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Abstract. This paper proposes a statistical model for map-
ping global landslide susceptibility based on logistic regres-
sion. After investigating explanatory factors for landslides in
the existing literature, five factors were selected for model
landslide susceptibility: relative relief, extreme precipitation,
lithology, ground motion and soil moisture. When building
the model, 70 % of landslide and nonlandslide points were
randomly selected for logistic regression, and the others were
used for model validation. To evaluate the accuracy of predic-
tive models, this paper adopts several criteria including a re-
ceiver operating characteristic (ROC) curve method. Logistic
regression experiments found all five factors to be significant
in explaining landslide occurrence on a global scale. During
the modeling process, percentage correct in confusion ma-
trix of landslide classification was approximately 80 % and
the area under the curve (AUC) was nearly 0.87. During the
validation process, the above statistics were about 81 % and
0.88, respectively. Such a result indicates that the model has
strong robustness and stable performance. This model found
that at a global scale, soil moisture can be dominant in the
occurrence of landslides and topographic factor may be sec-
ondary.

1 Introduction

Landslides are a pervasive natural hazard, causing significant
casualties and economic loss around the world (Budimir et
al., 2015). Major news websites and online blogs from ex-
perts (such as The Landslide Blog, a thematic blog main-

tained by Prof. Dave Petley at the University of East Anglia)
show that landslides almost occur every day. It is important
and necessary to find out where the global landslide hotspot
areas are and what factors can influence the occurrence of
landslides. Such information would provide a crucial refer-
ence for researchers and decision makers in industries like
insurance for and project managers in some nongovernmen-
tal organizations (NGO). For international and national insur-
ance or reinsurance companies, such a map will provide them
with clear knowledge of landslide hotspots at a macro level,
which will help them concentrate on those susceptible areas
and form relevant marketing strategies like transferring risks
(Bednarik et al., 2010). Geographers could also find it use-
ful for revealing spatial patterns of landslide distribution. To
answer these questions, studies of global landslide suscepti-
bility are required. Such research will help give a global per-
spective on landslides, which may encourage international
cooperation for disaster risk reduction.

At present, research methods for landslide susceptibility
mapping can be divided into three major categories: qualita-
tive factor overlay, statistical models and geotechnical pro-
cess models (Dai and Lee, 2002). Generally, geotechnical
process methods are developed from slope stability analy-
ses and are applicable for site-specific landslides or when
the ground conditions are quite uniform in the study area.
Also, this method requires the landslide types to be known
and relatively easy to analyze (Terlien et al., 1995; Wu and
Sidle, 1995), and hence it is seldom used in large-scale land-
slide susceptibility mapping. In qualitative methods, land-
slide experts select landslide controlling factors and com-
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bine these factors into a susceptibility map, based on their
knowledge and experience of landslide investigation. (An-
balagan, 1992; Pachauri and Pant, 1992). In contrast, statisti-
cal methods include statistical determination in combinations
of explanatory factors (Carrara et al., 1991; Dhakal et al.,
1999). Among these three types of methodologies, the latter
two are widely applied to large-scale landslide susceptibility
mapping. Relatively, reproducibility of results and subjectiv-
ity in landslide modeling can be the apparent disadvantages
of the method of qualitative factor overlay. In recent times,
large volumes of landslide inventories and multi-source data
of landslide factors have become gradually accessible to re-
searchers and that means statistical methods are frequently
used in landslide susceptibility mapping.

In statistical methods, logistic regression models have
been frequently used in geological hazard research and em-
ployed to explore the factors that influence landslides and de-
termine landslide probability (Ayalew and Yamagishi, 2005;
Van Den Eeckhaut et al., 2006). Compared with other statis-
tical approaches, Brenning (2005) found that logistic regres-
sion models have a relatively low rate of error. Logistic re-
gression can include dichotomous dependent variables (e.g,
whether a landslide occurred) and independent variables, as
well as categorical or continuous variables (Chang et al.,
2007; Atkinson and Massari, 1998). The fact that landslide
explanatory factors can be included in the model as either
categorical or continuous variables gives logistic regression
models a great advantage over multiple regression models,
which can only include continuous variables. Finally, logis-
tic regression models can be used to draw susceptibility maps
when combined with GIS (Lee, 2005; Bai et al., 2010).

A landslide inventory provides the basis for quantitative
zoning of landslide susceptibility. Location, date, type, size,
causal factors and damage are supposed to be included in this
database. A commonly used landslide inventory does not yet
appear but some regional or national landslide databases are
now well developed. In Europe, currently 22 out of 37 con-
tacted countries have national landslide databases, and six
other countries only have regional landslide databases. Those
national databases contain about 633 700 landslides in total,
of which about 75 % are in Italy, and more than 10 000 land-
slides are in Austria, the Czech Republic, France, Norway,
Poland, Slovakia, and the UK. In these 37 European coun-
tries, only six have sufficient information to perform risk
analysis and one to perform a hazard analysis, while 14 coun-
tries can carry out at least a susceptibility analysis. Therefore,
at a continental scale, landslide zoning seems to be limited to
landslide susceptibility modeling only. Restricted access to
the data also make it difficult for these data to be applied in
scientific research (Van Den Eeckhaut and Hervás, 2012).

In the existing literature, there are a few studies of land-
slide susceptibility that were carried out on a global scale;
those that exist mainly used qualitative or semi-qualitative
methodologies. For example, Mora and Vahrson (1994) pro-
posed a method for assessing landslide susceptibility in trop-

ical earthquake-prone areas that included three fundamen-
tal factors (slope, soil moisture, and lithology) and two
triggering factors (extreme precipitation and ground mo-
tion). Nadim et al. (2006) applied the research of Mora
and Vahrson (1994) to assess global landslide susceptibility
and risk. Hong et al. (2007) selected six influencing factors
(slope, elevation, soil type, soil texture, land cover type and
drainage density) in the model of weighted linear combina-
tion (WLC). To obtain an optimal combination of weights,
they tried different combinations of factor weights to make
the model results similar to the existing landslide suscepti-
bility map of the USA. Finally, they drew a global landslide
susceptibility map using the weights combination obtained
above. Some scholars have also attempted to study global
landslides with statistical methods. Farahmand and AghaK-
ouchak (2013) used a global landslide inventory compiled by
the National Aeronautics and Space Administration (NASA)
to build a global landslide susceptibility model based on
the use of a support vector machine (SVM), which includes
three variables, satellite-sensed precipitation, digital eleva-
tion model (DEM) and land cover type. Compared with some
complex numerical methods like SVM, logistic regression
provides a simple method to produce a global landslide sus-
ceptibility map, which would be helpful in disseminating this
research and could encourage further model development for
its simplicity in modeling. What is more, the result from lo-
gistic regression could illustrate the relative importance of
different factors in explaining landslides, which could not be
achieved by some numerical methods like SVM.

This paper addresses the gap in creating global landslide
susceptibility maps using the widely used statistical method,
logistic regression, and demonstrating the relative signif-
icance of different explanatory factors on a global scale.
In this paper, a global landslide inventory database is con-
structed and used for building a stepwise logistic regression
model to evaluate global landslide susceptibility. Finally, a
global landslide susceptibility map that visualizes this model
is produced. In the landslide susceptibility model, five fac-
tors (extreme precipitation, soil moisture, lithology, relative
relief and ground motion) are included as explanatory factors
in stepwise logistic regression. In total, 70 % of landslide and
nonlandslide events are randomly selected for logistic regres-
sion and the rest are used for model validation. It is found that
this model has a good explanatory power and performs well
in model prediction. Landslide explanatory factors and the
extent to which these factors influence landslide occurrence
can be derived from model results directly without expert ex-
perience, which is rare in statistical assessments of global
landslide susceptibility.

2 Explanatory factors

When assessing landslide susceptibility, the selection of ex-
planatory factors is essential and significant. Typical ex-
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Table 1. Brief summary of explanatory factors in landslide susceptibility assessment for regional scale and global scale. Numbers in the table
indicate related studies.

Factors Geographic scale of study

Regional Global

Topography slope gradient, slope aspect, elevation, plan curvatures,
profile curvatures1, slope morphology2, standard devi-
ation of slope gradient6

median, minimum, and maximum slope values
from DEM10, topography index11, slope angle12,
elevation13

Geology lithology1, density of geological boundaries3, distance
to geological boundaries3, weathering depth4, tectonic
uplift9, geological age6

lithology12

Hydrology proximity to drainage lines2, water conditions4,
drainage density5, distance from river, stream power in-
dex (SPI)7

drainage density13

Soil texture, material, soil thickness5, topographic wetness
index (TWI)7, soil type, soil moisture6

material strength10, soil wetness10, soil moisture12, soil
type13, soil texture13

Precipitation rainfall7, total monthly precipitation8, annual
precipitation9

precipitation rates from rainfall accumulations in the
past11, extreme monthly rainfall with 100 years return
period12

Land cover vegetation cover2,4, age, diameter and density of timber
for vegetation5, land use/cover7, road construction8

land use and land cover11,13

Ground motion peak ground acceleration7, earthquake and seismic
shaking 8

peak ground acceleration and peak ground velocity10

1 Ayalew et al. (2004). 2 Dai and Lee (2002). 3 Kawabata and Bandibas (2009). 4 Ercanoglu and Gokceoglu (2002). 5 Lee and Min (2001). 6 Van Den Eeckhaut et al. (2012).
7 Umar et al., 2014. 8 Alimohammadlou et al., 2014. 9 Erener and Duzgun (2010). 10 Nowicki et al. (2014). 11 Farahmand and AghaKouchak (2013). 12 Nadim et al. (2006).
13 Hong et al. (2007).

planatory factors from previous work (Table 1) fall into
seven general categories, including topography, geology, hy-
drology, soil, precipitation, land cover and ground motion.
Generally speaking, explanatory factors for landslides can
be divided into fundamental factors and triggering factors
(Nadim et al., 2006). Fundamental factors include environ-
mental conditions that generate the potential of landslide oc-
currence, such as topography, lithology and soil. Triggering
factors explain direct effects that drive slope instability, such
as ground motion and extreme precipitation. In the existing
literature, the combination of trigger and susceptibility can
influence landslide hazard level (Nadim et al., 2006). How-
ever, landslide models without landslide information like
time and magnitude (like size, speed, kinetic energy or mo-
mentum of mass) cannot be correctly defined as hazard mod-
els (Guzzetti et al., 1999). Hence, in this paper, both funda-
mental factors and triggering factors are included to evaluate
landslide susceptibility.

In existing studies of landslides at a regional scale, topog-
raphy is regarded as a powerful explanatory factor for the
occurrence of landslides (Dai and Lee, 2002; Lee and Min,
2001), and it is also demonstrated at a global scale (Hong et
al., 2007). For most studies, topography includes relief char-
acteristics such as elevation, slope gradient and slope aspect.
At a global scale, factors such as elevation and slope gradient
can be replaced by topographic index or relative relief, which
indicate macroscopic differences in topography. Especially

for landslide data with low location precision, using factors
such as elevation or slope gradient that precisely relate to
landslide location will reduce the accuracy of landslide sus-
ceptibility analysis (Farahmand and AghaKouchak, 2013).
Therefore, a general factor such as relative relief is more ap-
propriate, and in this paper, relative relief is used to repre-
sent topography. Relative relief is defined as the difference
between maximum and minimum elevation values within an
area (Chauhan et al., 2010). Relative relief has been shown to
be an important explanatory factor, and landslide occurrence
is generally higher in high relative relief areas (Anbalagan,
1992).

For geology, attributes like rock age and rock type can be
chosen, with data mainly coming from small regional geo-
logical surveys and field studies. Studies of global landslide
susceptibility have shown that lithology is a fundamental fac-
tor (Nadim et al., 2006). Landslides are more likely to occur
in some rocks formed relatively later with lower intensity and
are less likely in rocks formed relatively earlier with suf-
ficient solidification and high intensity. Hence the factor of
lithology is included in the landslide model.

The water condition of the land surface also affects land-
slides. With the development of large data-sharing frame-
works for meteorological data, precipitation information is
easily available and hence frequently used in landslide anal-
ysis (Farahmand and AghaKouchak, 2013). However, as
Nadim et al. (2006) propose, soil moisture can also be a
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proxy of the water condition for it represents the average
moisture condition of the soil. Compared with mean annual
precipitation, it can avoid the interruption of extreme precip-
itation, which can objectively reflect the possibility of slope
instability in the long term and can be taken as fundamen-
tal factor of landslide occurrence. Farahmand and AghaK-
ouchak (2013) also recommend the use of soil moisture data
in studies of global landslide susceptibility. Therefore, soil
moisture as an explanatory factor is adopted in this paper.

Ground motion and extreme precipitation are always an-
alyzed as triggering factors of landslides, using data from
field surveys and monitoring observations. Landslides are
generally triggered by earthquakes or by heavy precipitation.
Strong ground motion during earthquakes causes rocks to
rupture, thus inducing landslides. As for rainfall, rain and/or
meltwater that reaches the ground surface infiltrates into the
ground and forms groundwater. During this process, the pres-
sure of the water that fills the void spaces between soil par-
ticles and rock fissures rises when the amount of water infil-
trating into the ground increases. A rise in pore-water pres-
sure causes a drop in effective stress, affecting the stability
of a slope, and thus is a major cause of landslides and other
sediment-related disasters (Matsuura et al., 2008). Intense
rainfall is believed to be a cause of shallow landslides (Caine,
1980). Current studies of landslides consider ground motion
and extreme precipitation as triggering factors (Umar et al.,
2014; Nowicki et al., 2014; Nadim et al., 2006). Therefore,
in this paper, ground motion and monthly extreme precipi-
tation are used as triggering factors. In summary, this paper
uses relative relief, soil moisture, lithology, monthly extreme
precipitation and PGA as explanatory factors for global-scale
landslide susceptibility. The first three are fundamental fac-
tors, and the last two are triggering factors.

3 Methodology and data

3.1 Study area

This paper considers global continental areas from 72◦ N to
72◦ S, excluding Greenland and the Antarctic continent. Be-
cause this research is specific to terrestrial landslides, oceans
and areas covered by glaciers or ice sheets are excluded. The
scope of this paper is also limited by data coverage for ex-
planatory factors. As the coverage area of lithology is from
72◦ N to 72◦ S, the final susceptibility map is limited to this
boundary.

3.2 Logistic regression model

What is more, logistic regression models are commonly fit-
ted in a stepwise manner (Budimir et al., 2015). The general
form of a logistic regression model is as follows:

logit(y)= β0+β1x1+β2x2+ . . .+βixi + e. (1)

In Eq. (1), y is the dependent variable that reflects landslide
occurrence, xi is the independent variable related to explana-
tory factors, β0 is a constant, βi is the regression coefficient
for the explanatory factors, and e is the random error. The
probability p of the dependent variable y can be expressed
as follows in Eq. (2):

p =
exp(β0+β1x1+β2x2+ . . .+βixi)

1+ exp(β0+β1x1+β2x2+ . . .+βixi)
. (2)

3.3 Independent variables

In this paper, explanatory factors are put into stepwise logis-
tic regression model as independent variables. All layer data
of these explanatory factors are converted to the WGS 1984
geographical coordinate system. Original resolution of fac-
tors is reserved as simple resampling cannot make a real con-
tribution to the accuracy and precision of information pro-
vided in the layers.

Topographic data come from GTOPO30 (USGS, 2012),
which is a global elevation data set from the Earth Resources
Observation and Science (EROS) Center. Its spatial resolu-
tion is 30 arcsec (approximately 1 km), and it covers the earth
surface from 90◦ N to 90◦ S and 180◦ E to 180◦W. After
obtaining the data, relative relief is calculated by a moving
window method in ArcGIS with window size of 0.5 arcdeg.
From the existing literature, there are few statements about
the proper classification method of relative relief. Relative
relief is hence divided into 10 types with successive ordinal
values from 1 to 10, using the natural breaks method of clas-
sification (Table 2).

Lithology data come from a geological map of the world
at a 1 : 25 000 000 scale (the third version) published by the
Commission for the Geological Map of the World (CGMW,
2010) and UNESCO. In the Mercator projection, the north-
ern and southern boundaries of this map are set as 72◦ N and
72◦ S. As a consequence, a large extent of the Antarctic con-
tinental coastline is visible with a better delimitation of the
Southern Ocean. The southern half of Greenland is also vis-
ible (Bouysse, 2010). The lithology data are rasterized with
a spatial resolution of 0.01◦. Following Nadim et al. (2006),
global lithology data can be divided into six categories (Ta-
ble 2). The spatial resolution of 0.01◦ was used because the
primary electronic map is vector-based. Its information can
be greatly reserved by using small-scale raster when con-
verted into raster map, and a small-scale raster can fit the
coastline well.

In this paper, the soil moisture index is used to represent
the local soil humidity level. With data products from the
Center for Climatic Research at the University of Delaware,
Willmott and Feddema (1992) proposed a new soil moisture
index. In this index, soil moisture was normalized to a range
from −1.0 to 1.0 with a spatial resolution of 0.5◦. Nadim et
al. (2006) classified soil moisture data into levels from 1 to 5
(Table 2), with higher values indicating greater humidity.
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Table 2. Input variables used in logistic regression analysis.

Dependent variables: landslide location Data provider Map details

World Geological Hazard Inventory ADREM, BNU Point
Global landslide inventory NASA Point

Independent variables Sources Map details

Relative relief (unit: m)
Classification method: natural breaks
(1. <= 80; 2. 80–264; 3. 264–520; 4. 520–844; 5. 844–1226; 6. 1226–1672;
7. 1672–2232; 8. 2232–2982; 9. 2982–4024; 10. > 4024)

GTOPO and SRTM DEM 30/3 arcsec

Lithology
Classification method: refer to Nadim et al. (2006)
(0. Undifferentiated facies, Ophiolitic complex, Endogenous rocks, Oceanic
crust; 1. Extrusive volcanic rocks: Precambrian, Proterozoic, Paleozoic and
Archean, Endogenous rocks (plutonic and/or metamorphic): Precambrian,
Proterozoic, Paleozoic and Archean; 2. Old sedimentary rocks: Precam-
brian, Archean, Proterozoic, Paleozoic, Extrusive volcanic rocks: Paleo-
zoic, Mesozoic, Endogenous rocks: Paleozoic, Mesozoic, Triassic, Juras-
sic, Cretaceous; 3. Sedimentary rocks: Paleozoic, Mesozoic, Triassic, Juras-
sic, Cretaceous, Extrusive volcanic rocks: Mesozoic, Triassic, Jurassic,
Cretaceous, Endogenous rocks: Meso-Cenozoic, Cenozoic; 4. Sedimentary
rocks: Cenozoic, Quaternary, Extrusive volcanic rocks: Meso-Cenozoic; 5.
Extrusive volcanic rocks: Cenozoic)

Geological map of the world at
a 1 : 25 000 000 by Commission
for the Geological Map of the
World (CGMW) and UNESCO

Polygon (rasterized
into 0.01 arcsec)

Soil moisture index
Classification method: refer to Nadim et al. (2006)
(1. −1.0 to −0.6; 2. −0.6 to −0.2; 3. −0.2 to +0.2; 4. +0.2 to +0.6; 5.
+0.6 to +1.0)

Willmott and Feddema (1992) 0.5 arcsec

Monthly extreme rainfall with return period of 100 years (unit: mm)

Classification method: natural breaks
(1. <= 55; 2. 55–150; 3. 150–250; 4. 250–365; 5. 365–500; 6. 500–650; 7.
650–850; 8. 850–1100; 9. 1100–1650; 10. > 1650)

Calculated using historical pre-
cipitation grid data over 50
years (from 1961 to 2010) from
the GPCC Full Data Reanalysis

0.5 arcsec

PGA with an exceedance probability of 10 % over 50 years
(unit: m s−2)

Classification method: refer to Nadim et al. (2006)
(1. 0.00–0.50; 2. 0.51–1.00; 3. 1.01–1.50; 4. 1.51–2.00; 5. 2.01–2.50; 6.
2.51–3.00; 7. 3.01–3.50; 8. 3.51–4.00; 9. 4.01–4.50; 10. > 4.50)

Global seismic hazard map cre-
ated by the Global Seismic
Hazard Assessment Program
(GSHAP) of the International
Lithosphere Program (ILP)

0.1 arcsec

Monthly extreme precipitation with a repeat period of
100 years is calculated using historical precipitation grid data
over 50 years (from 1961 to 2010) from the GPCC Full Data
Reanalysis (Schneider et al., 2011). As no typical classifica-
tion method for extreme precipitation exists in the literature,
these precipitation data are divided into 10 levels (Table 2)
with a spatial resolution of 0.5◦, according to the natural
breaks in the classification method.

For ground motion, PGA with an exceedance probability
of 10 % over 50 years is included (that is, a repeat period
of 475 years). Data are from the global seismic hazard map

created by the Global Seismic Hazard Assessment Program
(GSHAP) of the International Lithosphere Program (ILP).
The map shows PGA with an exceedance probability of 10 %
over 50 years and a spatial resolution of 0.1◦ (Giardini et al.,
2003). Based on the methodology of Nadim et al. (2006),
PGA can be divided into 10 levels (Table 2), with higher val-
ues denoting greater seismic hazard.

3.4 Dependent variables

The dependent variables that enter the model are global land-
slide inventory data and simulated nonlandslide data.
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Figure 1. Landslide location in the combined landslide database.

This paper uses global landslide inventory data from a
combined database. This database stores landslide informa-
tion from two existing inventories: the World Geological
Hazard Inventory created by the Academy of Disaster Reduc-
tion and Emergency Management of Beijing Normal Univer-
sity (ADREM, BNU), and the NASA global landslide inven-
tory (refer to Kirschbaum et al., 2010 for details). The NASA
global landslide inventory mainly collects landslides from
several existing databases, including the International Con-
sortium on Landslides website (ICL; http://iclhq.org); Inter-
national Landslide Centre, University of Durham (ILC; http:
//www.landslidecentre.org); The EM-DAT International Dis-
aster Database (http://www.emdat.be/); International Feder-
ation of Red Cross and Red Crescent Societies field re-
ports (http://www.ifrc.org); Reliefweb (http://reliefweb.int);
humanitarian disaster information run by the United Na-
tions Office for the Coordination of Humanitarian Affairs
(OCHA); other online regional and national newspaper ar-
ticles and media sources. The best resolution of the NASA
global landslide inventory is 2 km. The items in the World
Geological Hazard Inventory were collected manually from
news reports (e.g, mass media in China, Xinhua News, and
Sina News) and records in books and journals (e.g, Galli and
Guzzetti, 2007 and Gao, 1999). We searched information
about the landslide on the internet by using keywords like
landslide and debris flow. Then we read these descriptions
carefully to determine whether it was a landslide, located it,
and later put it into the database. Thus the main source of
World Geological Hazard Inventory can be news data. By
investigating these news data, we can find those landslides
that are of large volume or of high danger, for these kinds of

landslides can be of high news value. A large range of litera-
ture, not only reviewed academic books and journals but also
newspaper and local chronicles, was included to serve as the
information sources so as to investigate geological hazards
which happened long time ago or in remote areas. Rich in-
formation sources can provide as many landslides as needed
to reduce the uncertainty brought by the limited landslide
database. The best resolution of the World Geological Hazard
Inventory is 0.001◦, about 100 m. Two teams were assigned
to develop and maintain this inventory. One team (about
10 persons) was responsible for collecting information from
the literature and the other team (about four persons) was ex-
pected to check and review the items collected for data qual-
ity control. When combining these two databases, the time of
occurrence provides a crucial standard. When two landslide
events have different times (months), they are both reserved
in the new database. If two events have the same occurrence
time and their locations are close, investigation through de-
tails in source could determine whether they are from the
same disaster. If yes, the record with higher spatial resolu-
tion is reserved and the one with lower resolution is dropped.
An example of this inventory can be found in Table 3.

In the World Geological Hazard Inventory, the earliest
event can be dated to 1618. In this database, there are 117
landslides before 1975, 84 between 1975 and 2000, and 274
between 2000 and 2014. The landslide events in the NASA
global landslide inventory mainly happened in 2003, 2007,
2008 and 2009. Hence these two databases are complemen-
tary and they can be merged to produce a more complete
landslide database. In all, the combined database stores land-
slide information like hazard type, occurrence time, loca-
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Table 3. Example of landslide inventory in World Geological Hazard Inventory created by ADREM, BNU.

ID Hazard type Date Country Continent Location Longitude/Latitude Death Lost Injured Location Sources
precision
(◦)

000159 Debris flow 2005.6.1 US North Laguna Beach, Los 33◦32′32.63′′ N, 0 0 2 0.05 Sina News
America Angeles, California 117◦46′18.10′′W

000168 Landslide 2010.11.4 Costa Rica South San Antonio, 9◦ 55′37.48′′ N, 20 12 0 0.1 Xinhua News
America San José 84◦04′55.24′′W

000403 Debris flow 2010.8.7 China Asia Zhouqu, Gansu 33◦47′10.56′′ N, 1463 302 2244 0.1 Xinhua News
104◦22′7.24′′ E

000465 Landslide 2008.6.29 Côte d’Ivoire Africa Abidjan 5◦20′10.74′′ N, 7 0 4 0.01 Sina News
4◦1′39.90′′W

Figure 2. Comparison of landslide overlay in Europe.

tion (including geographical coordinates and locating pre-
cision), fatalities and data sources. Currently, this database
contains 2005 landslides; their locations are shown in Fig. 1.
This combined database includes landslides (debris slides,
rotational slides, and slumps) and debris flows, following
the landslide classification of Varnes (1984) and Cruden and
Varnes (1996).

In order to demonstrate the representative of landslide data
used in this research, the landslide overlay in Europe of this
research is compared with the spatial distribution of land-
slides in the study of Van Den Eeckhaut et al. (2012). As
shown in Fig. 2, it is found that the spatial overlay of land-
slide samples in the research of European landslide suscepti-
bility modeling is quite similar to that of the combined land-
slide database in this research. It is estimated that there is
about 60 % agreement between these two landslide distribu-
tions in general. The landslides in Europe are mainly dis-
tributed in mountainous areas like the Alps and the Balkan.

Nonlandslide events come from generating random points.
Because landslide location accuracy is approximately 0.25◦,
a buffer zone is created around the existing landslide points
with a radius of 0.25◦ to represent the location range of each

landslide event. The buffer zone is then removed from the
global continent area and the other part of the global con-
tinent forms a potential nonlandslide area. The quantity of
nonlandslide points should be carefully considered. Most
studies use an equal number of landslide points and nonland-
slide points (Dai and Lee, 2002; Kawabata and Bandibas,
2009; Chau and Chan, 2005; Costanzo et al., 2014; Regmi
et al., 2014; Mathew et al., 2009). However, a few authors
prefer an unequal number (Van Den Eeckhaut et al., 2012;
Felicisimo et al., 2013). For example, Van Den Eeckhaut et
al. (2006) use 5 times as many nonlandslide cells as land-
slide cells, and Farahmand and AghaKouchak (2013) use 10
times as many nonlandslide cells as landslide cells. In order
to carry out a sensitivity test on the landslide susceptibility
model in the paper and also reduce the uncertainty included
by random nonlandslide, five nonlandslide sets which each
had an equal number as landslides were created using ran-
dom sampling without replacement. To validate the landslide
model, the method of splitting data sets is applied (Van Den
Eeckhaut et al., 2012). For each data set, 70 % of landslides
and nonlandslides are randomly selected for modeling, and
the remaining 30 % are used for validation.
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Figure 3. ROC curve of the modeling process.

A confusion matrix and Akaike’s information criterion
value (AIC) (Allison, 2001; Van Den Eeckhaut et al., 2006)
are applied to assess model performance. In addition, this
paper also adopts a receiver operating characteristic (ROC)
curve to evaluate model effectiveness. The ROC curve helps
to validate a model graphically (Swets, 1988), providing an
analysis based on true-positive and false-positive rates. With
a higher area under this curve (AUC), this model is shown to
perform well in prediction (Mathew et al., 2009).

4 Results

The results and validation of the logistic regression models
for five data sets are shown in Table 4. It is found that among
these five data sets, the percentage correct in the confusion
matrix ranges from 78.7 to 80.4 % during the modeling pro-
cess and from 79.9 to 82.1 % during the validation process.
Generally, the logistic regression models in this study show
high accuracy in the confusion matrix. For the five data sets,
their AUC values range from 0.8685 to 0.8846 when mod-
eling (Fig. 3) and from 0.8809 to 0.8933 when validating
(Fig. 4). On average, the AUC value in the logistic regres-
sion model is approximately 0.88, which indicates a rela-
tively great performance in prediction.

By using the principle of having a high percentage cor-
rect in the confusion matrix, high AUC value and low AIC
value, the regression model from data set 2 was selected as
the global landslide susceptibility model. This model is then
used to analyze the importance of the explanatory factors on
landslides and employed in landslide susceptibility mapping.
The formula of the best model is as follows:

P =
f

1+ f
(3)

Figure 4. ROC curve of the validation process.

f = Exp(−5.7047+ 0.5528∗S+ 0.1958∗A+ 0.1245∗L
+ 0.3159∗R+ 0.2957∗E), (4)

where P stands for the probability of landslides, and S, A,
L, R, and E stand for landslide explanatory factors of soil
moisture, PGA, lithology, relative relief and extreme precip-
itation, respectively.

In the model above, all variables are significant at the 1 %
confidence level. The coefficients of each factor show that
the greatest contribution to landslide occurrence comes from
soil moisture, which has a coefficient of approximately 0.6.
The next most important factors are relative relief and ex-
treme precipitation, with a coefficient of approximately 0.3.
The contribution of PGA and lithology is relatively low, with
coefficients of approximately 0.2 and 0.1.

A table with the number of landslides in each continent
in a global inventory and in each data set used to model and
validate is displayed, which will help readers to understand
how spatially representative the data sets are (Table 5). It can
be found that there are a small number of landslide records
in Africa. However, when either in the modeling process or
the validation process, different numbers of landslides and
nonlandslides in African were selected. From Figs. 3 and 4,
it is demonstrated that the results from every five data sets
are relatively stable and high, which means the model can
be applied effectively in Africa. Otherwise, the results of five
data sets may be different.

A global landslide susceptibility map can be drawn using
the model in Eq. (3). Based on existing susceptibility classi-
fication methods from Guzzetti et al. (2006), Van den Eeck-
haut et al. (2012), this map classifies susceptibility levels ac-
cording to breakpoints of 0.4, 0.6, 0.7 and 0.9. These break-
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Table 4. Model results of stepwise logistic regression for each data set. The best fit model is in bold font.

Data set Intercept Soil PGA Lithology Relative Extreme AICa Modeling Validation

moisture relief precipitation Percentage AUC Percentage AUC
correct correct

Set 1 −5.7898c 0.5567c 0.1196c 0.1885c 0.3583c 0.2798c 2511.2 0.801 0.8755 0.810 0.8914
Set 2 −5.7047c 0.5528c 0.1958c 0.1245b 0.3159c 0.2957c 2468.4 0.797 0.8789 0.821 0.8933
Set 3 −5.9134c 0.5980c 0.1803c 0.1583c 0.3312c 0.2924c 2421.8 0.804 0.8846 0.799 0.8812
Set 4 −5.6525c 0.5432c 0.1704c 0.1073b 0.3344c 0.2977c 2483.8 0.798 0.8766 0.804 0.8809
Set 5 −5.3490c 0.5426c 0.1663c 0.1100b 0.3022c 0.2625c 2564.5 0.787 0.8685 0.814 0.8886
Average – – – – – – 2489.9 0.797 0.8768 0.810 0.8871

a These statistics of AIC are based on the model with intercept and covariates. b Coefficients are significant at 1 % confidential level. c Coefficients are significant at 0.1 % confidential level.

Table 5. Numbers of landslides and nonlandslides in each data set.

Continent Landslides Data set 1 Data set 2 Data set 3 Data set 4 Data set 5

Modeling Validation Modeling Validation Modeling Validation Modeling Validation Modeling Validation
(70 %) (30 %) (70 %) (30 %) (70 %) (30 %) (70 %) (30 %) (70 %) (30 %)

Asia 1205 847:348 358:163 848:394 357:157 838:383 367:155 849:364 356:162 847:393 358:165
Africa 69 55:317 14:129 50:307 19:114 47:324 22:130 47:315 22:129 49:302 20:126
Europe 121 94:211 27:70 86:212 35:116 87:200 34:91 88:206 33:88 85:251 36:106
North America 425 274:235 151:98 296:235 129:98 298:226 127:107 286:230 139:110 286:195 139:83
South America 133 93:189 40:98 86:174 47:75 99:179 34:78 97:193 36:80 96:144 37:64
Oceania 52 40:103 12:44 37:81 15:42 34:91 18:41 36:95 16:33 40:118 12:58

Total 2005 1403:1403 602:602 1403:1403 602:602 1403:1403 602:602 1403:1403 602:602 1403:1403 602:602

Numbers on the left of the colon represent numbers of landslides, numbers on the right of the colon represent nonlandslides.

points define a susceptibility map with 5 levels, i.e., very low,
low, moderate, high, and very high (Fig. 5).

The susceptibility map shows that global landslide
hotspots are the Alps, the Iranian Plateau, the Pamirs, the
southern Qinghai-Tibet Plateau, the mountainous region of
southwestern China, the islands in the western Pacific Ocean,
including Japan, the Philippines, Malaysia, Indonesia, New
Zealand, northeastern North America, Central America and
the Andes in South America.

5 Discussion

To evaluate the accuracy of the susceptibility map produced
in this research, the global landslide susceptibility map is
compared with four studies from the current literature that
focus on large-scale landslide susceptibility. At a regional
scale, two landslide susceptibility maps, i.e., European (Van
Den Eeckhaut et al., 2012) and Chinese (Liu et al., 2013), are
selected. At a global scale, the studies of Nadim et al. (2006)
and Hong et al. (2007) are selected.

By comparing the European landslide susceptibility map
drawn by Van Den Eeckhaut et al. (2012) with the European
part of susceptibility map in this study (Fig. 6a), similar areas
of high landslide susceptibility can be observed. The former
map includes two levels (labeled high and very high) as high
susceptibility with a landslide probability of over 0.8, and
this study also includes two levels (levels 4 and 5) as high
susceptibility with a probability over 0.7. The two maps have

similar high susceptibility areas. Thus, for Europe, the land-
slide susceptibility map in this study agrees with an existing
related study.

After comparing the Chinese landslide susceptibility map
drawn by Liu et al. (2013) with the China part of susceptibil-
ity map in this study (Fig. 6b), it can be seen that the former
map includes two levels (levels 4 and 5) as susceptible with
a landslide probability of over 0.6. The map in this study in-
cludes three levels (labeled levels 3, 4 and 5) as susceptible
with a landslide probability of over 0.6. The main differences
between the two maps are in the western Sichuan Basin and
southern Tibet, which is famous for its high elevation and in-
tense relative relief. This study applies many landslide cases
in these areas. However, in the landslide database of Liu et
al. (2013), only a few landslides occur in these areas. This
discrepancy is the reason for the differences between the two
maps.

As for landslide susceptibility at a global scale, Nadim et
al. (2006) and Hong et al. (2007) have made magnificent ef-
forts on this topic. One global landslide susceptibility map
(please refer to Fig. 7 in Nadim et al., 2006) has five levels
(levels 5, 6, 7, 8 and 9) as susceptible, while the map from
this study includes three levels (levels 3, 4 and 5) as suscep-
tible. In general, the susceptible areas of these two maps are
fairly similar, except in Madagascar and the eastern Indochi-
nese Peninsula.

Another global landslide susceptibility map (please refer
to Fig. 3a in Hong et al., 2007) has two levels (levels 4 and 5)
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Table 6. Results of model based on global SRTM DEM (90 m).

Data set Intercept Soil PGA Lithology Relative Extreme AICa Modeling Validation

humidity relief precipitation Percentage AUC Percentage AUC
correct correct

Set 1 −5.8362c 0.5359c 0.1173c 0.1876c 0.3585c 0.2809c 2495.9 0.802 0.8767 0.818 0.8939
Set 2 −5.7546c 0.5441c 0.1980c 0.1222b 0.3151c 0.2947c 2436.6 0.799 0.8826 0.828 0.8980
Set 3 −5.9650c 0.5850c 0.1791c 0.1604c 0.3328c 0.2919c 2384.0 0.815 0.8888 0.810 0.8861
Set 4 −5.7457c 0.5503c 0.1682c 0.1060b 0.3393c 0.2925c 2437.6 0.808 0.8822 0.806 0.8856
Set 5 −5.5849c 0.5618c 0.1629c 0.1236b 0.3093c 0.2745c 2479.4 0.799 0.8785 0.815 0.9008
Average – – – – – – 2446.7 0.805 0.8818 0.815 0.8929

a These statistics of AIC are based on the model with intercept and covariates. b Coefficients are significant at 1 % confidential level. c Coefficients are significant at 0.1 % confidential level.

Figure 5. Global-scale landslide susceptibility map.

as susceptible, compared to the map in this study, which has
three levels (levels 3, 4 and 5) as susceptible. These two maps
are similar over Asia, Europe and Africa. However, it is noted
that map of Hong et al. (2007) also differs from the map of
this study in that it shows high landslide susceptibility in
central and southern India, and low landslide susceptibility
in equatorial islands such as Malaysia, Indonesia, and the
Philippines. We believe that the classification of landslide
susceptibility of this research could be more scientific and
closer to the existing conditions.

With the development of global DEM products, a DEM
with finer resolution is now available to the public. The
NASA Shuttle Radar Topographic Mission (Jarvis et al.,
2012) has provided digital elevation data for over 80 % of
the globe. These data are currently distributed free of charge.
The SRTM data are available as 3 arcsec (approx. 90 m res-
olution) DEM covering the globe from 60◦ N to 60◦ S. The
1 arcsec data product was also produced and are now avail-
able for all countries. To explore the sensitivity of the DEM
to the model result, experiments were also performed when
following all the procedures stated above, but using SRTM

90 m DEM as the source of topography. As shown in Table 6,
the landslide susceptibility model with 90 m DEM had no
significant difference (only an increase about 0.005 in AUC)
with those models using 1 km DEM (AUC in modeling, from
0.8768 to 0.8818; AUC in validation, from 0.8871 to 0.8929).
When the location precision of the landslide is not that good,
using a finer DEM cannot help to increase the accuracy of
landslide susceptibility analysis. A DEM with a coarser reso-
lution (i.e., 1 km DEM) is recommended as the topographical
factor in global landslide susceptibility mapping.

The accuracy of the logistic regression model in this paper
is quite high compared with that of a similar experiment that
is performed at the national scale (Lin et al., 2017) or local
scale (Wang et al., 2016), which really exceeds expectation.
To have one single model to explain the occurrence of past
landslides events on a global scale may be difficult, but the
result of the model in this paper shows that the factors and
their weights in this research can actually provide a good ex-
planation of global landslide occurrence in one model.

Regarding the incompleteness of the landslide inventory
in the global geological hazard database of this study, the
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Figure 6. Comparison of existing studies with the related parts of this study.

landslides may represent only a subset of the total land-
slides around the world. Studying global landslide suscep-
tibility in a more comprehensive and objective way requires
a more complete global landslide inventory. As for the fac-
tor weights, they cannot actually provide adequate accuracy
when building a landslide model on a local scale. However,
we are determined to compare this research with those per-
formed on a local scale to investigate the rules of landslide
occurrence at different scales in the coming future.

The main focus of this research is global landslide suscep-
tibility assessment, and hence the landslides in database of
this research should be representative on global scale, i.e.,
having a large volume or causing significant loss. The land-
slides in our database can meet such requirements and are ei-
ther of large magnitude or cause severe life loss or economic
loss, which are hence commonly reported by news agencies.
The global landslide susceptibility map built on this database
can inevitably underestimate the landslide susceptibility in
some sparsely populated areas or less developed areas. How-
ever, if we do not follow the guidelines, in our database there

will be a large number of landslides that are occur in coun-
tries with a good landslide catalogue and a few in countries
with a poor landslide catalogue. This model may lead to an
overestimation of landslide susceptibility in countries with
rich landslide records and an underestimation of landslide
susceptibility in countries with poor landslide records. This
may not be good for improving the accuracy of the map of
global landslide susceptibility. Hence we think that the land-
slide database in our research is relatively high in represen-
tativity and reliability. We will explore the use of big data
on the internet in building more a comprehensive landslide
database in our future research and try to enhance the stud-
ies of landslide susceptibility when landslide catalogues from
various countries can be easily accessed in the future.

6 Conclusions

This paper applies a stepwise logistic regression model to
study landslide susceptibility on a global scale. After inves-
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tigating the explanatory factors for landslides in the exist-
ing literature, five explanatory factors, extreme precipitation,
lithology, relative relief, ground motion, and soil moisture,
are selected. These factors are used to build a landslide sus-
ceptibility model through stepwise logistic regression based
on landslides recorded in a combined global landslide inven-
tory. It is found that the five explanatory factors perform well
in explaining the occurrence of landslides on a global scale.
The percentage correct in the confusion matrix of landslide
classification during modeling ranges from 78.7 to 80.4 %,
with an AUC value from 0.8685 to 0.8846. During validation,
the percentage correct in the confusion matrix ranges from
79.9 to 82.1 %, with an AUC value from 0.8809 to 0.8933.
The results from those data sets are similar, and the coef-
ficients and ranks of each explanatory factor are relatively
stable, which suggests that the model is both robust and ac-
curate.

Existing studies of landslide susceptibility generally use
topography as an explanatory factor (Budimir et al., 2015).
However, on a global scale, topography is not always the pri-
mary factor for landslide occurrence. For example, Hong et
al. (2007) gives priority to slope when building their global
landslide models, and friction has the highest regression co-
efficient in model for earthquake-induced landslides (Now-
icki et al., 2014). The present study shows that on a global
scale, soil moisture is the most important factor, while topog-
raphy (relative relief in this study) is secondary. Additionally,
this study shows that soil moisture has significantly explana-
tory power for landslide occurrence on a global scale. There-
fore, it may suggest that future work of landslide suscepti-
bility should consider the influence of soil water condition
and long-term precipitation when studying global landslide
susceptibility.
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