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Abstract. Hazard–risk relationships in epidemiological stud-

ies are generally based on the outdoor climate, despite the

fact that most of humans’ lifetime is spent indoors. By cou-

pling indoor and outdoor climates with a building model, the

risk concept developed can still be based on the outdoor con-

ditions but also includes exposure to the indoor climate. The

influence of non-linear building physics and the impact of air

conditioning on heat-related risks can be assessed in a plau-

sible manner using this risk concept.

For proof of concept, the proposed risk concept is com-

pared to a traditional risk analysis. As an example, daily and

city-wide mortality data of the age group 65 and older in

Berlin, Germany, for the years 2001–2010 are used. Four

building models with differing complexity are applied in a

time-series regression analysis. This study shows that indoor

hazard better explains the variability in the risk data com-

pared to outdoor hazard, depending on the kind of building

model. Simplified parameter models include the main non-

linear effects and are proposed for the time-series analysis.

The concept shows that the definitions of heat events, lag

days, and acclimatization in a traditional hazard–risk rela-

tionship are influenced by the characteristics of the prevailing

building stock.

1 Introduction

Climate projections indicate that frequency, intensity, and du-

ration of extreme heatwaves are likely to increase (Meehl,

2004; Field et al., 2012; Coumou and Robinson, 2013). The

amplification of extreme temperatures due to the urban heat

island effect can lead to elevated heat-related risks in ur-

ban areas (Oke, 1982; Giannaros et al., 2014; Gabriel and

Endlicher, 2011).

Heat-related risk r is defined as the likelihood of adverse

effects (e.g. heat-related deaths or morbidity) on a specific

system over a specified time period which can be associated

to a hazardous heat event (Scherer et al., 2013). In general,

a system is defined by its elements (e.g. a group of inhabi-

tants) and its spatial distribution (e.g. country, city, or neigh-

bourhood). Thus, risk is a mean intensity within a time span

and within the spatial extent of the system group. It can be

interpreted as the relation of the number of individuals with

adverse effects Na to the total number of individuals Ntot of

the system group:

r =
Na

Ntot

. (1)

All variables in this document are listed in Table 1. Addition-

ally, disaster-risk analysis in accordance with the definitions

proposed by the Intergovernmental Panel on Climate Change

expresses risk r as a product of hazard h and vulnerability v

(Field et al., 2012):

r = hv. (2)

A general risk approach like this differentiates between ex-

ternal driving processes measured in terms of hazard inten-

sity h, and a system-specific vulnerability v (Peduzzi et al.,

2009; Scherer et al., 2013). Vulnerability is defined as the

predisposition to be adversely affected and it includes the

characteristics of anticipating, coping with, resisting, and re-

covering from the adverse effects as a result of diverse social,

cultural, political, and institutional processes (Field et al.,

2012).

The hazard intensity is calculated from an available cli-

mate signal, for instance a time series of air temperature mea-

surements. According to the literature survey of Gosling et al.
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(2009a), many epidemiological approaches suggest a posi-

tive temperature deviation from a threshold temperature TTh

to be an appropriate functional relation to calculate a hazard

intensity. A simple linear assumption can be implemented as

follows:

h= h(T ,TTh)=

{
T − TTh, if T − TTh > 0

0, otherwise.
(3)

Many studies use linear or non-linear regression analy-

ses of time series of hazard and risk data to quantify a

temperature–risk relationship. The quantification and predic-

tion of this relationship addresses different spatial scales:

counties or regions (Knowlton et al., 2007; Armstrong et al.,

2011; Sheridan et al., 2012; Zacharias et al., 2014; Wu et al.,

2014), cities (Guest et al., 1999; Dessai, 2003; Gosling et al.,

2009b; Peng et al., 2010), or wards (Rosenthal et al., 2014).

Nonetheless, projections can only include modifiers that have

been identified and calculated in an analysis based on past

risk data. As the influence of buildings is not considered ex-

plicitly in the analyses it cannot be addressed in the projec-

tions. However, the influence of buildings on health is ap-

parent as most people in midlatitude cities are subjected to

indoor conditions more than 80 % of the time, even during

the summer season (Krause and Schulz, 1998; Jenkins et al.,

1992). In particular, elderly people spend most of their time

indoors at home (Brasche and Bischof, 2005). Furthermore,

the nightly process of physiologic regeneration is considered

very important to reduce heat stress, and it is therefore nec-

essary to consider the indoor environment in the risk assess-

ment (Franck et al., 2013; Wright et al., 2005).

Risk evaluations which consider buildings are often based

on case-control studies during specific heat events. For ex-

ample, a statistically significant relation of increased mortal-

ity for residents in top-floor apartments and reduced risk for

people with access to air conditioning is documented for the

1995 heatwave in Chicago (Semenza et al., 1996). Increased

mortality for the 2003 heatwave in France is shown for peo-

ple living in buildings built prior to 1975, and for buildings

with poor insulation and high proportion of translucent build-

ing surface (Vandentorren et al., 2006; Salagnac, 2007). Re-

duced heatstroke risks could be statistically attributed to ac-

cess to air conditioning (Kilbourne et al., 1982). The long-

term decline in heat-related mortality in 19 out of 28 cities in

the United States is primarily attributed to increased access to

air conditioning (Davis et al., 2003). Similarly, disparities by

race in heat-related mortality in four US cities for the years

1986 to 1993 could be attributed to differences in central

air-conditioning prevalence (O’Neill et al., 2005). Building-

related proxies can be considered in a principal component

analysis (Wolf and McGregor, 2013); however, the underly-

ing linearization cannot reflect the non-linear effect of build-

ings.

Numerous studies have evaluated the overheating risk of

building types and the impact of building-related counter-

measures to overheating (e.g. Jenkins et al., 2011; Porritt

Table 1. Variables and indices. (Example units which are consistent

to the proof-of-concept analysis are indicated with ∗.)

Variable Unit Description

a [–] fraction of individuals in air-

conditioned environments

bi model parameters

c [–] coefficient

C J K−1 thermal capacity

e [–] exposure

g m2 transmittance of radiation

h K hazard∗

İ W m−2 global horizontal short-wave irradiation

ki model parameters

N [–] number of individuals

Q̇ W internal heat sources

r a−1 risk∗

R K W−1 building envelope resistance

t s time

T ◦C temperature

v a−1 K−1 vulnerability∗

α [–] model parameter

λ K m2 W−1 solar temperature elevation constant

τ s time constant

Indices Description

0 base value

a adverse

ac air-conditioned

heat heating set point

hist historic

in indoor

out outdoor

Th threshold

tot total

uc non-air-conditioned

et al., 2012; Beizaee et al., 2013; Ji et al., 2014; Mavrogianni

et al., 2014). Nonetheless, the overheating risk, which is of-

ten defined as deviation from a thermal comfort index, cannot

be easily related to the heat-related health risk, as analyses

operate with different scales and threshold values.

Despite the qualitative and quantitative evidence for the in-

fluence of the building parameters and air conditioning on the

heat-related risks, these are not covered systematically in epi-

demiological analysis of time-series data and thus cannot be

implemented in reliable projections. Despite singular stud-

ies which have evaluated indoor-climate risk relationships

(Brandt, 2006), developed building-type-related vulnerabil-

ity indices (Wolf and McGregor, 2013), or which have ad-

dressed the practicability of a building model for heat–health

warning (Pfafferott and Becker, 2008), a conceptual frame-

work is missing.

The objective of this study is the development of a risk

concept which considers building physics and indoor climate

conditions. This risk concept extends typical epidemiological
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approaches and is developed within Research Unit 1736, Ur-

ban Climate and Heat Stress in midlatitude cities in view of

climate change (UCaHS). The study aims to provide a sim-

ple yet accurate concept to include the physical aspects of

buildings in heat-related risk analysis which can be easily

applied to typical epidemiological approaches with spatially

integrated risk data. Four different building models that vary

in their complexity are evaluated with regard to their appli-

cability in such a concept. The indoor concept is tested with

a time series of mortality data of the age group 65 and older

in Berlin, Germany, for the years 2001 to 2010. Finally, the

definitions of heat events, lag, and acclimatization in exist-

ing risk analyses are discussed within this conceptual frame-

work.

2 Methods and materials

2.1 Indoor/outdoor risk concept

In an established risk evaluation the hazard is based on the

outdoor climate only. Nonetheless, many persons at risk are

subjected to indoor conditions, which might be dependent on

the outdoor climate but can also be independent from the out-

door conditions by means of air conditioning. Following this

argumentation, an appropriate risk concept must differentiate

between indoor and outdoor hazard. Defining exposure e as

the degree of exposure to either indoor or outdoor hazard, we

derive the equation:

h= ehout+ (1− e)hin. (4)

Exposure e in our understanding describes the ratio of the

number of individuals in the group exposed to the outdoor

climate Nout to the total number of individuals in the group

Ntot:

e =
Nout

Ntot

. (5)

Exposure e varies between 0 and 1 with e = 1 meaning that

the system group is exposed to the outdoor hazard only,

whilst e = 0 describes the full exposure to the indoor hazard.

Note that some studies on disaster-risk assessment include

an exposure term e as a third factor in Eq. (2) (Field et al.,

2012). This term covers the degree of exposure of the group

under consideration to the hazardous process. However, a

clear definition of the hazard event has to be available to cal-

culate exposure from the climate data.

The fraction of individuals in air-conditioned environ-

ments Nin,ac to the total number of individuals indoors Nin

is introduced by an air-conditioning ratio a:

a =
Nin,ac

Nin

. (6)

The indoor hazard hin is calculated as a mean of the haz-

ard hin,ac for air-conditioned environments and the hazard

hin,uc for non-air-conditioned environments, weighted with

the fraction of individuals in air-conditioned environments a

and in non-air-conditioned environments (1− a):

hin = ahin,ac+ (1− a)hin,uc. (7)

Obviously, air-conditioned indoor environments, which

are predominantly conditioned according to common com-

fort criteria, do not impose a heat-stress hazard (hin,ac = 0).

With this assumption, Eqs. (4), (7), and (2) yield:

r =
(
ehout+ (1− a)(1− e)hin

)
v. (8)

2.2 Simplified indoor/outdoor risk concept

To compare the general risk concept (Eq. 2) and the in-

door/outdoor risk concept (Eq. 8) on a theoretical level, it

is useful to assume a linear correlation between indoor and

outdoor hazard, hin = chout. We can rearrange Eq. (8), with

parameter c describing the outdoor hazard transformation by

the building stock:

r = hout

(
(1− a)(1− e)c+ e

)
v. (9)

We can interpret the term
(
(1−a)(1−e)c+e

)
v as a mod-

ified vulnerability in the traditional risk analysis or the term

hout

(
(1−a)(1−e)c+e

)
as a modified hazard, arbitrarily. Both

interpretations are consistent with the general framework of

Eq. (2) as only a constant factor is multiplied. However, the

simplified indoor/outdoor risk concept fails if the assump-

tion of linearity between indoor and outdoor hazard is not

fulfilled. Conditions with indoor hazard but no outdoor haz-

ard, e.g. elevated indoor temperatures in glazed rooms with

high internal loads, or vice versa, obviously contradict linear-

ity. Therefore it is important to study the non-linear influence

of buildings on the hazard–risk relationship in particular.

2.3 Building models

Long-term observations of indoor environments in order to

quantify the indoor hazard are normally not available. Thus,

the indoor conditions have to be evaluated with simulation

data of modelled buildings. To allow for a risk evaluation

with a reduced set of weather data (e.g. air temperature), sim-

plified building models were evaluated in this study. We used

a complex building model (EnergyPlus) to simulate a rep-

resentative indoor climate and to parametrize three simpli-

fied building models. The three building models are based

on either a linear relation between indoor and outdoor tem-

peratures (linear building model), the analytical solution of

a simplified capacity–resistance–transmittance model (phys-

ical building model), or a recursive modelling approach (re-

cursive building model). We used these models to simulate

the indoor temperature with a restricted climate data set.

2.3.1 EnergyPlus building model

Sophisticated building models are based on energy balances

of building components and zones. As the models cannot be
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solved analytically, numerical solvers are used. We use En-

ergyPlus energy simulation software (EnergyPlus, 2015, ver-

sion 8.3) to model a representative building. This software

is widely used for building simulations, also in overheating

studies (Porritt et al., 2012; Mavrogianni et al., 2014). The

main physical processes, namely heat conduction, convec-

tion, infiltration, shading, and solar radiation, as well as occu-

pant behaviour are considered. More details on the model set-

up and specific parametrization are provided in Sect. 2.3.5

and in the model description file (EnergyPlus .idf format)

which is provided in the Supplement. The simulation results

of this model (operative room temperatures) are used for risk

analysis and to parametrize the simplified building models

described in the following subsections.

2.3.2 Linear building model

A simple quasi-linear approach with two coefficients k1 and

k2 can be used to calculate a time series of daily mean indoor

temperatures Tin(t) from daily mean outdoor temperatures

Tout(t):

Tin(t)=max(k1Tout(t)+ k2;Theat). (10)

For the cold season it can be assumed that the indoor tem-

perature in the building does not fall below a minimum tem-

perature Theat, which is controlled by the heating system.

Despite the expected deviations, we used the linear model

to foster understanding of the indirect influence of build-

ings in a traditional temperature–risk analysis with linear ap-

proaches (e.g. analysis of variance with multivariate linear

regression or principal component analysis).

2.3.3 Physical building model

We can interpret the indoor climate as a function of the

outdoor climate, the functional relation being described by

the building parameters. A very simple one-zonal energy-

balance model of the building (or room) can be solved an-

alytically:

C
dTin(t)

dt
=

1

R
[Tout(t)− Tin(t)]+ gİ (t)+ Q̇(t). (11)

Equation (11) is an inhomogeneous first-order differential

equation with thermal capacity C [JK−1
], building envelope

resistance R [KW−1
], transmittance of radiation g [m2

], and

internal heat source Q̇. Ventilation is neglected in this model.

Assuming constant outdoor climate conditions and a constant

heat source during the time step 1t (indicated with the caret

grapheme), the analytical solution of Eq. (11) for the indoor

temperature yields

Tin(t +1t)= T̂out+ λ̂İ +R
̂̇Q

+
(
Tin(t)− T̂out− λ̂İ −R

̂̇Q)e−1t/τ . (12)

The remaining parameters characterizing the building are

τ = RC and λ= gR. τ represents a time constant as a mea-

sure for the thermal inertia of the building, λ represents the

temperature elevation due to solar gains. Tin(t) is the initial

indoor temperature at time t for the time interval 1t .

For the cold season, a constant temperature Theat is used

with the same reason as for the linear building model. For

the warm season we assume that internal heat sources are

negligible compared to the solar heat flux into the zone. With

these assumptions, Eq. (12) can be simplified:

Tin(t +1t)=max
(
T̂out+ λ̂İ

+

(
Tin(t)− T̂out− λ̂İ

)
e−1t/τ ;Theat

)
. (13)

We used this model to simulate the hourly indoor tempera-

ture with a restricted climate data set, which consists of only

outdoor air temperature and global horizontal radiation. For

risk analysis daily mean temperatures are calculated from the

hourly values.

2.3.4 Recursive building model

A simple recursive model was developed by Wright et al.

(2005) to cover the thermal inertia of a building structure:

Tin =max(b1Thist+ b2;Theat). (14)

Thist(t +1t)= αTout(t +1t)+ (1−α)Thist(t). (15)

This model is similar to the physical model for constant

time steps and when b1 = 1. In this case, the parameter α

represents the thermal inertia, and parameter b2 includes the

temperature elevation due to constant internal loads. This

model is only based on daily mean outdoor temperatures

and does not explicitly include solar irradiation. We used

this model to evaluate the applicability of daily mean out-

door air temperature as one single climate datum in the in-

door/outdoor risk concept.

2.3.5 Parametrization data

Typically, a hazard is defined as an integral value for a spa-

tially confined system. Therefore, the building model has to

be representative for the same system. The modelled building

represents a typical Berlin residential building of the era of

promoterism and Art Nouveau block development from 1870

to 1918 (see Fig. 1). This building type is the most prevalent

type in the Berlin building stock (SDUD, 2011) and it is in-

habited by approximately one-third of the Berlin population

(see Table 2).

This building type is implemented for one specific con-

struction in EnergyPlus with typology data from IWU (2011,

code DE.N.AB.02.Gen). The building geometry was simpli-

fied with regard to window partitioning and the presence of

balconies and oriels. See Fig. 1 for the implemented exam-

ple’s zone structure. Technical specifications were extracted

from the building typology and implemented in the Energy-

Plus model (see Table 3). The typical shading in urban ar-

eas by other buildings was implemented in the domain of the
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model. The minimum indoor temperature for heating is as-

sumed to be Theat = 20 ◦C (DIN EN 12831:2008-07).

The building simulation includes infiltration, which de-

pends on wind speed and the air temperature difference be-

tween the inner zone and the outside (EnergyPlus, 2015,

ZoneInfiltration: DesignFlowRate). To model adaptive occu-

pant behaviour with increased window opening during the

summertime, base infiltration rates are set threefold for the

summer season compared to the winter season. Furthermore,

a window shading algorithm is implemented to include the

moderate effect of closed curtains or comparable shading de-

vices in the summer. The implemented algorithms model a

moderate adaptation by the occupants and thus can be con-

sidered representative of the Berlin housing stock.

2.4 Climate data

We used a set of weather data (air temperature, humid-

ity, atmospheric pressure, wind velocity, wind direction, dif-

fuse and direct horizontal short-wave radiation) from Pots-

dam, ∼ 25km from the centre of Berlin, for the time period

2001 to 2010 (DWD, 2014). Missing data of atmospheric

pressure (0.02 %), wind direction (0.42 %), and wind ve-

locity (0.0046 %) were filled with linearly interpolated val-

ues. Missing data of global horizontal short-wave radiation

(0.51 %) were filled with regressed radiation data from a

weather station operated by Technische Universität Berlin in

Berlin Steglitz (Fenner et al., 2014). Missing data of diffuse

short-wave radiation (0.79 %) were filled with simulated data

according to a correlation with the global horizontal short-

wave radiation proposed by Erbs et al. (1982). Finally, the

consistent data set was transformed into an EnergyPlus con-

form weather file.

2.5 Risk data

The age-classified number of deaths (all-cause deaths) in

Berlin in daily resolution and half-yearly population data

serve as the basis to calculate all-cause mortality rates. The

population data are interpolated to daily resolution. Both data

sets are valid for the group of people aged 65 and older and

for the period 1 January 2001 to 31 December 2010 (SOBB,

2013). This age group can be assumed to be fully exposed to

the indoor climate (e = 0) as the mean time spent at home is

over 80 % (Brasche and Bischof, 2005). Furthermore, it can

be assumed that air conditioning is not prevalent in Berlin

(a = 0).

The risk data for temperatures below the threshold temper-

ature are used to calculate a constant base rate of the risk r0.

With this segmented approach it is possible to obtain a con-

sistent structuring of the risk data into heat-affected and heat-

unaffected risks. The total risk calculates to

rtot =

{
r0+hinv, if hin > 0

r0, otherwise.
(16)

The risk data and an example regression result with op-

erative room temperatures from the EnergyPlus model and

a threshold temperature of 28 ◦C are shown in Fig. 6. It can

be seen that mortality rates are increased in the winter season

at operative room temperatures below 20 ◦C which can be as-

sociated with indirect climate effects involving influenza and

respiratory infections (Kunst et al., 1993).

3 Analysis

3.1 Parametrization of the simple building models

Simulation results of the mean daily operative room temper-

ature of an intermediate thermal zone (second-floor, west-

oriented) of the EnergyPlus building model are used for

parametrization of the linear, physical, and recursive build-

ing model with a trust region method (Matlab lsqcurvefit al-

gorithm). One intermediate floor was used as it can be con-

sidered to represent the mean climate in the whole building.

Parametrization of the simple building models yields k1 =

0.63 and k2 = 12.0K for the linear model, τ = 4.115 · 105 s

and λ= 0.025m2 KW−1 for the physical model, and b1 =

0.96, b2 = 6.6K, and α = 0.28 for the recursive model.

The resulting indoor temperatures are plotted for July 2007

in Fig. 2 together with the outdoor air temperatures which

fluctuate with an amplitude of about 10K. The EnergyPlus

simulation generates pronounced diurnal temperature varia-

tions of 2 to 4K and the general trend follows the outdoor

air temperatures with a lag of several days. Indoor night-time

temperatures do not fall below 20 ◦C. All simplified mod-

els can reproduce the general trend; however, the thermal

lag cannot be reproduced with the linear model. The phys-

ical model is able to generate diurnal variations, albeit with

lower amplitude than the results from the EnergyPlus sim-

ulation. The recursive model and linear model are based on

daily mean temperatures and therefore cannot reproduce the

diurnal variation.

Figure 3 shows the daily mean indoor temperature from

the simulations with the EnergyPlus model and the linear

model plotted against the outdoor air temperature. The lin-

ear building model reproduces the general trend of the de-

tailed simulation data. However, maximum deviations may

be almost 5K, as can be seen in a scatter plot of the indoor

temperatures from the linear model against the temperatures

calculated with the EnergyPlus building model (Fig. 4). The

root mean square deviation (RMSD) is 1.5K. Normalization

with the overall temperature span yields a normalized RMSD

of 12.2%. The physical approach reproduces the data with

a RMSD of 0.61K and a normalized RMSD of 5.0%. The

recursive building approach yields a RMSD of 0.77K and

a normalized RMSD of 6.3%.

We can therefore conclude that the simple physical build-

ing model is best suited to calculate daily mean indoor tem-

peratures. If no data on solar radiation are available, the re-
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Figure 1. Typical residential building in Berlin (left) and graphical representation of the geometry of the EnergyPlus model (right). The

analysis zone in the second floor is marked-up.

Table 2. Building structures and construction periods in Berlin and number of inhabitants calculated with mean population density and area

according to planning area typology (SDUD, 2011).

Construction period Building structures Area (ha) Inhabitants Percentage

1870–1918 block-type structures, four to six storeys 2888 965 000 28.3 %

1870–1918 + newer block-type structures, space closure 1124 298 000 8.7 %

1920–1930 block-type structures with large courtyards 779 132 000 3.9 %

1920–1940 parallel, oriented line-type structures 853 221 000 6.5 %

1950–1980 line-type structures 2540 414 000 12.1 %

1960–1990 high-rise buildings and greater settlements 2283 632 000 18.5 %

1990–today mixed types 515 107 000 3.1 %

all periods detached houses 14 702 643 000 18.8 %
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Figure 2. Outdoor air temperature and indoor temperatures for

July 2007 calculated from building models parametrized according

to Sec. 3.1.

cursive model is also suitable to recalculate the indoor tem-

peratures. A linear relation as in the linear model should be

avoided because it would incorporate higher deviations as

thermal inertia and solar gains are not covered. All calcu-

lated time series of the indoor temperatures were used in the

following risk analysis section.
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Figure 3. Linear building model (Eq. 10) fitted to mean daily op-

erative room temperature of a typical residential building of Berlin

simulated with EnergyPlus.

3.2 Qualitative risk analysis

For qualitative evaluation the risk data is plotted against the

different hazard signals, namely outdoor air temperature and

indoor operative room temperatures calculated from the En-

ergyPlus simulation and the three simplified building models

(Fig. 5). Additionally, arithmetic mean values of the mortal-

ity rates are given for a 1K interval to extract the general

trend.
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Table 3. Basic assumptions for the implementation of a Berlin residential building from the construction period 1860 to 1918 in the Energy-

Plus model (in accordance with IWU, 2011, code DE.N.AB.02.Gen).

Component Specification

General apartment block, five storeys, gable roof, wooden beam ceiling, solid brick masonry,

heated area 754m2, adiabatic south-oriented and north-oriented walls,

partial shading by other buildings, curtains closed above 24◦C with solar transmittance = 0.8,

inner loads = 5 Wm−2, infiltration (cooling season) = 2h−1
· (0.011T K−1

+ 0.02v sm−1)

Floor (basement) U value= 0.9Wm−2 K−1, λth = 1.55Wm−1 K−1, ρ = 2000kgm−3, cp = 840Jkg−1 K−1

Windows U value= 3.5Wm−2 K−1, g value= 0.8

Outer masonry U value= 1.7Wm−2 K−1, λth = 0.96Wm−1 K−1, ρ = 2000kgm−3, cp = 840Jkg−1 K−1

Inner masonry d = 0.3m, λth = 0.96Wm−1 K−1, ρ = 2000kgm−3, cp = 840Jkg−1 K−1

Roof U value= 1.3Wm−2 K−1.

d denotes thickness, λth thermal conductivity, ρ density, cp specific heat, v wind speed.

The analysis shows that a correlation with the outdoor air

temperature (Fig. 5, top left) predicts unchanged mortality

rates in a temperature range from 16 to 20 ◦C and a steady

increase above 20 ◦C. At highest temperatures (> 27 ◦C), the

signal for rising mortality rates is less accurate and arithmetic

mean mortality rates within a 1K interval are fluctuating, due

to a low number of heat events. The highest mortality rates

can be observed in the temperature region around 24 ◦C and

therefore do not correspond to the highest values of the haz-

ard signal. Elevated mortality rates of the winter season are

not relevant for this study and only influence mortality rates

at outdoor air temperatures lower than 15 ◦C (not shown in

this graph).

When evaluating the same risk data with indoor tempera-

tures from the linear building model (Fig. 5, top right), due

to the linear transformation no qualitative change in the data

compared to the outdoor climate approach is observed. Note

that elevated mortality rates occur at about 20 ◦C due to the

influence of the winter season data.

Using indoor temperatures from the EnergyPlus simula-

tion, it can be observed that mortality rates increase at indoor

temperatures higher than 25 ◦C (Fig. 5, middle). A further

increase can be detected above 30 ◦C. A similar structure of

the data is obtained with the physical and recursive build-

ing models (Fig. 5, bottom). The arithmetic mean mortality

rates within 1K intervals are not as steady in the recursive

approach as in the physical approach. The highest mortal-

ity rates can be observed at the highest hazard signals for all

non-linear building models.

3.3 Quantitative risk analysis

In a quantitative regression analysis, the coefficient of deter-

mination R2 for the linear least-squares regression of tem-

perature and risk above the threshold value was evaluated

for all four approaches using Eq. (8). R2 is the proportion

of the total sum of squares that is explained by the risk–

hazard relationship according to Eq. (16) in the heat-affected
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Figure 4. Calculated mean daily indoor temperature of

parametrized linear, physical, and recursive building models

according to Sec. 3.1 compared to the EnergyPlus simulation

results.

region. The hazard was calculated according to Eq. (3) with

threshold temperatures in the range of 16 to 30 ◦C for out-

door air temperatures and 21 to 33 ◦C for indoor tempera-

tures. Furthermore, the relative standard deviation of the esti-

mated vulnerability was calculated. Risk data for outdoor air

temperatures exceeding 16 ◦C and for indoor temperatures

exceeding 21 ◦C were used, as data points at lower temper-

atures might be influenced by cold-related risk effects. Only

threshold temperatures were evaluated which separate heat-

affected and heat-unaffected risk data according to their me-

dian values with high statistical significance. The null hy-

pothesis that data below and above the threshold temperature

are independent samples from identical continuous distribu-

tions with equal medians had to be rejected with a Wilcoxon

rank sum test at a 1 % significance level.

We followed a segmented regression approach. Firstly,

the base rate of the risk ro was calculated from the heat-

unaffected data (see also Fig. 6) below the threshold tem-
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Figure 5. Mortality rate of Berlin citizens aged 65 and older in relation to measured outdoor air temperature, operative room temperature

simulated with a complex building model (EnergyPlus), linear building model, physical building model, and recursive building model.

perature. Secondly, we performed a linear least-squares re-

gression with known intercept ro with the heat-affected data.

Furthermore, only results of the regression analysis with

high statistical significance were used for the evaluation,

meaning that p values obtained from a two-sided t-test

are lower than a significance level of 0.1 %. We compared

the coefficient of determination R2 calculated for the heat-

influenced region of positive hazard values and the relative

standard deviation of the estimated vulnerability. All results

are plotted in Fig. 7 (top and middle). In addition, results

of an event-based regression analysis with outdoor tempera-

tures as described by Scherer et al. (2013) are given for com-

parison. The mean number of excess deaths per year is cal-

culated using the different approaches. Note that the uncer-

tainty of the number of excess deaths is calculated for a 95 %

confidence interval from the relative standard deviation and

an assumed Gaussian distribution of the mortality rate.

The outdoor temperature approach and the indoor temper-

ature approach based on the linear model can each explain

less than 28 % (R2 < 0.28) of the variability in the mortality

rates for most threshold values. The outdoor temperature ap-

proach delivers relative standard deviations of the estimated

vulnerability higher than 0.15 for threshold temperatures ex-

ceeding 23 ◦C. The approach with temperatures calculated

from the linear building model yields comparable R2 and an

elevated relative standard deviation of the estimated vulner-

ability exceeding 0.15 at threshold temperatures higher than

26 ◦C. The EnergyPlus model, the physical, and the recur-
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sive building models yield higher R2 than the other two ap-

proaches for threshold temperatures higher than 27–28 ◦C.

The relative standard deviation of the estimated vulnerabil-

ity does not exceed 0.13 for threshold temperatures up to

29 ◦C. The values of excess deaths per year decrease with

higher threshold temperatures for all hazard signals. Excess

values are comparable for all approaches ranging from ap-

proximately 30 to 250 deathsa−1, albeit in a shifted range of

threshold temperatures. Only the physical approach delivers

values from 40 to 140 deathsa−1.

Considering the regression results, we see that the choice

of the threshold temperature has to balance between low un-

certainty and high explained variance.

4 Discussion

The analysis of the example data set with indoor tempera-

tures calculated with an EnergyPlus building model, a simple

physical model, and a recursive building model showed a bet-

ter regression performance at comparable uncertainty than

a correlation with outdoor temperatures or temperatures cal-

culated with a linear building model. In particular, data with

high excess mortality could be assigned to high indoor tem-

peratures.

A hazard defined with indoor conditions hin can be in-

terpreted as an alternative functional relation of a modified

outdoor hazard h′. With the physical building model (see

Sect. 2.3.3) we can formulate

h′ = hin(Tin,Tin,Th)= h
′(Tout, İ, τ,λ,Theat,Tout,Th). (17)

Following this interpretation, the better regression of the

risk data with the hazard h′ based on the physical model,

in comparison to hout based on outdoor climate, can be ex-

plained with the additional input of the radiation data and

two building parameters. However, these additional param-

eters have a clear physical representation and their validity

should be examined in a comparative parameter analysis.

A sound scientific comparison of different risk-assessment

procedures has to consider all additional parameters, for in-

stance lag lengths and threshold temperature. The proposed

climate–risk relationship operates with four physical param-

eters (two building parameters, exposition, and air condition-

ing) and two fit parameters (threshold temperature and vul-

nerability). Traditional concepts must use more fit param-

eters to account for the effects of lag, air conditioning, or

buildings. Thus, the concept of using indoor hazards has im-

plications for the definitions of heat events, acclimatization,

and lag in traditional concepts.

4.1 Heat event definition

In this analysis, the threshold temperature used to describe

the heat event is derived from the risk data. The analysis

has shown that appropriate threshold temperatures for indoor

and outdoor hazard must be chosen differently. The offset

between outdoor and indoor threshold temperatures can be

easily explained with the linear building model and the lin-

ear hazard approach, hin = chout, as defined in the simplified

indoor/outdoor risk concept (Sect. 2.2) with a hazard defined

in accordance with Eq. (3):

hin = chout = c(Tout− Tout,Th)= Tin− Tin,Th = k1Tout

+ k2− k1Tout,Th− k2 = k1(Tout− Tout,Th)= k1hout. (18)

Therefore, we learn three important things from the lin-

ear building model: firstly, the parameter c in the simplified

risk concept equals the parameter k1 of the linear building

model. Thus, c can be derived from measurement data or

from thermal energy building simulations. Secondly, we can

state that the simplified indoor/outdoor risk concept inherits

the uncertainty of the linear building model. This also ex-

plains the poorer regression performance of the outdoor tem-

perature approach. Thirdly, to compare different approaches

and their threshold temperatures, the threshold values have to

be transformed according to the building model. The build-

ing influence provides an explanation of the fact that studies

on temperature–mortality relationships often yield low out-

door threshold temperatures. For instance, a threshold tem-

perature of 21 ◦C was derived for Berlin, Germany (Scherer

et al., 2013), 16.5 ◦C for the Netherlands (Huynen et al.,

2001; Kunst et al., 1993), and 19 ◦C for London, UK (Hajat

et al., 2002) (all of these studies used daily mean air temper-

atures). Despite the argument that weather stations are very

often situated at airports or in rural areas and therefore do

not represent the urban heat island effect (Hajat and Kosatky,

2010), the elevated indoor temperatures within the building

stock are a further valid explanation for low threshold tem-

peratures in an outdoor temperature-based risk analysis.

4.2 Lag effects

It is well known that mortality increases after a heatwave

with a lag of several days. Human physiology is often the

explanation for the lag, which has a typical length on the or-

der of 1 to 2 days (Gosling et al., 2009a; Hajat and Kosatky,

2010; Huynen et al., 2001). The building stock contributes

to this lag due to thermal capacity in the building materi-

als. However, the effect is not included in the linear building

model. The EnergyPlus model, the physical model, and the

recursive model include thermal capacity and as such include

a lag effect. This fact contributes to the better regression per-

formance of these models.

Comparing the recursive model, which is based on out-

door air temperatures only, and the physical model, which

also includes solar radiation, there is not much difference.

This highlights the importance of accounting for the general

trend of the thermal lag within the building. As the simplified

models used in this study were calibrated with results from

the EnergyPlus simulation, the recursive model also includes
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Figure 6. Mortality rate of Berlin citizens aged 65 and older in relation to operative room temperature from the EnergyPlus model and

linearized risk–hazard curve according to Eq. (16) for a threshold temperature of 28◦C.

solar gains, albeit indirectly. Because this model has a simi-

lar regression performance compared to the physical model,

it might be preferable for use in risk analysis studies due to

its simplicity and the fact that it only requires a time series of

outdoor air temperature measurements.

A separate calculation of excess deaths attributed to ad-

ditional lag days is not part of this study, which might ex-

plain the low absolute number of excess deaths in compari-

son to other studies (e.g. Scherer et al., 2013 or Huynen et al.,

2001).

4.3 Acclimatization

Acclimatization results from physiological and psychologi-

cal adaptation, and changes in occupant behaviour and so-

cial services. However, the different contributions of these

aspects can not be quantified separately and a clear differ-

entiation between long-term adaptation and short-term ac-

climatization is missing yet. Some authors handle seasonal

acclimatization with empirical methods by subtracting a dy-

namic baseline mortality which is calculated as a moving av-

erage from the time-series data. For instance, non-parametric

locally weighted smoothing (Hajat et al., 2002) and moving

average smoothing (Davis et al., 2003) have been used to de-

fine baseline mortality rates. Often a monthly basis is used

as average duration (Dessai, 2002). The thermal capacity of

buildings has a similar smoothing effect on hazard, but it is

part of the causal chain from adverse outdoor heat to effec-

tive health impact. Therefore, smoothing techniques in heat–

health risk analysis have to be interpreted with regard to their

indirect description of thermal inertia in the built environ-

ment.

Long-term acclimatization as a form of adaptation by use

of air conditioning, heat alerts, and cooling shelters, as well

as by gradual physiological adaptation can be incorporated

into projections by using temperature–response functions of

“surrogate” cities (Gosling et al., 2009a; Knowlton et al.,

2007). This method has the advantage that non-linear devel-

opments influencing vulnerability can be used in the projec-

tions. However, the contributions of the underlying causes

are not evaluated. By extraction of the building character-

istics and air-conditioning coverage with the proposed con-

cept, projections on the long-term acclimatization effect can

be more reasonable.

4.4 Further research

The example calculation in this study is a proof of concept

and the risk concept has to be validated with further data. In

particular, risk data of populations in similar socio-economic

conditions but within different building types should be anal-

ysed to evaluate the specific influence of the building typol-

ogy on adverse health effects. Groups with diverse access to

air conditioning should also be evaluated for further valida-

tion of the role of air conditioning in risk prevention. Fur-

thermore, the sensitivity of regression performance on the

building parameters must be evaluated to define the required

quality of the building model parametrization.

It is well known that the variation of the indoor climate of

specific building types is greater than the spatial variation of

the outdoor temperatures in a city (e.g. Mavrogianni et al.,

2012; Oikonomou et al., 2012). Therefore, information on

the spatial distribution of indoor temperatures is necessary

for a concise risk analysis (Taylor et al., 2015). However,

the aggregation of indoor climates of different dwellings on

such spatial scales requires a great deal of computational ef-

fort. The proposed physical and recursive building models

can also be used to simulate indoor temperatures for a larger

building stock by varying the building parameters and out-

door climate with lower computational effort. The influence

of heat adaptation on the building level, which is analysed

with complex building models in overheating studies (e.g.

Porritt et al., 2012; Mavrogianni et al., 2012), can be fed eas-

ily into reliable projections with the simplified models serv-

ing as an interface between individual short-term building

simulations and long-term risk projections.
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Figure 7. Coefficient of determination R2 (top), relative standard

deviation of the estimated vulnerability (middle), and calculated ex-

cess deaths (bottom) for the time-series regression analysis in de-

pendence of threshold temperature for outdoor hazard and indoor

hazard calculated with EnergyPlus, linear, physical, and recursive

building models. Results of the event-based regression analysis with

a significance level of 0.1 % are calculated according to Scherer

et al. (2013).

The review of Gosling et al. (2009a) shows that epidemio-

logical studies operate with different hazard values, predom-

inantly outdoor temperature values represented in terms of

minimum, maximum, mean daily temperature, or the diurnal

temperature range. Our study suggests that the indoor tem-

perature is a more plausible value, and therefore it should

be evaluated how the different outdoor temperature values

are correlated to the indoor temperature. Differences in these

correlations might explain observed differences in the risk–

temperature analyses. Conversely, it should be evaluated if

other values of the indoor temperature signal (e.g. minimum,

maximum, or diurnal temperature range) show a better re-

gression performances with the risk data.

As can be seen in the example regression analysis, mor-

tality rates are highly elevated for the highest indoor tem-

peratures, which can be associated with extreme heat events.

Thus, on the one hand, mitigation strategies have to be eval-

uated with regard to their general impact on the heat-related

risk within a city. On the other hand, especially their influ-

ence on risk reduction during excessive heat must be evalu-

ated for the indoor and outdoor environment (Buchin et al.,

2015).

A log–linear increase in risk above a threshold value is

used by some authors (e.g. Gasparrini et al., 2012). Scherer

et al. (2013) proposed an exponential increase in mortality

at an elevated heat strain quantified using an event-based ap-

proach. These non-linear approaches might also be applied

to indoor hazard data. Conversely, event detection could be

refined by including the indoor climate conditions.

The modelling procedure used here assumes constant

building parameters. Nonetheless, during the evaluation pe-

riod, a substantial part of the building structure might

possibly have been refurbished (at 1 % refurbishment rate

a−1 10 % of the buildings were altered during the time span)

and the representative indoor climate for the group under

consideration might have changed. Therefore, a more de-

tailed risk evaluation should take into account changing

building conditions as well as specific refurbishment mea-

sures.

5 Conclusions

The study demonstrates the importance of considering indoor

climate in heat-related risk assessment. A sound concept is

proposed which includes the building as a principal hazard

modifier. A key consideration has been the simplicity of the

building models and a pragmatic approach to handling spa-

tially aggregated risk and climate data sets. Furthermore, the

concept is robust because it avoids a bias by parametrizing

the heat event definition with the risk data.

Obviously, building models are essential in the under-

standing and evaluation of the indoor climate and allow for

a calculation of a time series of indoor climate conditions

from a time series of outdoor climate conditions. Model

parametrization can be based on measurement data or on

complex building simulations, as shown in this study.

We have illustrated that assuming linearity between indoor

and outdoor hazard is not very accurate, but it also allows

for an interpretation of exposure, air-conditioning ratio, and

building influence within a traditional risk analysis. More-

over, we have shown that these effects are implicitly included

in the vulnerability term in a traditional risk analysis. The in-

accuracy of a linear assumption can be avoided by applica-

tion of a physical or recursive building model. These simpli-

fied modelling approaches are considered to be sufficient to

calculate the indoor hazard for a spatially aggregated build-

ing stock. The significantly higher accuracy of the regression
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results shows that essential causalities are included. Further-

more, the analysis shows that heat event definitions, lag, and

the handling of acclimatization in existing studies should be

discussed in view of the prevailing building structure. This

study suggests that modelling techniques on these effects in-

directly include the influence of the building stock.

The results demonstrate that better statistical explanation

can be accomplished with indoor-based climate–risk rela-

tionships and we recommend that these be used in heat–

health risk assessments and projections. The findings allow

for a better assessment of the risk reduction potential of mit-

igation strategies focused on the indoor and outdoor climate.

Predictions of the future development of heat-related risk are

much more reliable if trends concerning climate change, ur-

ban heat island development, demography, building design,

and market penetration of air-conditioning equipment can be

considered separately, which could be done with the pro-

posed concept in a plausible manner.

The Supplement related to this article is available online

at doi:10.5194/nhess-16-963-2016-supplement.
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