
forecasts. However, both models, NCUM and NEPS, predict
the heatwaves more frequently over the above-mentioned re-
gions. Comparatively, the ensemble-based model NEPS is
performing better (spatially) for the extremes of heatwave
events than the deterministic-based model NCUM over most
of the Indian states up to day 9.

Nat. Hazards Earth Syst. Sci., 17, 1469–1485, 2017 www.nat-hazards-earth-syst-sci.net/17/1469/2017/



H. Singh et al.: Verification of pre-monsoon temperature forecasts over India 1473

Figure 2. Spatial distribution of observed (a) and NCUM forecasts (b–f) number of days with Tmax≥ 40 ◦C during the period of March
to May 2016 (NCUM stand for NCMRWF unified model; observed data from India Meteorological Department and forecast data from
NCMRWF]. Regions with over 60 days of Tmax≥ 40 ◦C are indicated in orange and red. In the observations (a) this is confined to a small
part over the peninsula. The NCUM forecasts (b–f) show that Tmax≥ 40 ◦C is widespread over northern and eastern parts of India.

4 Case studies for extreme heatwaves

4.1 Weather conditions during March–May 2016

The heatwave conditions prevailed at some places over the
central and adjoining western parts of the country during
the last week of March 2016 (Climate Diagnostics Bulletin
of India, March 2016) and over parts of central and north-
western India during the first week of April (Climate Diag-
nostics Bulletin of India, April 2016). These conditions pre-
vailed over most parts of eastern India throughout the second
week. According to IMD official reports the severity and ex-
tent of heating increased during the third week, resulting in
the establishment of severe heatwave conditions over parts
of northern and eastern India. These conditions continued to
prevail over eastern India and also spread over parts of south-
ern India during the fourth week. However, its intensity and
areal extent reduced towards the end of the week. During the
last few days of April, heatwave conditions prevailed over
parts of Odisha, Bihar, Gangetic West Bengal and Kerala.
During the month of May 2016, heatwave conditions were
reported at isolated places on some occasions over parts of
Rajasthan, Punjab, Odisha, Gangetic West Bengal and Kerala

during the first fortnight of the month (Climate Diagnostics
Bulletin of India, May 2016). As per the Climate Diagnos-
tics Bulletin of India for May, severe heatwave conditions
developed and intensified over parts of north-western India.
From 15 May the heatwave conditions spread and persisted
over parts of central and northern peninsular India until 22
of the month. Jammu and Kashmir, western and eastern Ra-
jasthan, western and eastern MP and Vidarbha were espe-
cially affected during this period. Some stations of western
Rajasthan viz. Barmer, Bikaner, Sri Ganganagar, Jaisalmer
and Jodhpur observed severe heatwave conditions for 4 to
5 days in succession from 17 to 21 May and temperature ob-
served ≥ 50 ◦C. The heatwave conditions gradually abated
from most parts of the country after 23 March and prevailed
only at isolated places over parts of coastal AP and Telangana
during the last few days of the month.

4.2 Casualties reported during March–May 2016

As per the official IMD reports (Climate Diagnostics Bulletin
of India, March, April and May 2016) the prevailing heat-
wave over India caused more than 500 loss of lives. The heat-
wave claimed one life each (Climate Diagnostics Bulletin of
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Figure 3. Spatial distribution of observed (a) and NEPS forecasts (b–f) number of days with Tmax≥ 40 ◦C during the period of March to
May 2016 (NEPS stands for the NCMRWF ensemble prediction system; observed data from India Meteorological Department and forecast
data from NCMRWF). Regions with over 60 days of Tmax≥ 40 ◦C are indicated in orange and red. In the observations (a) this is confined
to a small part over peninsula. The NEPS forecasts (b–f) show Tmax≥ 40 ◦C widespread over northern and eastern parts of India. NEPS
forecasts (b–f) have a better agreement with the observations (a) compared to NCUM forecasts (Fig. 2b–f).

Table 1. Casualties reported during March to May 2016 due to pre-
vailing heatwaves over India.

Month State/region No. of loss Total
of lives

March
Maharashtra 1

2
Kerala 1

April

Odisha 88

220

Telangana 79
AP 40
Maharashtra 9
Karnataka 1
Tamil Nadu 1

May
Telangana 200

273Gujarat 39
Maharashtra 34

Data from the Climate Diagnostic Bulletin of India,
March 2016, April 2016 and May 2016, India Meteorological
Department.

India, March 2016) in Maharashtra (Nanded, 13 March) and
Kerala (Palakkad, 5 March). A brief account of heatwave-
related deaths is listed in Table 1. It took a toll of over 200
deaths (Climate Diagnostics Bulletin of India, April 2016)
from central and peninsular India during the month of April.
Of these, 88 deaths were reported from Odisha, 79 from
Telangana, 40 from AP, 9 from Maharashtra and one each
from Karnataka and Tamil Nadu. In the month of May the
heatwave caused over 275 deaths from central and peninsular
parts of the country. Of these, over 200 deaths (Climate Di-
agnostics Bulletin of India, April 2016) were reported from
Telangana alone, 39 deaths were reported from Gujarat and
34 from Maharashtra.

4.3 Synoptic features associated with heatwaves during
2016

The panels in Fig. 4 on the left show the analysis (top)
and day 3 forecast (bottom) MSLP and winds at 700 hPa
for 10 April 2016. Similarly, the panels on the right show
the analysis (top) and day 3 forecast (bottom) of MSLP and
winds at 700 hPa for 21 May 2016. The typical synoptic fea-
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Figure 4. Shaded area shows mean sea level pressure (MSLP) and winds at 700 hPa, showing heat low (a). Analysis of 20160410 (b) day 3
forecast valid for 20160410 (c). Analysis of 20160521 (d) day 3 forecast valid for 20160521. The analysis and the forecasts are based on the
NCMRWF unified model. Both analyses (a, b) and forecasts (c, d) feature dry north-westerlies.

tures associated with the pre-monsoon season is depicted in
the above figure, which shows the MSLP in hPa (shaded) and
700 hPa winds in ms−1 (vectors) over the Indian subconti-
nent. The low pressure associated with continental heating
(heat low) is prominent and is an important semi-permanent
system that drives the monsoon (Rao, 1976). The heat low es-
tablishes over NW parts of India and adjoining parts of Pak-
istan and is seen to extend over India. The day 1 and day 3
forecasts successfully capture this broad-scale feature of the
heat low. The 700 hPa winds over central India are predomi-
nantly north-westerlies driving the hot and dry air from over
the Thar desert towards central India. The pre-monsoon hot
weather becomes severe at times when the hot and dry north-
westerlies penetrate deep into the peninsula and persist for
several days. During May 2016, similar conditions caused
a severe heatwave over parts of Maharastra, Telangana and
Odisha.

4.3.1 Case I heatwaves on 11 April 2016

As per the IMD reports (Climate Diagnostics Bulletin of
India, April 2016), the heatwave conditions prevailed over
parts of central peninsular and eastern India during the sec-
ond week of April. It took a toll of over 200 deaths (Table 1)
from central and peninsular India during April. Observed and
forecast Tmax valid for 11 April 2016 are shown for NCUM
(Fig. 5) and NEPS (Fig. 6). The spatial distributions of Tmax
show prevailing heatwaves over Odisha, AP, Telangana and
some parts of Maharashtra on 11 April 2016. The observa-
tion shows more than 40 ◦C spread over eastern UP, Bihar,
West Bengal, eastern MP, Jharkhand, Chhattisgarh, Odisha,
Maharashtra, some parts of Karnataka and Tamil Nadu. The
NCUM forecast, in contrast, shows marginally wider regions
up to day 9 due to a warm bias in the model, and NEPS
forecasts also show ≥ 40 ◦C wider regions up to day 9 but
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Figure 5. Spatial distributions of observed Tmax (a) and NCUM forecast Tmax (b–f) prevailing heatwaves over MP, Odisha, AP, Telangana
and some parts of Maharashtra on 11 April 2016 (NCUM stands for NCMRWF unified model; observed data from India Meteorological
Department and forecast data from NCMRWF). Observed (a) Tmax≥ 40 ◦C is widespread over eastern India and a large part of the peninsula.
NCUM forecasts (b–f) show a similar distribution.

marginally less than the NCUM forecasts. Apart from the
warm bias, both the model forecasts show a cold bias in
the north–north-east of J&K. Hence the NEPS is better at
predicting the extremes of heatwaves up to day 9 than the
NCUM.

4.3.2 Case II heatwaves on 21 May 2016

The severe heatwave conditions developed and intensified
over parts of north-western India during the third week of
May 2016 and persisted over parts of central and northern
peninsular India. At some stations in western Rajasthan tem-
peratures of ≥ 50 ◦C, viz. at Barmer, Bikaner, Ganganagar,
Jaisalmer and Jodhpur, were observed for the severe heat-
wave conditions for 4 to 5 days in succession from 17 May
to 21 May in 2016. The spatial distributions of NCUM and
NEPS forecast Tmax with observed IMD Tmax prevailing
heatwaves over Rajasthan, MP, UP, Delhi, Haryana, Pun-
jab and some parts of Maharashtra on 21 May 2016 is
shown in Figs. 7 and 8. Both the models, deterministic
and ensemble, are able to predict the extreme temperature
(Tmax > 48 ◦C) over western Rajasthan up to day 3 only. How-
ever, the NCUM predicts more widespread Tmax > 46 ◦C over

Rajasthan, MP, UP, Delhi, Haryana, Punjab and parts of Ma-
harashtra for all days forecast.

The HK scores of the maximum temperature (Tmax) be-
tween the range 30–42 ◦C, constructed as box-and-whisker
plots for both NCUM and NEPS, indicate better performance
of the ensemble-based forecast compared to the deterministic
one. Interestingly, the forecast score does not fade away with
lead time, contrary to the expectation. This depicts that the
NEPS performs better and its prediction skill remains quasi-
constant throughout the lead time of 10 days (Fig. 9).

Similar observations can be made from the ETS plots
(Fig. 10). The most obvious finding to emerge from the box-
and-whisker plots of the ETS scores is the better performance
of the ensemble-based forecast (NEPS) than that of the de-
terministic forecast (NCUM). This result is consistent with
the earlier documented findings. At all the Tmax thresholds
(between 30 and 42 ◦C), the NEPS mean stands above the
NCUM mean. The same observation holds during all the il-
lustrated forecasts (days 1, 3, 5, 7 and 9). The scores falling
under the 25 % in the case of the ensemble-based forecast
are either similar or lie slightly above the deterministic fore-
cast unlike the values underlying 75 %, which in the case of
NEPS are markedly higher than that of the NCUM.
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Figure 6. Spatial distributions of observed Tmax (a) and NEPS forecast Tmax (b–f) prevailing heatwaves over MP, Odisha, AP, Telangana
and some parts of Maharashtra on 11 April 2016 (NEPS stands for NCMRWF ensemble prediction system; observed data from India
Meteorological Department and forecast data from NCMRWF). Observed (a) Tmax≥ 40 ◦C is widespread over eastern India and a large part
of the peninsula. NEPS forecasts (b–f) show a similar distribution.

This finding raises an intriguing question regarding the dif-
ference in the characteristic distribution of both NEPS and
NCUM forecasts. This result also advocates better perfor-
mance of the ensemble-based forecast over the deterministic
forecast.

Importantly, the ensemble-based forecast predicts a lower
false alarm than its counterpart, NCUM, especially in the
high temperature range. In the low temperature range, be-
tween 30 and 32, NEPS has low FAR score (where 0 denotes
the perfect score) for day 1 and day 3 forecasts. Similarly, it
has a comparatively higher score on days 5, 7 and 9 (Fig. 11).

The probability of detection of ensemble-based forecast
is higher than the deterministic forecast during all the lead
times and at all the temperature thresholds except for the
day 1 forecast score for the NEPS in the range between
40 and 42 ◦C, where NCUM shows better performance
(Fig. 12).

At higher temperature ranges, representing rare events, the
performance of NEPS and NCUM can be clearly seen from
the SEDI score plot (Fig. 13). We can notice a considerable
difference between the performance of the two techniques for
extreme events lying between 40 and 42 ◦C on all the days.

Apparently, NEPS demonstrates higher skill than that of
NCUM in predicting the heatwave events. The heatwave
event prediction skill is best seen on the day 5 forecast with
NEPS’s SEDI score encompassing the score value of 0.7.
Monthly scores also are listed in Table 2.

A consistent result attained from the NEPS and NCUM
verification demonstrates the better skill of the ensemble
forecasts compared to the deterministic forecast for the con-
sidered cases.

5 Summary and conclusions

Unless the atmosphere is in a highly predictable state, we
should not expect an ensemble to forecast extreme events
with a high probability (Legg and Mylne, 2004). This is due
to the small-scale non-linear interactions involved in a NWP
model. One of the several predicted interactions could be cli-
matologically extreme; hence they are more difficult to pre-
dict. A small variation in the intensity, timing and position
of such anomalies could lead to a large difference in their
predicted growth with time. Thus, despite the efficiency of
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Figure 7. Spatial distributions of observed Tmax (a) and NCUM forecast Tmax (b–f) prevailing heatwaves over Rajasthan, MP, UP, Delhi,
Haryana, Punjab and some parts of Maharashtra on 21 May 2016 (NCUM stands for NCMRWF unified model; observed data from India Me-
teorological Department and forecast data from NCMRWF). Observed (a) Tmax≥ 40 ◦C is widespread over north-western and central India.
NCUM forecasts (b–f) show a similar distribution. However, the forecasts indicate much stronger warming compared to the observations.
The Tmax≥ 46 ◦C is confined to a small region in the observations, while in the NCUM forecasts, it is seen as widespread over north-western
India.

Table 2. Monthly verification scores for Tmax > 40 ◦C for NCUM and NEPS forecast for day 1 to day 9 lead times with Indian Meteorological
Department (IMD) observed temperature.

NCUM NEPS

Month Score Day 1 Day 3 Day 5 Day 7 Day 9 Day 1 Day 3 Day 5 Day 7 Day 9

March

POD 0.25 0.23 0.27 0.30 0.28 0.23 0.20 0.22 0.24 0.22
FAR 0.81 0.71 0.75 0.75 0.79 0.49 0.54 0.53 0.53 0.43
ETS 0.09 0.09 0.09 0.08 0.08 0.10 0.09 0.10 0.11 0.11
HK 0.22 0.21 0.24 0.27 0.25 0.21 0.18 0.21 0.23 0.21
SEDI 0.33 0.32 0.36 0.38 0.36 0.31 0.30 0.34 0.34 0.33

April

POD 0.39 0.39 0.38 0.36 0.36 0.43 0.43 0.41 0.42 –
FAR 0.66 0.65 0.66 0.66 0.66 0.62 0.61 0.62 0.61 0.62
ETS 0.16 0.16 0.15 0.15 0.15 0.19 0.19 0.19 0.19 0.19
HK 0.30 0.29 0.28 0.27 0.26 0.34 0.34 0.34 0.33 0.33
SEDI 0.46 0.45 0.45 0.43 0.42 0.51 0.51 0.52 0.51 0.50

May

POD 0.30 0.30 0.28 0.26 0.24 0.32 0.34 0.31 0.31 0.27
FAR 0.70 0.71 0.72 0.74 0.75 0.67 0.69 0.70 0.71 0.75
ETS 0.12 0.11 0.11 0.10 0.09 0.14 0.14 0.13 0.12 0.10
HK 0.22 0.22 0.21 0.19 0.17 0.25 0.26 0.24 0.23 0.19
SEDI 0.39 0.38 0.36 0.33 0.30 0.43 0.43 0.40 0.39 0.33

NCUM stands for NCMRWF unified model, and NEPS stands for NCMRWF ensemble prediction system.
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Figure 8. Spatial distributions of observed Tmax (a) and NEPS forecast Tmax (b–f) prevailing heatwaves over Rajasthan, MP, UP, Delhi,
Haryana, Punjab and some parts of Maharashtra on 21 May 2016 (NEPS stands for NCMRWF ensemble prediction system; observed data
from India Meteorological Department and forecast data from NCMRWF). Observed (a) Tmax≥ 40 ◦C is widespread over north-western
and central India. NEPS forecasts (b–f) show a similar distribution. However, the forecasts indicate much stronger warming compared to
the observations. The Tmax≥ 46 ◦C is confined to a small region in the observations, while in the NEPS forecasts it is widespread over
north-western India. Additionally, in NEPS day 7 and day 9 forecasts (e, f) Tmax≥ 40 ◦C does not extend to over the peninsula and is seen
stretching eastwards compared to the observations (a).

Figure 9. Box plots (a–e) for Hanssen and Kuipers (HK) scores for different temperature ranges (Tmax) NCUM and NEPS from March to
May 2016 (NCUM stands for NCMRWF unified model and NEPS stands for NCMRWF ensemble prediction system). HK score values are
higher in NEPS forecasts, particularly at high temperature ranges (> 36 ◦C), and for all lead times compared to NCUM forecasts, suggesting
improved performance of NEPS at higher temperature ranges.
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Figure 10. Box plots (a–e) for equitable threat score (ETS) for NCUM and NEPS from March to May 2016 (NCUM stands for NCMRWF
unified model and NEPS stands for NCMRWF ensemble prediction system). ETS values are higher in NEPS forecasts, particularly at high
temperature ranges, (> 36 ◦C) and for all lead times compared to NCUM forecasts, suggesting improved performance of NEPS at higher
temperature ranges.

Figure 11. Box plots (a–e) for false alarm ratio (FAR) for NCUM and NEPS from March to May 2016 (NCUM stands for NCMRWF
unified model and NEPS stands for NCMRWF ensemble prediction system). FAR values are lower in NEPS forecasts, particularly at high
temperature ranges (> 36 ◦C), and for all lead times compared to NCUM forecasts, suggesting improved performance of NEPS at higher
temperature ranges.

the EPS over the deterministic forecast in detecting extreme
events, we should be extremely careful in declaring it locally
as explained above. The ensemble mean is relatively better
at predicting the extremes of heatwave events than the deter-
ministic forecast over all Indian states up to day 9.

The ensemble forecast provides appreciable forecasts on
all days and is most reliable after the day 2 forecast. This
characteristic is more pronounced for extreme events than for

the less extreme events, whereas the ensemble forecast after
day 2 is less reliable, as can be seen from the FAR and POD
scores at the lower thresholds. This suggests that the perfor-
mance of EPS on different thresholds is different; that is, if
it performs well at higher thresholds, it does not necessarily
mean that it would perform equally well at the lower thresh-
olds. Thus, we need to understand the model performance at
all the concerned ranges and, based upon those verification
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Figure 12. Box plots (a–e) for probability of detection (POD) for NCUM and NEPS from March to May 2016 (NCUM stands for NCMRWF
unified model and NEPS stands for NCMRWF ensemble prediction system). POD values are higher in NEPS forecasts, particularly at high
temperature ranges (> 36 ◦C), and for all lead times compared to NCUM forecasts, suggesting improved performance of NEPS at higher
temperature ranges.

Figure 13. Box plots (a–e) for symmetric extremal dependence index (SEDI) for NCUM and NEPS from March to May 2016 (NCUM stands
for NCMRWF unified model and NEPS stands for NCMRWF ensemble prediction system). SEDI values are higher in NEPS forecasts for
all temperature ranges and for all lead times compared to NCUM forecasts, suggesting improved performance of NEPS at all temperature
ranges.

results, employ the ensemble forecast accordingly for opera-
tional purposes.

Our forecasts were obtained for the 2016 pre-monsoon
season in India, MAM and since the severe events are rare
in nature it limits the sample size for the ensemble forecast
and thus poses a challenge for the efficient forecast verifi-
cation. Despite the caveats involved, the ensemble forecast
has shown to predict the heatwaves several days ahead of

the event, as discussed in the results. The severe heatwaves
(> 40 ◦C) can reliably be predicted for day 2 onwards with
fewer false alarms compared to the deterministic forecast
as observed here. This could be explained by the inherent
smoothing characteristic of the ensemble-based prediction
contrary to the deterministic one, which in our case shows
a warm bias.
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Comparatively, low efficiency of the ensemble-based pre-
diction on shorter timescales (< day 2) proposes that the en-
semble prediction may need a longer duration of time for the
perturbation growth. However, over a medium-range forecast
and for extreme events like heatwaves, the ensemble-based
approach proves to be one of the most economic and effec-
tive tools.

For the present study, the data from the two models is
available only from 2016. Ensemble-based forecasts in real-
time using the NEPS started in November 2015 at NCM-
RWF. For a robust and conclusive result, it is necessary that
the study is based on the higher number of cases. This will
be carried out in future.

The temperature data from the station’s distribution are
discussed in this paper and are used to obtain the gridded
Tmax and Tmin data. It is indeed likely that some of the sta-
tion extremes are smoothed out in the gridded data. It should
also be noted that the station’s data network is sparse with
395 stations, and often there are missing values. The grid-
ded data field provides continuous and gap-free data to work
with.

Extreme events like heatwaves are rare in nature and here
we provided a general view of the two particular heatwave
events (11 April and 21 May). From our experience, as well
as from the forecast for the post-heatwave event days, we
can state that the skill of predicting an event with the initial
conditions of no indication of severity is comparatively lower
than when the signature is present in the initial conditions.
Even before the event, there is some signature of it as can
be seen in the Figs. 5, 6, 7 and 8. The overall prediction of
warm conditions is fairly accurate, but at closer lead times
the events are better predicted. The same can be seen in the
box-and-whisker plots for ETS (and rest of the score plots as
well). For instance, the skill of NEPS does not fall drastically
from day 2 to day 7 and thus depicts reasonable skill. So,
overall the NEPS is good at predicting the extreme event and
is relatively robust.

Data availability. The observed temperature (maximum and
minimum) data over India can be downloaded from http://www.
imdpune.gov.in/Seasons/Temperature/max/Max_Download.html
and http://www.imdpune.gov.in/Seasons/Temperature/min/Min_
Download.html. NCUM and NEPS temperature forecast data over
India are made available upon request to director@ncmrwf.gov.in.
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Appendix A

List of abbreviations

AP Andhra Pradesh
EPS Ensemble prediction system
ETKF Ensemble transform Kalman filter
ETS Equitable threat score
FAR False alarm ratio
HK Hanssen and Kuipers
IMD Indian Meteorological Department
J&K Jammu & Kashmir
MAM March, April and May
MOGREPS Met Office Global and Regional Ensemble Prediction System
MP Madhya Pradesh
MSE Mean square error
MSLP Mean sea level pressure
NCMRWF National Centre for Medium Range Weather Forecasting
NCUM NCMRWF unified model
NDC National Data Centre
NEPS NCMRWF ensemble prediction system
NWP Numerical weather prediction
OPS Observation processing system
POD Probability of detection
RMSE Root mean square error
SEDI Symmetric extremal dependence index
Tmax Maximum temperature
Tmin Minimum temperature
UK United Kingdom
UM Unified model
UP Uttar Pradesh
WMO World Meteorological Organization
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