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Abstract. The clustering of severe European windstorms

on annual timescales has substantial impacts on the

(re-)insurance industry. Our knowledge of the risk is limited

by large uncertainties in estimates of clustering from typi-

cal historical storm data sets covering the past few decades.

Eight storm data sets are gathered for analysis in this study

in order to reduce these uncertainties. Six of the data sets

contain more than 100 years of severe storm information to

reduce sampling errors, and observational errors are reduced

by the diversity of information sources and analysis methods

between storm data sets. All storm severity measures used in

this study reflect damage, to suit (re-)insurance applications.

The shortest storm data set of 42 years provides indica-

tions of stronger clustering with severity, particularly for re-

gions off the main storm track in central Europe and France.

However, clustering estimates have very large sampling and

observational errors, exemplified by large changes in esti-

mates in central Europe upon removal of one stormy season,

1989/1990. The extended storm records place 1989/1990 into

a much longer historical context to produce more robust es-

timates of clustering. All the extended storm data sets show

increased clustering between more severe storms from return

periods (RPs) of 0.5 years to the longest measured RPs of

about 20 years. Further, they contain signs of stronger clus-

tering off the main storm track, and weaker clustering for

smaller-sized areas, though these signals are more uncertain

as they are drawn from smaller data samples. These new

ultra-long storm data sets provide new information on clus-

tering to improve our management of this risk.

1 Introduction

European windstorms caused economic losses in excess of

USD 25 billion (indexed to 2008) during the landmark years

of 1990 and 1999 (Barredo, 2010, using data from the

NATHAN database of Munich Re). These huge losses were

caused by multiple occurrences of multi-billion dollar loss

events, as can be seen in Fig. 2 of Barredo (2010), and

strongly suggested severe European windstorms are tempo-

rally clustered. Mailier et al. (2006) analysed clustering in

the NCEP reanalysis data set (Kalnay et al., 1996) and found

clustering of winter wind storm occurrences in Europe, with

evidence that clustering may be stronger for more severe

storms. An analysis of similar data by Vitolo et al. (2009),

and of other reanalysis data sets by Pinto et al. (2013), found

similar results and supplied clearer evidence of stronger clus-

tering of the more severe storms.

The most important practical issue caused by significant

clustering of severe storms is the threat to the solvency of

(re-)insurance companies. The first step towards a more ro-

bust (re-)insurance industry, one which can better withstand

extreme annual losses, is to measure the observed annual

clustering of storms for different severities. Meteorologi-

cal measures of storm severity are common in published

work, such as relative vorticity at 850 hPa used by Mailier

et al. (2006) and Vitolo et al. (2009), or the depth of the cen-

tral pressure used by Pinto et al. (2013) and Economou et

al. (2015). The damage potential of these storms is a more ap-

propriate measure of storm severity for insurance purposes,

taking into account its variability with local wind climate

(Klawa and Ulbrich, 2003), and will be used throughout this

study to characterize storm strength.
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Karremann et al. (2014a) used severity metrics which were

validated for (re-)insurance purposes and measured storm

severity in terms of local return levels. This use of standard

insurance industry expressions of severity makes their results

more relevant to end users, but perhaps of more importance

is that all storm severity metrics can be easily translated to

this common scale of return levels to enable intercomparison

of disparate severity measures. Return levels will be used in

this study to allow intercomparison of a wide variety of storm

data sets. Karremann et al. (2014b) extend results from Ger-

many to many other countries impacted by wind storms to

provide a fuller picture of clustering as a function of local

storm severity in Europe. However, the true clustering cli-

mate is obscured by large uncertainties due to sampling er-

rors, as illustrated by the 90 % bootstrap confidence inter-

val (CI) in Fig. 6 of Vitolo et al. (2009), based on 50 years

of data. Those results imply a very wide range of true, un-

derlying climates of storm clustering could produce the 30-

year sample data of severe storms analysed by Karremann et

al. (2014a, b).

Uncertainties from standard data sets are particularly large

because clustering depends on the variance of annual storm

counts, rather than mean behaviour. These large impacts of

sampling and observational errors limit our knowledge of

clustering from standard multidecadal storm data sets. There

are two options to reduce this uncertainty: (i) build models

of the physical processes which produce clustering to fill in

observational gaps or (ii) gain more knowledge of clustering

either by new analysis methods or new historical data sets.

Regarding option (i), climate models attempt to simulate

climate system processes and their long simulations have the

potential to provide much smaller sampling errors. However,

previous studies find significant differences between climate

models and observed behaviour (e.g. Kvamsto et al., 2008,

and the underestimate of clustering for most severe storms in

Tables 3a and b of Karremann et al., 2014a). New research

by Pinto et al. (2014) looks for the underlying mechanisms

generating the cyclone families and persistent climate states

that produce severe clusters on seasonal timescales. This in-

formation could be used to improve climate models, or as

the foundation of simpler statistical models of the underly-

ing processes which produce clustering, both of which could

fill gaps in clustering knowledge.

Regarding option (ii), the novel analysis of a standard data

set by Hunter et al. (2015) reveals a link between annual fre-

quency and severity of storms which informs on clustering

behaviour. Alternatively, we can gain new knowledge of clus-

tering from new storm data sets. This article presents new ex-

tended storm data sets and analyses their clustering character

to produce a fuller picture of clustering. To this end, seven

extended records of historical storms are described in Sect. 2,

in addition to a more standard data set of 42 years in length.

The seven extended historical records reduce sampling errors

by their increased length and provide insight into impacts of

observational errors, since these data sets are based on inde-

pendent data sources and analysis methods.

Section 3 describes the method of analysing data and has

two main parts: first, the measure of clustering for a group

of storms is defined, and, second, the method of converting

the disparate measures of storm severity in the eight differ-

ent data sets to a common form is described. The observed

clustering of European windstorms is presented in Sect. 4, to-

gether with a discussion of estimates and errors. A summary

is given in the final section.

2 Data

A total of eight storm data sets are used in this study, all

of which contain the date and a measure of damage severity

of each storm. Table 1 provides a summary description of

all storm data sets described in more detail below. The last

column of Table 1 provides the brief name used for each data

set.

Two extended data sets of storms in the UK are stud-

ied. The first (UK-Lamb-300) is the list of storms and their

Storm Severity Index (SSI) values listed in pages 8 to 10 of

Lamb and Frydendahl (1991). Their SSI measures are esti-

mated from surface weather reports, meteorological analy-

ses, and damage information from a variety of documentary

sources and reflect the damage severity of storms. The clus-

tering analysis presented in Sect. 4 is restricted to the storms

in the period from 1690 to 1989, due to incompleteness of

reportage in earlier times, and to those 44 storms with SSI

values of 2000 or higher. This high severity threshold en-

sures both a more homogeneous time series and more confi-

dent estimates of their severity, due to the increased attention

and better documentation of the most severe storms in this

period.

The second UK data set (UK-RMS-160) is a list of storm

fatalities in the UK in the period 1835 to 1994 gathered by

Risk Management Solutions (hereafter RMS). This was ex-

tracted from archives of The Times newspaper by search-

ing its index using the terms “storm” and “gale” (Robert

Muir-Wood, personal communication, 2015). The fatalities

are considered to be accurately reported throughout this pe-

riod, and the data set is considered complete since bigger na-

tional issues would reduce space or prominence attached to

more minor storms events but not remove them completely.

Two factors were applied to reported fatalities to homogenize

this data set: first, a population factor indexes all fatalities

to 1994 national population levels, and, second, night-time

storm fatalities are scaled by a factor of 4 to produce as-if

daytime fatalities. Storm fatalities reflect population densi-

ties; hence this index is more closely related to actual damage

than wind speed intensity, and given the much more densely

populated southern half of the UK, the data set is viewed as

a proxy of storm damage severity in the southern half of the
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Table 1. Summary of storm data sets.

Region Source Time period Storm data type Processing Brief name∗

Europe RMS storm database 1972 to 2014 Measured wind speeds from

1000s of weather stations across

Europe

Compute SSI values for 142 ma-

jor storms

EU-RMS-42

United Kingdom Lamb and Frydendahl (1991) 1690 to 1989 Estimated storm severity index

based on surface weather reports,

meteorological analysis, and doc-

umentary damage information

Restricted analysis to 1690–1989

due to incompleteness of re-

portage in earlier times.

UK-Lamb-300

United Kingdom RMS (internal) fatality list 1835 to 1994 List of fatalities compiled from

newspaper archives

Applied population factor to in-

dex fatalities to 1994 population,

and night factor to scale night-

time fatalities to daytime

UK-RMS-160

Netherlands Cusack (2013) 1910 to 2014 Measured wind speeds based on

Royal Netherlands Meteorologi-

cal Institute (KNMI) data

Homogenized using KNMI meta-

data and computed national SSI

values for each storm

NL-KNMI-105

Germany Deutscher Wetterdienst (DWD) past 60 years Publicly available peak gust data

for climate stations, available on

the DWD website

Selected seven stations with min-

imal changes to wind observ-

ing system over time, then com-

pute national SSI values for each

storm

DE-DWD-60

Czech Republic Brázdil et al. (2004) 1500 to 1999 Detailed damage descriptions Assigned storms into two sever-

ity classes: (1) local or large-scale

weak damage, (2) widespread in-

tense damage

CZ-Brázdil-500

France E. Garnier, private

communication, 2015

and Bessemoulin (2002)

1650 to 1999 List of storms with documentary

descriptions of wind damage

For Bessemoulin data set, we as-

signed a Beaufort-scale severity

based on documentary damage

severity and spatial extent

FR-Garnier-350

Switzerland Stucki et al. (2014) 1859 to 2011 List of storms, some with docu-

mentary descriptions

Damage severity taken directly

from Stucki et al. data set. Sum-

mer storms (May to September)

are excluded.

CH-Stucki-153

∗ This brief name will be used in text to refer to each data set.

country. Figure 1 shows a time series of standardized storm

fatalities for the full 160-year record.

Extended 105-year records of winds at five stations from

the Royal Netherlands Meteorological Institute (KNMI) are

used to define storminess in the Netherlands in the period

from 1910 to 2014 (NL-KNMI-105). The data and analy-

sis are described in Cusack (2013). In brief, the winds from

five weather stations are merged to form an aggregate SSI

value for each storm. The data are complete, and the spread

of station locations geographically ensures the storm sever-

ity represents national values. The largest uncertainties arise

from several significant changes in wind measurement prac-

tice in the first few decades. Intensive homogenization meth-

ods are applied, based on station metadata made available by

KNMI, complemented with statistical methods (see the Sup-

plement of Cusack, 2013). The homogenization serves to re-

duce but cannot completely remove observational errors, and

the final time series of storm severities will inevitably contain

uncertainties. The top 30 or so storms have been compared

with documentary sources such as the KNMI list available

at http://projects.knmi.nl/hydra/cgi-bin/storm_list.cgi, and

other independent sources based on documentary records,

and corroborate the significant storms in this KNMI-derived

data set.

The public website of Deutscher Wetterdienst (DWD) pro-

vides peak gust data and associated metadata for climate sta-

tions covering the past 60 years (DE-DWD-60). Seven sta-

tions with minimal changes to the wind observing system

over their entire records were chosen, with locations shown

in Fig. 2. SSI values for Germany were computed for indi-

vidual storms over the past 60 years using the method from

Cusack (2013) applied to these seven stations. While the sta-

tionary observational practices reduce uncertainties in results

from inhomogeneities, the small number of selected stations

covering such a large area introduces errors in estimated

severity. The top storms produced by this analysis were com-

pared to the list of DWD storms provided in Table 1 of Kar-

remann et al. (2014a) – based on much higher station density

– and there is high correlation. The larger spatial extent of

more severe storms leads to this result.

Brázdil et al. (2004) describe windstorm damage in the

present-day Czech Republic from 1500 to 1999 based on

research of a wide variety of documentary sources (CZ-

Brázdil-500). Their detailed descriptions have been manually

analysed into two storm severity classes: class 1 for local-

scale damage, or large-scale weak damage, and class 2 for

widespread, intense damage. Summer storms forced by con-

vection have been removed. Figure 3 displays the number

of storms per century for each severity class. Strong tempo-
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Figure 1. Time series of storm fatalities in the UK from the UK-RMS-160 data set. All data are adjusted as if the storms had occurred during

daytime and trended to 1994 population levels.

Figure 2. The location of the seven DWD weather stations in the

DE-DWD-60 data set.

ral trends can be seen in these data: there is a large increase

in frequency of weaker storms in the last 200 years and in-

creasing occurrence of the stronger storms throughout the pe-

riod. These temporal trends are most likely due to changes in

amount of documentary evidence through time. Figure 3 in-

dicates that the reduction in sampling error achieved by such

a long data set will be offset to some extent by larger uncer-

tainties from reporting inhomogeneities. The impact of these

non-stationarities will be explored in the results section.

Stucki et al. (2014) describe a database of wind storms in

Switzerland during the period 1859–2011 (CH-Stucki-153).

In brief, they use a wide variety of information, including

damage information from buildings and forestry and mete-

orological information from anemometers and reanalyses, to

identify storm events then assign one of three severity ratings

to each storm, depending on the severity and spatial scale

of damage in Switzerland. Summer wind storms are not in-

frequent in Switzerland, and all damaging wind events from

May to September in the Stucki et al. database are excluded

from this analysis of extratropical cyclone clustering. A full

listing of the wind damage events in their database is given

in the Supplement of Stucki et al. (2014).
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Figure 3. Histogram of storm occurrences per century in Czech Republic from the CZ-Brázdil-500 data set for (a) weaker class 1 and

(b) stronger class 2 storms.

Figure 4. Count of storm occurrences per decade in France from the FR-Garnier-350 data set, split into three damage severity categories.

E. Garnier (private communication, 2015) provided a data

set of storms in France covering the period 1500–1999 based

on his research of documentary archives for descriptions of

wind damage (FR-Garnier-350). The historical storms are

assigned a severity using the Beaufort scale, based on the

documented damage severity and spatial extent. The present

analysis will focus on the 1650 to 1999 period when docu-

mentary evidence is considered more complete and homo-

geneous for severe storms. Our internal validation indicated

gaps in the Garnier record in the 19th century, and this has

been alleviated by the inclusion of storm information from

Bessemoulin (2002) to produce a more complete data set of

www.nat-hazards-earth-syst-sci.net/16/901/2016/ Nat. Hazards Earth Syst. Sci., 16, 901–913, 2016
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Figure 5. The location of weather stations with 15 or more years of

peak gust measurements in the EU-RMS-42 data set.

historical storm damage in France, though the completeness

of the data set in the late 18th and early 19th centuries is

uncertain, since both sources contain little information in a

period when other parts of Europe were stormy, especially

in the 1815 to 1840 period. The count of storms by decade

is shown in Fig. 4, split by their damage severity measured

using the Beaufort scale.

The storm footprints described in Bonazzi et al. (2012) are

the most spatially comprehensive set of storms (EU-RMS-

42). In brief, these footprints are derived from data sets of

weather station peak gusts from 15 countries beginning in

1972. The gust data sets comprise freely available data from

national meteorological services, together with some RMS

purchases from private providers. The locations of weather

stations with 15 or more years of peak gust measurements

are shown in Fig. 5. There are several hundred stations with

shorter records, particularly in eastern Europe, to comple-

ment the stations shown in Fig. 5. Each storm footprint con-

sists of the maximum observed gusts at each station for

the entirety of the storm, which are then spatially interpo-

lated to a more regular grid. The SSI is used to characterize

the damage severity of these storms using the method de-

scribed in Cusack (2013). The 135 footprints used in Bonazzi

et al. (2012) are supplemented with seven storms in 2011

to 2013 (Yoda in November 2011; Friedrich, Joachim, and

Patrick/Dagmar in December 2011; Ulli in January 2012;

Christian in October 2013 and Xaver in December 2013) us-

ing the same data and methods, to form a set spanning the 42-

year period from 1972 to 2013. This set of 142 storms con-

tains the top 20 to 25 of the strongest storms in major coun-

tries such as Germany, France, UK, and Netherlands, and the

top 10 to 20 storms in other countries, for the 1972–2013 pe-

riod. However, due to the large footprints, all 15 countries are

affected by many more storms than these limits. More spe-

cific details on this data set are given in Bonazzi et al. (2012).

3 Analysis methods

The strength of clustering used in most research to date

adopts the metric first proposed by Mailier et al. (2006).

Given a time series of annual storm counts, Xi , where i = 1,

2,. . . , N and N is the total number of storm years, Mailier et

al. (2006) defined clustering using the dispersion statistic D:

D =
Var(X)

E(X)
− 1, (1)

where Var(X) is the variance and E(X) is the expected (or

mean) value of observed yearly storm counts. As the variance

of a Poisson process is equal to its expected value, Eq. (1) can

be re-written as follows:

D =
Var(X)−Var(Pois)

Var(Pois)
, (2)

where Var(Pois) is the variance of a Poisson process with

expected value E(X). The metric of clustering of Mailier et

al. is the relative excess variance of the data above a Poisson

process.

Raschke (2015) described howD is proportional to the to-

tal rate of storms in the set being analysed. Therefore, D re-

flects both the strength of clustering and the size of the storm

group studied. Raschke proposed a new metric of clustering

called “Beta” which isolates clustering strength from the size

of storm group being studied. Raschke’s metric simplifies to

the dispersion statistic in Eq. (1) normalized by the expecta-

tion of observed yearly storm counts (the mean rate):

β =
D

E(X)
. (3)

Since the variation of clustering with storm strength will be

explored, and more severe storms are rarer, Eq. (3) will be

used for all results in Sect. 4 to ensure no artefact of depen-

dence on storm numbers.

For each data set, all storms matching or exceeding a spec-

ified damage threshold in storm years defined from July to

following June were identified. Then, measures of variance

and mean annual occurrence rates are estimated directly from

the data, which are used to specify β in Eq. (3). Various dam-

age thresholds are used in each data set to explore the varia-

tion of clustering strength with storm severity. These severity

thresholds are expressed as return levels, following Karre-

mann et al. (2014a, b), and we refer to them as return periods

(RPs). In brief, the RP is defined to be the inverse of the an-

nual frequency of storms greater than or equal to the particu-

lar threshold severity. For example, if a group of storms con-

tain an average annual rate of 0.5 storms per year matching or

exceeding the threshold, then the storm severity is defined to

be RP= 2 years. This representation unifies dissimilar mea-

sures of severity (e.g. SSI, damage classes in Switzerland,

UK storm fatalities) to enable their intercomparison.
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Figure 6. Clustering strength (β) as a function of the storm severity groupings for historical storms in the EU-RMS-42 data set. The dashed

lines show the 95th confidence interval based on sampling error, and the dotted lines represent the 95th confidence interval of observational

errors.

The uncertainties in the best estimates of β are analysed to

provide more information on estimates of storm clustering.

The first source of uncertainty is due to the effect of finite

sample sizes on estimates of β and is related in concept to

the standard error. It is a measure of the spread of β values

associated with finite sampling of the true storm population,

and its estimation is now described. From the historical sam-

ple containingN years of historical storms, the parameters of

a negative binomial model are estimated. Then, an artificial

set ofN data points are randomly drawn from this model and

repeated to make 50 000 artificial data sets. The β values of

each of the 50 000 time series are computed, from which the

95th confidence interval (CI) is obtained. The 95th CI is used

to represent impacts of finite sample sizes on β estimates.

The second source of uncertainty is referred to as observa-

tional error and is due to inaccuracies in measured data which

are independent of errors due to finite sample sizes. This type

of error is unique to the observational data sets being studied.

A method of approximating its impact was created for storm

data sets and is described using an illustrative example in

which observational errors are to be computed for the subset

of storms exceeding RP1 severity in a 40-year data set. There

are 40 storms with RP1 or greater severity in a 40-year time

series. It is assumed that the strongest storms in the top half

of this subset – 20 storms – are known and fixed, while the

storms of rank 21 to 40 are subject to measurement uncer-

tainty. This uncertainty is simulated by randomly selecting

20 storms from ranks 21 to 60 of the original storm set, to

form a new subset of 40 RP1+ storms. The random selection

of 20 storms from ranks 21 to 60 is repeated to make 1000

storm sets, and the 95th CI is formed from the 1000 β val-

ues. This method is intended to produce a plausible guide to

impacts of measurement errors on estimates of β values.

4 Results and discussion

Figure 6 displays the variation of clustering with storm sever-

ity based on the EU-RMS-42 data set. The dashed lines in

Fig. 6 represent the 95th CI for each β estimate, while the

dotted lines represent uncertainty due to observational er-

rors, and they indicate large uncertainty in estimated β val-

ues from both sampling and observational errors. Combining

these two sources of uncertainty leads to the conclusion that

the amount of clustering at any specific severity threshold

would not be distinguished from a Poisson process (β = 0)

at the 5 % level.

This assessment of uncertainties at individual points is dis-

tinct from the broader question of whether the entire col-

lection of data in Fig. 6 is clustered. This is assessed as

follows: a set of storms equal to the largest rate (2.0 in

Fig. 6, or RP= 0.5) is created, with randomly assigned storm

strengths; then a time series of occurrence following a ran-

dom Poisson process is generated; the clustering coefficient

is computed for each severity threshold, depending on the

earlier designated severity assignments; this is repeated with

50 000 random sets of data, to form 50 000 Poisson samples

of β vs. RP. The empirical probability that the β of the ob-

served storms is greater than the Poisson sample is recorded

at each RP, and the probabilities at each RP are multiplied

together to form a score corresponding to the likelihood that

the observed β values are above that of a Poisson process.

The likelihood score is computed for each of the 50 000 Pois-

son samples, and it is found that the observations exceed

99.6 % of all Poisson samples. This finding suggests Euro-

pean storms with severity between RPs of 0.5 and 3 years

are significantly different from a Poisson process at the 1 %

level.

Results in Fig. 6 suggest greater clustering for more se-

vere storms, though the uncertainties are large. The question

of whether there is an increase in the clustering for more se-

vere storms is now addressed by analysing β gradients, as

www.nat-hazards-earth-syst-sci.net/16/901/2016/ Nat. Hazards Earth Syst. Sci., 16, 901–913, 2016
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Figure 7. As Fig. 6, for various countries in (a) northern part and (b) southern part of the study area.

follows: compute the best linear fit between observed β and

severity expressed as the logarithm of RP; fit negative bino-

mial model parameters to observed time series at RP= 0.5

threshold; generate a random negative binomial sample and

assign storm strength ranks randomly to it; then form subsets

for each RP severity threshold (this is essentially the same

method as above, except for a negative binomial rather than a

Poisson); compute β vs. RP for this random sample; then find

the best fitting gradient of β vs. log(RP); finally, repeat this

50 000 times to obtain a set of 50 000 gradients. It was found

that the gradient of β versus severity in the observed storm

set was more positive than 98.9 % of all randomly generated

samples. This leads to the conclusion that greater clustering

with stronger storms at the Europe scale is much more likely

than not, though the fact that 1.1 % of samples with randomly

assigned severity relationships have a more positive gradient

indicates some uncertainty in this finding.

The relationship between clustering strength and storm

severity in previous studies is obscured by the rate depen-

dency of the dispersion parameter described in Raschke

(2015). However, some previous studies contain storm rate

information which enables β to be derived from dispersion

values, and these are now described. Figure 3 of Pinto et

al. (2013) indicates higher β for more severe storms in the

North Atlantic and Europe from three different re-analysis

products. Figure 6 of Vitolo et al. (2009) contains storm num-

bers as well as dispersion, and their conversion to β suggests

a general upward trend of clustering strength with storm

severity. Both observational studies are in general agree-

ment with behaviour in the extended storm data sets anal-

ysed here, though the different measures of storm severity

in the three studies confound their comparison. In contrast,

Raschke (2015) finds a constant β is appropriate for RPs

from 1 to 5 years, using storm occurrences from a modern

coupled climate model simulation. The climate model data

are described in Karremann et al. (2014a), and they employ

a severity measure similar to that used in analysis of the long

historical data sets. This suggests we cannot gain the bene-

fits of smaller sampling errors from long integrations of the

ECHAM5 climate model at the present time, due to its inabil-

ity to simulate observed stronger clustering of more severe

storms. Kvamsto et al. (2008) note significant differences in

clustering between a different climate model and observa-

tions, though β versus storm severity is not analysed. These

two studies suggest climate models have different clustering

behaviour from observed; however, they represent a small

sample, and analysis of more climate models is needed to

make firmer, useful conclusions on climate models’ quality

Nat. Hazards Earth Syst. Sci., 16, 901–913, 2016 www.nat-hazards-earth-syst-sci.net/16/901/2016/
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Figure 8. As Fig. 7b, with 1989/1990 storm season excluded.

of clustering simulations. Finally, it is worth noting how con-

stant β with severity is explained by a model assuming inde-

pendent storm events following an inhomogeneous Poisson

process (Raschke, 2015). An alternative model is needed to

explain increased β values for more severe storms found in

historical storm data sets.

The clustering behaviour at national scales in the EU-

RMS-42 data set is now explored. Figure 7a displays β ver-

sus RP curves for some countries in the northern part of

the European area shown in Fig. 5, while Fig. 7b displays

curves for some of the more southern countries. The large

uncertainties in β values discussed above apply to national

scales too. Thus the differences between northern countries

in Fig. 7a lie well within the limits of error, and similarly

for southern countries in Fig. 7b. However, comparison of

Fig. 7a and b reveals a signal of stronger clustering for more

severe storms in the southern part of the domain. The main

driver of this north–south difference is the exceptional nature

of the storminess in January to March 1990 in the southern

countries. Figure 8 contains β versus RP curves for southern

countries when the 1989/1990 storm season is removed, and

it can be seen how clustering strengths at RPs of 1 to 3 years

are now much more similar between northern (Fig. 7a) and

southern (Fig. 8) parts of the domain. This exemplifies the

large sampling errors shown in Fig. 6: if this season had not

occurred, the clustering strengths in more southern countries

would be very different (Fig. 8 versus 7b). The conclusion

is that sampling errors have a major impact when storm data

sets are limited to the past few decades. Longer records help

to reduce such large sampling errors and place 1989/1990

into a fuller historical context. This is the motivation for

analysing longer historical data sets.

Figure 9 contains results from an analysis of the longer

storm data sets in the UK and Netherlands. Figure 7a indi-

cates low values of β in the UK at all RPs, and a test of

the hypothesis that the group of all data points are signif-

icantly different from a sample of Poisson data is rejected

at the 0.1 significance level, in common with most northern

countries. The results from extended UK storm data sets in

Fig. 9a show β values of about 1.0 for storms with severities

exceeding RPs of 5 years. The lengths of UK-Lamb-300 and

UK-RMS-160 data sets, and their independent methods of

gathering and assessing storm severities, combine to produce

significantly smaller uncertainties than those shown in Fig. 6,

raising confidence that more severe UK storms are clustered.

Figure 9b shows low levels of clustering in the Netherlands

from the NL-KNMI-105 storm data set, which is consistent

with analysis of EU-RMS-42 in NL. The raised clustering

value at the RP of 6 years in NL-KNMI-105 is very uncer-

tain due to limited sample sizes. However, similar behaviour

in the longer and independent data sets in the neighbouring

UK supports the raised clustering of storms above RP6 sever-

ity in NL-KNMI-105.

Figure 10 contains the clustering strengths found in four

extended data sets in the southern part of the study area. Re-

sults in Fig. 10a indicate lower levels of clustering in DE-

DWD-60 compared to the EU-RMS-42 data set. The DWD

clustering is more similar to the EU-RMS-42 data set with

1989/1990 removed. This may be due to greater weighting

of far northern Germany in the DWD data set (three of the

seven stations), since the 1989/1990 season was less extreme

in this area, relative to local storm climate. The dotted lines

in Fig. 10a represent β versus RP when one station is re-

moved from DE-DWD-60 and show DWD clustering is not

especially sensitive to any single weather station.

The results of analysing FR-Garnier-350 data set are

shown alongside those of EU-RMS-42 in Fig. 10b. The much

longer storm data set contains clear signs of clustering of the

most severe storms in France. The independence of the in-

formation sources, and the increased length of the Garnier–

Bessemoulin data set, raises confidence in the conclusion of

stronger clustering of more severe storms in France.

Figure 10c shows the results from analysing CZ-Brázdil-

500 data set in Czech Republic, alongside those from EU-

RMS-42. The results from the shorter data set showed great

sensitivity to the inclusion of the 1989/1990 storm season,
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Figure 9. Clustering strength (β) as a function of the storm severity groupings for (a) UK and (b) Netherlands.

Table 2. β for class 1 storms in the Brázdil data set, for various time periods.

1500–1599 1600–1699 1700–1799 1800–1899 1900–1999 1800–1999 1500–1999

RP (years) 1.80 2.38 1.54 0.90 0.58 0.71 1.12

β 1.19 0.27 −0.32 0.52 0.11 0.28 0.59

Table 3. As Table 2, for class 2 storms.

1700–1849 1850–1999 1700–1999 1500–1999

RP (years) 7.89 10.00 8.82 11.09

β 4.07 1.74 3.19 2.97

and an independent, longer data set is very useful to help

place 1989/1990 in historical context. However, the reporting

inhomogeneities in this long data set (Sect. 2) are a source of

significant uncertainty in results. Table 2 shows the clustering

coefficient for class 1 storms for a range of different time pe-

riods in CZ-Brázdil-500, and Table 3 shows results for class

2 storms. B varies substantially according to the time period

studied, though a clear signal emerges of lower values at RP

threshold of around 1 year, and significantly stronger cluster-

ing of more severe storms (RP threshold of around 10 years).

Using the information in Fig. 3, the 1800 to 1999 period is

chosen to represent clustering of class 1 storms and stronger,

whereas 1700 to 1999 is chosen to represent class 2 storms,

in Fig. 10c. The main finding from this much longer data

set is weaker clustering around RP1 thresholds and notably

stronger clustering of more severe storms. Further investiga-

tion of EU-RMS-42 at shorter RP thresholds reveals a 6-year

period of elevated gust readings from about 1989 to 1995

suggesting inhomogeneous observation practices. This adds

to the acute sensitivity of β to the inclusion of the 1989/1990

season in the shorter data set, as shown in Fig. 10c. The ex-

istence of significant observational errors in the most recent
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Figure 10. Clustering strength (β) as a function of storm severity for (a) Germany, (b) France, (c) Czech Republic, and (d) Switzerland.
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Figure 11. Clustering strength (β) versus storm severity from extended historical storm data sets.

records of storms illustrates the benefits of analysing multi-

ple, independent storm data sets.

Figure 10d contains the results from an analysis of Swiss

storms. The extended CH-Stucki-153 data set indicates weak

clustering at shorter RPs, and slightly larger values at longer

RPs, which supports the findings from EU-RMS-42. B val-

ues are lower than in nearby France, Germany, and Czech

Republic around RP1–3 thresholds. The most unique feature

of Switzerland relative to these nearby countries is its much

smaller spatial extent. This suggests a dependence of local β

values on size of area studied, which is consistent with the

lower dispersion values for narrower latitudinal barriers re-

ported in Vitolo et al. (2009).

Results from all extended storm data sets are presented in

Fig. 11. The results contain two main features. First, there is

generally stronger clustering in southern countries: at shorter

RPs, the Netherlands β values are generally below those of

Germany, Czech Republic, and Switzerland, while the UK

values at longer RPs are generally lower than in France and

the Czech Republic. This geographical variation is consistent

with that found by comparing Fig. 7a and b; however, the

signal is smaller in longer data sets. Given the varied nature

and independence of these data sets, and their much longer

records of storm history, there is some confidence that coun-

tries further from the main storm track in Europe experience

stronger clustering of storms, though significant uncertain-

ties in our clustering knowledge remain. The second notable

aspect of results in Fig. 11 concerns the earlier finding of a

strong sensitivity of β values in more southern countries to

inclusion of the 1989/1990 season (Figs. 7b and 8). The β

values around RP1–3 thresholds from the extended data sets

are lower than those in Fig. 7b (with 1989/1990) and closer

to those in Fig. 8 (without 1989/1990). This is a practical il-

lustration of large impacts from sampling errors in data sets

spanning a few recent decades: too much weight is placed on

the big cluster in 1989/1990 inflating β values, and longer-

term records are needed to place the 1989/1990 storm cluster

in fuller historical context.

5 Summary

The clustering of extratropical cyclones in Europe has been

investigated from the perspective of the (re-)insurance sec-

tor since they suffer the most material impacts from this

phenomenon. Specifically, storms were gathered into groups

according to exceedance of damage severity thresholds ex-

pressed as return periods (RPs), and clustering on annual

timescales was studied.

Perhaps the most notable characteristic of clustering is the

unusually large uncertainties of estimates based on typical

storm data set lengths of a few decades, due to its dependence

on storm count variance. This was found in previous research

and has been explored in more detail in this study. Both the

sampling and observational errors are large for estimates of

clustering for any single group of storms.

Eight different storm data sets were gathered to reduce

these large uncertainties. The mix of different information

sources and storm severity measures reduce observational

errors, and six of the data sets were more than 100 years

in length and help reduce sampling errors. Quality control

was applied to each data set: the biggest issue with such long

data sets is temporal inhomogeneity and the period of analy-

sis was shortened for some data sets to improve this aspect.

Finally, the intercomparison of data with different units of

storm severity (e.g. SSI, damage severity classes, fatalities)

was made possible by expressing each data set’s storm sever-

ities in units of local RP.

The evidence from all data sets strongly suggests that clus-

tering increases with storm severity, for the range of severi-

ties analysed, from RP0.5 up to about 20 years. The 42-year

RMS storm database shows a distinction between northern

areas with weaker clustering, to regions off the main storm

track in central Europe and France with stronger clustering

of severe storms. However, the removal of one very stormy

season (1989/1990) eliminates differences between the two

regions. This epitomizes the large sampling errors of clus-

tering estimates based on a few decades of data. The longer
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data sets also contain signs of stronger clustering in coun-

tries off the main storm track, with notable years in history

of multiple severe storms. Conversely, countries closer to the

storm track show little signs of clustering of storms at RPs

around 1 year, though three longer data sets in the UK and

Netherlands indicate some clustering of storms at RPs longer

than 5 years. While the differences between individual coun-

tries are less significant due to large uncertainties, there is

evidence from multiple, diverse historical data sets for the

difference between regions on and off the storm track. Fi-

nally, the comparison of clustering in Switzerland with larger

neighbours indicates weaker clustering with smaller spatial

scales of analysis, which is consistent with earlier published

findings.

While the multiple data sets used in this study reduce un-

certainties in estimates of severe storm clustering, there is

plenty of scope for further reductions. Europe is relatively

rich in historical documentation, and expanded research into

these archives would be very beneficial. Climate models have

the capability to provide much smaller sampling errors via

millennial-scale simulations, and it is hoped models with val-

idated relations between clustering strength and storm sever-

ity will be available in the future.
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