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Abstract. With reference to the rockfall risk estimation and
the planning of rockfall protection devices, one of the most
critical and most discussed problems is the correct definition
of the design block by taking into account its return period.
In this paper, a methodology for the assessment of the design
block linked with its return time is proposed and discussed,
following a statistical approach. The procedure is based on
the survey of the blocks that were already detached from the
slope and had accumulated at the foot of the slope in addition
to the available historical data.

1 Introduction

Rockfall is one of the most critical slope instabilities because
it can be highly destructive and unpredictable. The analysis
of this phenomenon is very difficult because it is affected by
aleatory variability (irreducible natural variability) and epis-
temic uncertainty (lack of knowledge). For these reasons,
probabilistic methods are a suitable approach for modelling
rockfall. When risk analysis has to be performed for forecast-
ing and protection purposes, the size of the involved blocks
and the corresponding return period are the most important
variables among the ones that characterize the phenomenon
(Peila et al., 1998, 2006; Peila and Ronco, 2009).

Modern design approaches for buildings, for example, aim
to guarantee the structural safety of the building throughout
its expected lifetime. In such reliability-based framework, the
buildings have to be robust, i.e. to support forces due to an-
thropic and natural hazards without being significantly dam-

aged. Proper design processes for common natural hazards,
such as extreme winds or seisms, are already present in the
building codes (Elishakoff, 1999; ISO, 1998; Leporati, 1979;
Madsen et al., 2006; Melchers, 1999); these define the mag-
nitude of the external force on the base of the probability of
exceeding such intensity during the design life of the struc-
ture. In addition, the structural safety must be guaranteed on
the base of the consequences caused by natural hazards on
the structure (vulnerability).

Dealing with natural hazards, one of the common ways to
input the external forces applied to the structures is to estab-
lish a link between the magnitude of the forces and the corre-
sponding return period. A larger return period implies higher
intensity in the force. In a recent work, De Biagi et al. (2016a)
proposed a reliability-based design procedure for structures
subjected to snow-avalanche hazards.

The magnitude–frequency relationship is at the basis of
the probabilistic hazard analysis. In seismic analysis, the
Gutenberg–Richter law expresses such relationship. Straub
and Schubert (2008) proposed a probabilistic approach for
rockfall risk assessment based on a frequency law, but did
not investigate its nature. Lari et al. (2014) considered the an-
nual frequency of occurrence of a rockfall volume as “given”
data. The proposed approach intends to be the base for more
complex and complete probabilistic hazard assessments.

In designs of engineering works that protect a village or
a road from falling rocks (e.g. net fences or embankments),
the size of the falling block used in the modelling is currently
not linked to its probability of occurrence, i.e. the return pe-
riod of a block with such volume. The most frequently ap-
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plied approaches refer to an analysis of the blocks that had
already collapsed, integrated with a survey of the slope. The
size of the falling design block is chosen from among the al-
ready collapsed blocks and the surveyed blocks of the slope..
Adapting the well-known procedures of modern design prac-
tice requires that the sizes of the falling blocks have to be
related to their probability of occurrence and vice versa.

Examples of volume–frequency laws are proposed in the
literature. They are obtained from the analysis of a large
number of rockfall events for which each observed event is
dated and the volume is estimated. This allows a volume–
frequency curve to be drawn, in which each point corre-
sponds to an observation. In general, precise catalogues with
a large number of events are rare because the road owners
or the territorial administrations started the records of events,
which have large return periods, only some tens of years ago.
For common uses, e.g. design of protective devices or risk
estimation, for which there are no long records of events nor
detailed surveys on site, no operative procedures are consol-
idated and the designer develops the project following his
personal experience. In any case, the choice of the “charac-
teristic block volume” (design volume) has to be done by the
designer’s own engineering judgement. For this reason, it is
affected by subjectivity.

With the aim of contributing to overcoming this design
problem, this paper proposes a methodology for estimating
the block volume–frequency relationship that can be used for
deriving the size of the falling design block having a pre-
scribed return period. The procedure, which is described in
detail in Sect. 3, is based on the data reported in rockfall in-
ventories and on surveys at the foot of the slope, managed
following a statistical procedure.

2 Power laws in rockfall analysis

Statistical analyses of historical data or experimental tests re-
lated to a certain natural phenomenon give evidence that it is
possible to deduce power laws that link the magnitude of the
event to its frequency. These mathematical relationships can
be used for predicting type, extent, return time and magni-
tude of future events.

In the fifties, Gutenberg and Richter (1956) observed that
there was a relationship between the cumulative number of
earthquake events exceeding a given value of magnitude
N (m≥M) and the magnitude itself. They formulated the
following law:

logN (m≥M)= α−βM, (1)

where α and β are site-dependent constants. More recently,
as for earthquakes, statistical analyses of historical data sets
have been widely applied to derive the recurrence rate of
events of a given magnitude for other natural phenomena
such landslides, rockfalls, snow avalanches, etc. (Dussauge-

Peisser et al., 2002; De Biagi et al., 2012; Corominas et al.,
2014).

The analysis of historical data, which are available in pub-
lic archives or catalogues, is therefore extremely important
for the study of natural phenomena. With particular refer-
ence to landslides and rockfalls, this statistical approach has
been recently studied and applied by several authors in many
mountain sites. Research has mainly focused on the analysis
of the volume distribution of rockfall events for the sites of
Grenoble, Yosemite Valley, Arly gorges, British Columbia,
Hong Kong, Italian Apennines, Aosta Valley, Christchurch-
Canterbury and La Réunion Island (Dussauge-Peisser et al.,
2002; Dussauge et al., 2003; Keith Turner and Schuster,
2012; Abbruzzese et al., 2009; Brunetti et al., 2009; De Biagi
et al., 2016b; Guzzetti et al., 1994; Lari et al., 2014).

The comparison of the previous studies showed that neg-
ative power laws fit all rockfall recurrence volume distribu-
tions well. However, some variability in the values assigned
to the power law coefficients does appear. This has been
mainly attributed to the variability in the sampling proce-
dures of the landslide volumes. At present, no proper test
equipment (which provide, as for earthquakes, objective and
reliable values that are comparable from one site to another)
and standard procedures have been defined for the different
geological and structural settings where rockfalls may occur
(Brunetti et al., 2009).

Rockfall inventories do not always contain quantitative
and detailed information, and the description of historical
events is often characterized by a low degree of accuracy.
For example, in the Yosemite rockfall inventory (Wieczorek
and Snyder, 2004; Guzzetti et al., 2003), which can be con-
sidered one of the largest detailed rockfall inventories, the
exact locations of rockfalls, the detachment areas and the
block volumes (or weights) are not always given. More of-
ten, size and triggering information of the events is given in
a qualitative and incomplete way; temporal information is
not precise. Rockfalls that occurred within a few hours from
the same source area are sometimes listed as the same event,
overestimating their magnitude. In general, a lack of data on
smaller rock blocks subsists while large and more damag-
ing rockfalls were recorded regularly. Thus, it is clear that a
certain degree of uncertainty and lack of homogeneity in the
collected data exist.

Previous considerations, which have to be taken into ac-
count in treating historical data, are related to Yosemite Val-
ley but can be easily referred to almost all of the histori-
cal archives (Corominas et al., 2014; Brunetti et al., 2009;
Corominas et al., 2005).

In addition, the temporal length of the observations can
affect the recurrence volumetric distribution. In particular,
a few years time window underestimates larger collapses.
Many authors examined the frequency–size distributions of
both rockfalls and fallen blocks and noted that the cumulative
frequency is linearly related to the magnitude (block volume
or rockfall volume) on a log–log plot. In mathematical terms,
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Figure 1. Sketch of a n= aV−b power law relationship.

the following power law relationship subsists:

n(v ≥ V )= aV −b, (2)

where n(v ≥ V ) is the frequency of blocks volume (or rock-
falls volume) with size larger than V (generally, the size is
expressed in m3), while a and b are constants: a relates to
the frequency of blocks volume (or rockfalls volume) larger
than a unit volume (i.e. 1 m3) and b represents the slope of the
regression line or the fractal dimension (Turcotte, 1997), as
sketched in Fig. 1. With reference to the example of Fig. 1,
if the volumes are expressed in cubic metres, a is the an-
nual frequency of occurrence of a rockfall larger than 1 m3.
In this case, supposing V = 2.5 m3, n(v ≥ V ) is the annual
frequency of volumes larger than 2.5 m3.

This formulation implies that (i) larger rockfall events are
less frequent than those characterized by smaller size and
(ii) frequency–size distributions are well fitted by a power
law only over a given range of volumes. The power law ex-
hibits a deviation from the observed distribution for volumes
smaller than a certain value. This discrepancy has been dis-
cussed in the literature. It can be the result of undersampling
of the smallest rockfall events (Brunetti et al., 2009; Stark
and Hovius, 2001). While collapses of considerable sizes are
easily identifiable and are almost always recorded, collapses
of very small sizes, mainly causing no damage, are unnoticed
and, especially in the past, they have been rarely reported in
the archives. In addition, the formulation implies that rock-
falls on huge scales can be considered more reliable as the
recording time increases.

Regarding power laws that are applied to rockfall vol-
umes, the values of the parameters of Eq. (2) are variable.
Dussauge-Peisser et al. (2002) analysed a range of volumes

spanning from 101 to 106 m3 and suggested that b is not
dependent on the scale of study, slope lithology and frac-
ture systems. Other authors propose different values of b,
depending on the degree of fracturing: the less the rock-
mass fracturing, the smaller the b value. Various studies have
been performed for rockfalls less than 10 m3 (Gardner, 1970;
Hungr et al., 1999), also by means of topographical tech-
niques down to 10−3 m3 (Rosser et al., 2005; Abellán et al.,
2010; Dewez et al., 2013). Dai and Lee (2001) studied 2811
landslides and rockfalls and Rousseau (1999) used seismic
monitoring technique. On the contrary, coefficient a exhibits
relevant fluctuation from one site to another.

As mentioned, Eq. (2) can be related to the distribution of
the volumes of the fallen blocks. The values of the parame-
ters a and b are variable. Parameter b could assume differ-
ent values in the range 0.5 to 1.3. Various examples can be
found in the literature. Crosta et al. (2007) determined dif-
ferent fractal dimensions in analysing grain size curves ob-
tained from different spots of the deposits of a large rock
avalanche that occurred in 1987 in the central Italian Alps.
Ruiz-Carulla et al. (2015) carried out a detailed survey in
order to highlight the differences in block distribution in var-
ious portions of the deposit of a rockfall and found a b value
ranging from 0.89 to 1.28. The same authors analysed the
dependency between the free-fall height and the value of b
for various well-documented rockfall events in Spain. They
found that b increases as the falling height of the block in-
creases (Ruiz-Carulla et al., 2016). Observing the data re-
ported in the previously mentioned paper, it emerges that
the lithology of the rock mass affects the value of parame-
ter b. For similar free-fall heights, b = 0.72 was computed
for rockfall in limestones and b = 0.92 for rockfall in schists.
The larger the b value, the more comminuted the deposit.
Hantz et al. (2016) surveyed four limestone deposits in the
area of Grenoble, France, and found b values ranging from
0.63 to 1.12. Parameter a exhibits relevant variability from
one site to another and it is essentially linked to the number
of blocks counted on the deposit of the rockfall.

3 Proposed method

A three-step procedure for deriving a volume–frequency re-
lationship for blocks with a reduced amount of available data
is built up and discussed in the following. Some aspects of the
proposed methodology result from hydrological approaches
in flood-frequency analyses (see Claps and Laio, 2003). The
main hypothesis of the procedure is that the temporal occur-
rences (i.e. the events) are considered separately from the de-
posit volumes distribution in a representative area where the
rockfall occurs. A representative area is defined as the por-
tion of deposit beyond a defined line, in which the hazard is
computed. We consider the foot of the slope as a representa-
tive area.
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As described in detail in this section, the required data for
deriving a volume–frequency relationship are as follows.

i. A catalogue of events, i.e. events with quantitative rock-
fall volume estimates observed in the representative
area, is denoted as C. Referring to such input, at present,
no real-time automatic systems able to detect the occur-
rence of a rockfall event are diffused. A few examples
of monitoring through sensors able to detect microseis-
mic activity are present in the literature. Unfortunately,
the calibration of such systems is difficult and the results
largely depends on the environmental noises. Other non-
real-time methodologies exist. For example, if the phe-
nomena occur in a forested area, the continuous growing
of plants can give information about potential impacts
(and tree damages) that occurred in the past (Dorren
et al., 2007). Anyway, this method suffers many epis-
temic uncertainties: the same rockfall event can dam-
age more than one tree, or it is not possible to distin-
guish between one or more events that occurred dur-
ing the same plant-growing season (Moya et al., 2010).
Alternatively, topographical approaches, e.g. laser scan-
ning, are largely used to monitor rock faces (Abellán
et al., 2010, 2011), but a lasting survey campaign is re-
quired to get a robust catalogue of events. The direct
observation is still the most common, being a simple
and cheap solution for drawing up a catalogue of rock-
fall events. Usually, the local government, road super-
visors or forestry service agents are involved in the col-
lection of data related to rockfall events, as reported by
Dussauge-Peisser et al. (2002). Since direct observation
is affected by errors, in the proposed procedure a thresh-
old volume is considered, as described in the following.

ii. A list of measured volumes that may have fallen down
at any time is denoted as F . Referring to such input,
different counting procedures have been developed. The
simplest method consists of counting the fallen blocks
and classifying them into volume classes. Different ap-
proaches have been proposed, depending on the size of
the rockfall. For example, Corominas et al. (2012) di-
rectly counted (and classified) all the fallen blocks in
small-scale rockfall events in Andorra. For larger phe-
nomena, Ruiz-Carulla et al. (2015) proposed a method-
ology for obtaining a rockfall block size distribution
(RBSD) essentially based on block counting in small
sampling plots and homogenization to the whole debris
cover. More complex methods make use of topographic
techniques (digital elevation models, orthophotos) to
identify the existing discontinuity sets and to compute
the volume of the unstable rock blocks on the slope face
(Jaboyedoff et al., 2009; Mavrouli et al., 2015). In such
cases, the time–magnitude relationship would refer to
the release of blocks and fragmentation and comminu-
tion should be considered in the propagation analysis.
In order to avoid these problems, the authors suggest

considering a distribution of volumes obtained from sur-
veys in the representative area.

Obviously, both the catalogue and the list must be related
to the same area of the slope, i.e. its foot. All the blocks
in catalogue C are elements of list F . In addition, list F
also contains fallen blocks that have not been observed or
recorded. Because of that, its cardinality, i.e. the number of
elements, is larger than the one of C.

The first step of the analysis consists of choosing “rele-
vant” events within catalogue C. To this aim, a threshold vol-
ume Vt is identified (details on the choice of Vt are provided
in Sect. 3.1) and the elements of catalogue C are split into
two sets. The events corresponding to a volume equal to or
larger than the threshold volume Vt are included in a reduced
catalogue C∗ mathematically described as

C∗ = {e : e ∈ C ∧V (e)≥ Vt}, (3)

where V (e) is the volume associated to falling event e. The
events not satisfying this condition were discarded, thus not
considered in the analysis. List F is treated in the same way:
a list F∗ including all the volumes equal or larger than the
threshold volume Vt is set up:

F∗ = {s : s ∈ F ∧V (s)≥ Vt}, (4)

where V (s) is the volume associated to the sth record of the
survey at the foot of the slope (in the representative area). As
before, the surveyed volumes smaller than Vt are not further
considered in the analysis.

The second step of the analysis consists of the choice of
two probabilistic models. One should be able to describe the
temporal occurrences of the events of catalogue C∗, the other
should describe the distribution of the surveyed volumes in
list F∗. It is assumed that the observed events are indepen-
dent if the threshold value, Vt, is sufficiently high. Thus,
the temporal occurrences can be described with a rare-event
probabilistic law, i.e. a Poisson distribution. The block sizes
at the foot of the slope follow a power law, as previously de-
tailed. A generalized Pareto distribution (GPD) is adopted to
describe the sizes of the surveyed blocks in list F∗. The GPD
has two degrees of freedom and represents a good compro-
mise between the quality of the fitting (which, in general,
increases as much as the number of degrees of freedom in-
creases) and the robustness of the model (which depends on
the number of observations). GPD is chosen since it well
fits the records of list F∗, being a power-like distribution,
but other probabilistic distributions can be adopted and the
proposed procedure easily adapted (Burnham and Anderson,
2003).

Knowing the annual mean number of blocks bigger than Vt
(i.e. λ) and the cumulative distribution function of the block
volume FV (v), the temporal frequency (the inverse of the
return period T ) of blocks bigger than v is

λ [1−FV (v)]=
1
T
. (5)
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Inversely, the volume with return period T , vT is

vT = F
−1
V

(
1−

1
λT

)
, (6)

where F−1
V (·) is the inverse of the cumulative density func-

tion of the probabilistic distribution describing the size of the
surveyed blocks, i.e. GPD, λ is the annual mean number of
events.

The third step of the analysis consists of the estimation of
the parameters of the statistical laws by means of the mea-
sured rockfall data contained in C∗ and F . The former gives
the parameter temporal frequency, and the latter the parame-
ters of the GPD.

3.1 Definition of the threshold volume

The catalogue of the event C contains all the recorded events
gathered in a time window, i.e. from the beginning to the
end of the observation period. For sake of simplicity we con-
sider that the end of catalogue C coincides with the present
time. The catalogue has a temporal length τ (C)= t and is
composed by events related to both small and large rockfall
phenomena.

Since the recording of the events is related to in situ ob-
servations after the occurrence, events involving small rock
blocks are not always recorded. Therefore, there is the pos-
sibility that catalogue C contains only a part of these small
events. This fact was considered in the proposed analysis
with the introduction of a threshold volume, Vt, defined as
the minimum size of a fallen block that has always been ob-
served and recorded (after its occurrence). This means that
the threshold volume is not necessarily the smallest volume
in the catalogue of the events C. This concept is similar to
the so-called perception threshold in flood-frequency analy-
sis (Claps and Laio, 2003).

A reduced catalogue, which is mathematically described
by Eq. (3), is created. The cardinality of C∗, i.e. |C∗|, is equal
to n∗ and, as already specified, the events are considered
independent. The value of the threshold volume influences
the temporal length of C∗. Since the decision to monitor a
rockfall-prone slope usually begins after the occurrence of
an event larger than the threshold volume, it is possible to
consider that, in a previous time interval of about half the re-
turn period of the events of the reduced catalogue, i.e t/n∗,
no events were recorded. This means that the temporal length
of the reduced catalogue is

t∗ = τ(C∗)= t +
t

2n∗
. (7)

If n∗ is large enough, the term t/n∗ is a good estimate of
the return period of the events of the reduced catalogue. In
the case n∗ = 1, the return period may be strongly underesti-
mated if the observation period is short.

Figure 2. Sketch of the catalogues of events C and C∗. The events
with volume V (e) larger than the threshold volume Vt are indicated
with blue bullets, those smaller than the threshold volume Vt are
indicated with black bullets.

3.2 Probabilistic model describing the temporal
occurrence of the events in C∗

Under the hypothesis of independence between the observa-
tions, the rockfall phenomenon is considered to be a com-
pletely random process for which any realization consists of
a set of isolated stochastically independent points in time
(McClung, 1999). In statistics, such a process is known as
a Poisson point process. Therefore the events of the reduced
catalogue C∗ within the temporal range t∗ are considered to
be a realization of a Poisson point process. The mathemat-
ical relationship between the probability of occurrence of
n events during the observation period t∗, i.e. the probability
mass function, is

p(n)=
e−λt

∗

(λt∗)n

n!
, (8)

where λ > 0 is the so-called parameter of the Poisson dis-
tribution. The hypothesis of independent and Poisson dis-
tributed rockfall events is essential to relate the cumulative
density function of the sizes of the surveyed blocks, FV (v),
to that of the annual maxima, GV (v), by means of

GV (v)= e
−λ[1−FV (v)]. (9)

GV (v) represented the annual probability of occurrence of a
block of volume smaller than v.

3.3 Probabilistic model describing the record
distribution in F∗

The probabilistic model of the volume distribution at the foot
of the slope is determined using the records contained in list
F∗. As discussed, only blocks larger than the threshold vol-
ume, Vt, are considered. The generalized Pareto distribution
(GPD) is used and it has cumulative distribution function
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equal to

FV (v)= 1−
(

1+ ξ
v−µ

σ

)−1/ξ

, (10)

where σ , ξ and µ are scale, shape and location parameters,
respectively. The scale parameter is always positive and the
distribution has support v ≥ µ for ξ ≥ 0 or µ≤ v ≤ µ−σ/ξ
for ξ < 0. The location parameter bounds the distribution.
Since the volumes smaller than Vt are not considered, the
location parameter is equal to threshold volume, i.e. µ= Vt.
The inverse of Eq. (10), to be used in Eq. (6), is equal to

v(FV )= F
−1
V (FV )= µ+

[
(1−FV )−ξ − 1

] σ
ξ
. (11)

In the present framework, substituting FV = 1− 1
λT

, the
volume, v(T ), corresponding to a return period T years is

v(T )= µ+
[
(λT )ξ − 1

] σ
ξ
, (12)

and the return period, T (v), corresponding to a volume v is

T (v)=
1
λ

(
1+ ξ

v−µ

σ

)1/ξ

. (13)

As a consequence, the annual frequency of occurrence,
which is the reciprocal of the return period, is

1
T
= λ

(
1+ ξ

v−µ

σ

)−1/ξ

. (14)

3.4 Evaluation of the parameters of the distributions

An estimate of the parameter λ of the Poisson distribution
was obtained through the maximum likelihood method. The
maximum likelihood estimate is an unbiased estimator of λ
and was determined as

λ=
n∗

t∗
, (15)

i.e. as the ratio between the cardinality and the length of the
time window of catalogue C∗.

The estimates of the scale and shape parameters, ξ and σ ,
are determined through a maximum likelihood scheme af-
ter imposing that the location parameter, µ, is equal to the
threshold volume.

4 Examples

With the aim of better explaining the proposed methodol-
ogy, it was applied to two areas affected by rockfalls. Both
Buisson and Becco dell’Aquila are located in Aosta Valley,
north-western Italian Alps, as shown in Fig. 3.

Figure 3. Map of the two test site locations in the north-western
Italian Alps. The Buisson site is shown with a red bullet in (a), the
Becco dell’Aquila site is shown with a red bullet in (b).

4.1 Buisson site

The Buisson site (UTM: 392267, 5077165, 32, T ) is located
on the left bank of the Marmore torrent in the municipality
of Antey-Saint-André in Valtournenche at an altitude ranging
from 1130 m to 1612 m a.s.l. The source area is composed
of gneiss, which are fine- to medium-grained rocks with the
dominant foliation plane orientation at 195/35. Discontinu-
ity sets are observed along 270/85 and 320/80 planes, the
latter being the orientation of the slope face. The study slope
is mainly composed of debris which extend down the slope to
the alluvial plain and are covered by irregular (from scanty to
very dense) vegetation. The site is close to a camping area,
for which protection measures and thus records of rockfall
events have been taken since 1994, when a large block (3 m3)
hit a part of the area.

A detailed survey in the deposition area was performed:
60 blocks with volume ranging from 0.02 to 308 m3 were ob-
served and their position recorded through GPS. These data
constitute list F (Table 1). The analysis of the occurrences
was done after the historical catalogue of the Regional Ge-
ological Service of Aosta Valley that reports five events at
the site from 1994 (September 1994, March 1995, Septem-
ber 1996, April 1998, October 2002). Because of the contin-
uous monitoring after the construction of the camping site,
all the events after 1994 were recorded and thus considered
in catalogue C and the reduced catalogue C∗, which are coin-
cident. The threshold volume Vt was set equal to 0.5 m3, i.e.
the minimum size of the observed events in C. The number of
events considered in the analysis is equal to n∗ = n= 5. The
corrected time t∗ is computed through Eq. (7) and is equal to
25.3 years. Eq. (15) gives λ= 0.1976.

The reduced list,F∗, was determined after the definition of
the threshold volume; see the right-hand column of Table 1.
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Table 1. Volumes of the surveyed blocks in the deposition area of
the Buisson site. The blocks are divided into two classes, depending
on their size (smaller or larger than Vt). All the blocks belong to list
F ; blocks larger than Vt belong to the reduced list F∗.

smaller than 0.5 m3 larger than 0.5 m3

0.02 0.08 0.32 0.58 1.9 8.0 58.8
0.03 0.10 0.39 0.59 4.1 8.0 132.2
0.03 0.11 0.40 0.66 4.1 10.0 308.6
0.03 0.11 0.40 1.1 4.2 11.8
0.04 0.12 0.40 1.1 4.5 18.0
0.04 0.14 0.42 1.3 4.8 18.2
0.05 0.19 0.48 1.4 5.0 18.6
0.05 0.20 1.6 5.1 19.2
0.07 0.21 1.8 6.9 21.6
0.07 0.24 1.8 7.5 24.0

Table 2. Input and results of the analyses performed at the Buisson
site. The estimates of the parameters of the distribution are reported
in the bottom rows.

Obs. 1994–2016

t 23 yr
Vt 0.5 m3

n 5
n∗ 5
t∗ 25.30 yr

λ 0.1976
ξ 0.994
σ 4.418
µ 0.5

The volumes of the reduced list served the evaluation of the
parameters of the GPD, the estimates of which are reported
in the bottom part of Table 2.

Figure 4 plots the volume–annual frequency of occurrence
relationship given in Eq. (14). Even if the theory allows all
the possible sizes bigger than Vt to be defined, an upper
threshold value can be introduced by taking into account the
geostructural survey of the rock slope, which can give evi-
dence of the maximum block size.

4.2 Becco dell’Aquila site

Becco dell’Aquila site (UTM: 341345, 5074157, 32, T ) is
located on the eastern side of Mont Chétif (2343 m a.s.l.) in
the municipality of Courmayeur at an altitude ranging from
1230 m to 1800 m a.s.l. The study area is largely composed
of Mont Chétif gneisses, which are fine- to medium-grained
rocks, with the foliation plane N 140/50. The site is close
to a deposit of aggregates used for concrete production onto
which a 20 m3 block fell on 5 May 2012. Despite a large
rockfall event being recorded in 1903, systematic observa-
tions and monitoring activities on the site started in 1998.

Volume (m3)

10
-1

10
0

10
1

10
2

10
3

A
n

n
u

a
l 
fr

e
q

u
e

n
c
y
 o

f 
o

c
c
u

rr
e

n
c
e

 (
y
r-1

)

1/1000

1/100

1/10

1

Estimated

Figure 4. Volume–annual frequency of occurrence plot related to
Buisson site.

An on-site survey was performed in the framework of a risk
analysis for the activities at the foot of the slope. The block
volumes were estimated by rough measurements and through
the experience of a geologist. Blocks are grouped into size
classes in a geometric progression following 21/2 with vol-
ume, as reported in Table 3.

The historical catalogue of the Regional Geological Ser-
vice of Aosta Valley reports three events in this site since
1998 (April 1998, April 2001, May 2012). The size of the
fallen blocks is always larger than 5 m3. Considering that the
slope is constantly monitored, it is evident that any event big-
ger than 5 m3 can be immediately observed and recorded. For
this reason a threshold volume Vt = 5 m3 was adopted. Cat-
alogue C and the reduced catalogue C∗ are coincident; see
Table 4 for details.

The number of events considered in the analysis is equal
to n∗ = n= 3. The corrected time t∗ is computed through
Eq. (7) and is equal to 22.17 years. Eq. (15) gives λ= 0.1353.

Referring to the distribution of the volumes, the reduced
list, F∗, was determined after the definition of the threshold
volume (Table 3). The neglected data, i.e. belonging to vol-
ume classes smaller than 5 m3, are in italic in Table 3. The
estimates of the GPD are reported in Table 4.

Based on the previously discussed data it was possible to
obtain the volume–annual frequency of occurrence that is re-
ported in Fig. 5 (grey line). A detailed survey of the poten-
tial instabilities in the source area showed that the maximum
size of the detachable block is about 200 m3. Similarly, an
additional truncated volume–annual frequency of occurrence
relationship is plotted (dashed black line).

5 Discussions and conclusions

The definition of the relationship between the volumes that
can stop on a slope and their return period is a parameter of
paramount importance for a correct design procedure. The
proposed methodology allows a volume–frequency law to be
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Table 3. List of the grouped volumes of the surveyed blocks on the
slope of Becco dell’Aquila site. All the blocks belong to list F ; the
blocks that are larger than Vt, in normal font, belong to the reduced
listF∗. The blocks in italic are those that are not part of the reduced
list F∗.

Volume No. Volume No.
(m3) records (m3) records

1.000 10 16.000 6
1.414 0 22.627 5
2.000 8 32.000 2
2.828 0 45.255 3
4.000 3 64.000 0
5.657 0 90.510 1
8.000 26 128.000 1
11.314 4 181.019 1

Table 4. Input and results of the analyses performed on the Becco
dell’Aquila site. The estimates of the parameters of the distribution
are reported in the bottom rows (the standard deviations are detailed
into brackets).

Obs. 1998–2016

t 19 yr
Vt 5 m3

n 3
n∗ 3
t∗ 22.17 yr

λ 0.1353
ξ 0.5509
σ 7.7836
µ 5.0

computed, which can be used in engineering calculations.
Two different probabilistic models are considered: one for
the Poisson’s point process related to the occurrences of the
events, the other for the fallen-block volume distributions
(the GPD, which is independent of the year of rockfall occur-
rence). In order to make these considerations and use these
probabilistic models, hypotheses are necessary.

The two probabilistic models are merged considering the
hypothesis that the annual frequency of a rock block having
a volume equal to the threshold volume is the parameter λ of
the Poisson distribution.

The events described by Poisson’s probabilistic models
need to be independent. In other words, no causality links
have to subsist. Under this hypothesis, the process is ran-
dom (Moller and Waagepetersen, 2003). In the framework
of rockfalls, the validity of the hypothesis was discussed by
McClung (1999), who stated that the interaction between a
natural hazard and anthropic elements (e.g. vehicles, build-
ings) is a rare event that can be ascribed to a Poisson process.

Volume (m3)

10
0

10
1

10
2

10
3

A
n

n
u

a
l 
fr

e
q

u
e

n
c
y
 o

f 
o

c
c
u

rr
e

n
c
e

 (
y
r-1

)

1/10k

1/1000

1/100

1/10

1

Estimated

Truncated

Figure 5. Volume–annual frequency of occurrence plot related to
Becco dell’Aquila site.

Similarly, Lari et al. (2014) and Hantz and colleagues (Hantz
et al., 2003; Hantz, 2011) invoke the same assumption.

The GPD has been chosen for fitting the values of list F
for various reasons.

– Pareto family distributions are very similar to power
law distributions except for the fact that the former are
bounded distributions. The bound is represented by the
location parameter µ in Eq. (9).

– GPD differs from the classical Pareto model for the in-
troduction of a location parameter, which does not affect
the slope of the right part of the plot, being governed by
the exponent −ξ−1.

– GPD is suitable for extreme value analysis. Pickands
(1975) introduced it in the extreme value framework,
as the distribution of a sample of exceedances above a
certain high threshold.

In rockfall studies, the main distinction between GPD and
power law can be observed when the value of the volume
tends to zero. GPD is finite for v→ 0, while power law di-
verges to∞, as required by scale invariance (Turcotte, 1997).
That is, for the calculations proposed in the present paper,
GPD and power law have the same right tail (linear in a log–
log plot), while for small volumes, the former is able to catch
the fact that, although the volumes are close to the threshold
value, Vt, a finite number of blocks is counted in the repre-
sentative area.

The degree of precision of the estimates of the parameters
of a generalized Pareto distribution is determined through a
bootstrap analysis (Efron and Tibshirani, 1994; Bengoubou-
Valerius and Gibert, 2013). This analysis allows us to deter-
mine the variance and the confidence bounds of the param-
eters of the GPD that fit each reduced list F∗ of the previ-
ously considered rockfall sites. A 100 000 bootstrap replica-
tions are made for each reduced list. For each replication, a
bootstrap sample, i.e. a resampling of the reduced list, is gen-
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Table 5. Bootstrap statistical parameters of the estimates of the parameters of the generalized Pareto distribution related to the two example
sites.

Buisson Becco dell’Aquila

ξ σ ξ σ

Mean 0.937 4.919 0.511 8.104
Variance 0.166 4.511 0.032 2.226
Median 0.944 4.610 0.520 7.897
90 % conf.b. (0.186, 1.572) (2.247, 8.481) (0.196, 0.783) (6.088, 10.871)
95 % conf.b. (0.093, 1.705) (1.932, 9.563) (0.103, 0.831) (5.821, 11.587)
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Figure 6. Histogram of the volumes having 1000 years return pe-
riod fitted by a log-normal law (red dashed line). The empirical dis-
tribution function is plotted in the box: the squares bound the 90 %
confidence interval.

erated and an estimate of the parameters ξ and σ of the fitting
generalized Pareto distribution is made.

From the set of the estimates of the parameters, the boot-
strap mean, variance and median and the values of 90 and
95 % confidence bounds are determined (Table 5). Note that
the estimates of the parameters reported in Tables 2 and 4 are
close to bootstrap medians.

In addition, for each bootstrap replication, once parame-
ters ξ and σ are estimated, the volumes related to different
(25 in total) return periods between 10 and 1000 years are
computed through Eq. (12). As an example, the histogram
of Fig. 6 shows the frequency of the 1000-year return pe-
riod volumes obtained at Becco dell’Aquila: they are well fit
by a log-normal law (red dashed line). The empirical distri-
bution function is plotted in the box of Fig. 6. The values
corresponding to cumulative probabilities of 0.05 and 0.95
are identified with squares. These corresponds to the bounds
of the 90 % confidence interval: in other words, this means
that 90 % of the volumes are larger than 73.8 m3 and smaller
than 473.2 m3. Similarly, the bounds are determined on both
sites for all the return periods considered in the range 10–
1000 years. They are shown with dashes in Fig. 7.
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Figure 7. Results of the bootstrap analysis on the records on Buis-
son and Becco dell’Aquila sites. The continuous lines are plotted
from Eq. (14) with the parameters reported in Tables 2 and 4. The
dashed lines are the bounds of the 90 % confidence intervals. In or-
der to easily compare the two, the bounds of the axes are kept equal
on the two plots.

It results that the width of the 90 % confidence interval
increases as much as the return period increases. This implies
a spread of the value of the volumes of the blocks. Detailed
and long records of the events as well as a proper survey of
the volumes of the blocks would permit an increase in the
quality of the volume–frequency law and, as a consequence,
reduce the statistical errors in the procedure.

The proposed method allows the relationship between the
return period and the volume of the blocks to be defined. This
is a key aspect in land management and planning, design of
protection devices (Peila et al., 1998, 2007; Keith Turner and
Schuster, 2012; Mignelli et al., 2012, 2013; Dimasi et al.,
2015) and for modern design approaches based on return pe-
riods of natural hazards (De Biagi et al., 2015, 2016a) and
structural robustness (Cennamo et al., 2015; De Biagi and
Chiaia, 2013; De Biagi, 2016). The bootstrap analysis has
shown that the quality of the input data can affect the results
particularly when long return periods are considered. Hence,
in these cases, a critical analysis of the estimated volumes is
required in the design process.

6 Data availability

The historical data can be accessed at http://catastodissesti.
partout.it.
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