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Abstract. We applied Gravity Recovery and Climate Ex-

periment (GRACE) Tellus products in combination with

Global Land Data Assimilation System (GLDAS) simula-

tions and data from reports, to analyze variations in terres-

trial water storage (TWS) in China as a whole and eight

of its basins from 2003 to 2013. Amplitudes of TWS were

well restored after scaling, and showed good correlations

with those estimated from models at the basin scale. TWS

generally followed variations in annual precipitation; it de-

creased linearly in the Huai River basin (−0.56 cmyr−1) and

increased with fluctuations in the Changjiang River basin

(0.35 cmyr−1), Zhujiang basin (0.55 cmyr−1) and southeast

rivers basin (0.70 cmyr−1). In the Hai River basin and Yel-

low River basin, groundwater exploitation may have altered

TWS’s response to climate, and TWS kept decreasing until

2012. Changes in soil moisture storage contributed over 50 %

of variance in TWS in most basins. Precipitation and runoff

showed a large impact on TWS, with more explained TWS

in the south than in the north. North China and southwest

rivers region exhibited long-term TWS depletions. TWS has

increased significantly over recent decades in the middle and

lower reaches of Changjiang River, southeastern coastal ar-

eas, as well as the Hoh Xil, and the headstream region of

the Yellow River in the Tibetan Plateau. The findings in this

study could be helpful to climate change impact research and

disaster mitigation planning.

1 Introduction

Terrestrial water storage (TWS) is a key component of the

global hydrological cycle and plays a critical role in Earth’s

climate system (Famiglietti, 2004). Despite its importance,

there are still many gaps in the existing water storage obser-

vation networks at both the global and regional scale (Letten-

maier and Famiglietti, 2006). Although recent advances in

satellite imaging and altimetry have strengthened our mon-

itoring capability over a vast area, these technologies pri-

marily provide only variation information for single fac-

tors related to TWS, such as precipitation estimates, sur-

face soil moisture, snow cover, and river/lake level. With

the progress in satellite gravimetric techniques, direct obser-

vation of TWS has become available. The Gravity Recov-

ery and Climate Experiment (GRACE) twin satellites were

launched in 2002 as a joint space mission between NASA

(US) and DLR (German) to observe variations in Earth’s

gravity field. Over land, these observations provide informa-

tion of integrated water storage changes in the vertical pro-

file, including surface water reservoirs, upper layers of soil,

and underground water reservoirs.

At global, regional, and basin scale, GRACE data have

been applied to analyze seasonal cycle characteristics of

TWS (Schmidt et al., 2006; Syed et al., 2008; Strassberg

et al., 2007). Because of their sensitivity to water amount

over large areas, GRACE data can also be a useful tool for

identifying impact caused by extreme climate events like

droughts and floods, or for tracking climate change’s influ-

ence on local water resources (Andersen et al., 2005; Long

et al., 2013; Phillips et al., 2012). Scientists found that inclu-

sion of GRACE-based total water storage information allows

the predisposition of a river basin to flooding to be assessed

as much as 5–11 months in advance (Reager et al., 2014).

Chen et al. (2009, 2010) quantified an extreme drought in

2005 and an extreme flood in 2009 in the Amazon river,
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and found that local interannual TWS changes are closely

connected to ENSO events in the tropical Pacific. Because

of the lack of direct observations independent of GRACE

TWS, TWS estimated from the atmospheric water balance,

land water balance, and model simulations was used to com-

pare with and verify the GRACE TWS (Yirdaw et al., 2008;

Zeng et al., 2008; Syed et al., 2005; Schmidt et al., 2006).

These papers have demonstrated that GRACE data are capa-

ble of identifying seasonal and long-term variations in TWS

and have also made contributions to the development of cli-

mate and hydrological models.

GRACE TWS combined with hydrological information

from other observations or models could help us further un-

derstand and manage variables in the hydrological cycle.

Land surface model simulations were used to infer the roles

of water components (snow water, canopy water, and soil

water) in GRACE terrestrial water storage change (TWSC)

and to understand the effect of hydrologic fluxes fluctua-

tion on water storage (Syed et al., 2008; Kim et al., 2009).

With the help of TRMM data and NOAA’s Climate Predic-

tion Center (CPC) model simulations, Crowley et al. (2008)

found that the source (precipitation) is more important than

sink (evapotranspiration and runoff) to the water balance in

the Amazon basin. Other papers tried to separate variations

in groundwater storage from GRACE TWS, and their re-

sults showed agreement with in situ observations (Rodell et

al., 2009; Leblanc et al., 2009; Famiglietti et al., 2011; Jin

and Feng, 2013).

In China, GRACE data have been compared with several

model simulations and used to extract TWS’s spatial and

temporal variation characteristics as well as its responses to

droughts (Duan et al., 2007; Zhong et al., 2009; Wang and

Yang, 2013; Hu et al., 2006; Xu et al., 2013; Tang et al., 2013,

2014). The serious TWS depletion in north China has gained

much attention in recent years (Su et al., 2011; Moiwo et

al., 2009; Feng et al., 2013). Previous research has mostly

focused on characteristics of the seasonal cycle in TWS in

certain regions, and there has been less further analysis of

long-term variations over China. Moreover, early research

was typically limited by the short period of data availabil-

ity and the obsolete version, and leakage errors in TWS from

processed GRACE data could also misguide analyses at the

regional scale.

China is one of the countries that is confronted with prob-

lems of water scarcity and has suffered several regional ex-

treme climate events in recent decades. The knowledge of

TWS variations over recent decades is necessary for un-

derstanding the large-scale water storage variation process.

In this study, the GRACE Tellus land products and Global

Land Data Assimilation System (GLDAS) products, com-

bined with data records from national water resources bul-

letins, were used to analyze long-term TWS variations in

China as a whole, as well as in its eight major basins. This

study could give guidance to water resource management and

future research on areas with critical water storage changes

in China. For better understanding, main acronyms and vari-

ables used in this paper are listed in Table 1.

2 Data and methods

2.1 Data

The monthly grids from GRACE Tellus land data are applied

to analyze TWS variations. The product is derived from the

latest Release-05 spherical harmonics, which is an improve-

ment over the previous 04 version. Several institutions pro-

vide gravity solutions, such as the University of Texas Center

for Space Research (CSR), NASA’s Jet Propulsion Labora-

tory (JPL), and Deutsches GeoForschungsZentrum (GFZ).

A recent comparison suggested that TWS estimates from

GFZ, CSR, and JPL solutions were highly correlated with

one other, and tiny differences among them were within the

margin of solution’s error (Sakumura et al., 2014). Among

these three products, the one from CSR had the smallest

root-mean-square (RMS) of deviations between the ensem-

ble mean and itself in 156 basins around the world. In this

study, we chose products derived from CSR’s solution for the

following analyses. The paper by Swenson and Wahr (2006)

describes the details of the post-processing for the spheri-

cal harmonics. The final grid (1◦ in both latitude and longi-

tude) values are presented in the form of changes in equiva-

lent water thickness (unit: cm) relative to a time–mean base-

line. The data period is from January 2003 to December 2013

and months of absent data are as follows: June 2003, January

and June 2011, May and October 2012, and March, August,

and September 2013. Grid-scale factors, which correspond

to the gridded product, were used to partially correct leakage

errors and restore the amplitude-damping caused by the fil-

tering process. Errors and uncertainties in mass variation can

be computed from the scaled gridded data (Launderer and

Swenson, 2012). In this paper, gridded fields of scale factors

and error estimates provided along with the GRACE Tellus

products were calculated following Landerer’s method based

on NCAR’s CLM4 model (Oleson et al., 2008). Recently,

Long et al. (2015) conducted comprehensive comparisons

to assess skills and uncertainties of different approaches for

processing GRACE data to restore signal losses caused by

spatial filtering.

Monthly flux/state variables (Table 2) from GLDAS

(Rodell et al., 2004) were applied to estimate water storage

variations, and these variables were also used to address vari-

ations in the components of water storage. GLDAS drives

four land surface models: Mosaic (Koster and Suarez, 1996),

Noah (Chen et al., 1996; Koren et al., 1999; Betts et al., 1997;

Ek et al., 2003), Community Land Model (CLM) (Bonan

et al., 1998; Dickinson et al., 1993; Dai and Zeng, 1997),

and Variable Infiltration Capacity (VIC) (Liang et al., 1994,

1996). Satellite-based and ground-based observations are in-

tegrated into these models to generate optimal fields of land
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Table 1. List of main acronyms and variables used in the paper.

Acronym/ Full name

variable

GRACE Gravity Recovery and Climate Experiment

NASA National Aeronautics and Space Administration

DLR Deutsches Zentrum für Luft- und Raumfahrt

CSR University of Texas, Center for Space Research

JPL Jet Propulsion Laboratory

GFZ Deutsches GeoForschungsZentrum

CMAP Climate Prediction Center Merged

Analysis of Precipitation

CPC Climate Prediction Center

CMA China Meteorological Administration

GLDAS Global Land Data Assimilation System

CLM Community Land Model

VIC Variable Infiltration Capacity model

PDF Probability density function

RMS Root-mean-square

TWS Terrestrial water storage

TWSC Terrestrial water storage change

SWE Snow water equivalent

CWS Canopy water storage

SM Soil moisture

P Precipitation

E Evapotranspiration

Q Runoff

Table 2. Variables used from the GLDAS simulations.

GLDAS variables Unit Temporal Spatial

resolution resolution

Soil moisture (SM) kgm2 Monthly 1◦× 1◦

Snow water equivalent (SWE) kgm2 Monthly 1◦× 1◦

Canopy water storage (CWS) kgm2 Monthly 1◦× 1◦

Precipitation (P ) kgm−2 s−1 Monthly 1◦× 1◦

Evapotranspiration (E) kgm−2 s−1 Monthly 1◦× 1◦

Runoff (Q) kgm−2 s−1 Monthly 1◦× 1◦

surface states and fluxes. The forcings for these models from

2001 to present are a combination of NOAA/GDAS atmo-

spheric analysis fields, spatially and temporally disaggre-

gated NOAA Climate Prediction Center Merged Analysis

of Precipitation (CMAP) fields (Xie and Arkin, 1996) and

observation-based downward shortwave and long-wave radi-

ation fields from the Air Force Weather Agency (AFWA).

Drainage networks are mostly distributed in the monsoon-

dominated middle and east China (Fig. 1a), which are also

highly populated areas with high levels of water consump-

tion. In this study, we specifically focus on eight large basins:

Heilongjiang River, Liao River, Hai River, Huai River, Yel-

low River, Changjiang River, Zhujiang, southeast rivers (with

abbreviations of HLJ, LR, HaiR, HuaiR, YR, CJ, ZJ, and

SERs, respectively, in the following tables). Desert is the

dominant land cover in northwestern China, while glacier,

snow cover, and frozen soil are widely distributed across the

Tibetan Plateau (Fig. 1b). Vector data for the desert are ac-

quired from the Data Sharing Infrastructure of Earth Sys-

tem Science (http://www.geodata.cn). The Second Glacier

Inventory Dataset of China (Version 1.0) is acquired from

Science Data Center for Cold and Arid Regions (http://

westdc.westgis.ac.cn). Annual Chinese water resources bul-

letins from 2003 to 2012 are acquired from the Ministry of

Water Resources to assist with the analysis. Values for sur-

face water resources, groundwater resources and gross water

resources provided in the water resources bulletins are the re-

sults of existing monitoring and statistical analyses (Fig. 5).

Surface water resources refer to water storage in rivers, lakes,

and glaciers, and groundwater resources mainly refer to wa-

ter storage in underground shallow aquifers.

2.2 Methods

2.2.1 Data preprocessing

Unlike scale factor applied for region-averaged TWS time

series in previous research (Chen et al., 2007; Landerer et

al., 2010; Feng et al., 2013), monthly products from GRACE

Tellus land data were multiplied by grid-scale factors to re-

store signal attenuation. Next, the average value for each grid

from Janunary in 2003 to December 2013 was subtracted

from all other scaled monthly grids. The deviations to time-

averaged TWS were used for the following analyses. At the

regional scale, all grids in a basin were averaged with the co-

sine of latitude as the weight, and missing values for absent

months were interpolated from adjacent available months.

For regionally averaged TWS, total errors were calculated

from error fields provided along with the GRACE products

(Eqs. 1, 2, Table 5). Because of spatial correlation among

neighboring grids, covariance was considered in the calcula-

tion of regional-scale error Errorregion (Landerer and Swen-

son, 2012; Eq. 1). The dist in Eq. (1) is the geometric distance

between any two grids in the basin (unit: km); n is the num-

ber of valid grids in a specific basin; β is the de-correlation

length, which is set to 300 for measurement error and 100

for leakage error; i and j indicate the value in the ith col-

umn and j th row of the grid data. The regional-scale total

error Errortotal included both regional-scale measurement er-

ror Errormeasure and regional-scale leakage error Errorleakage

(Eq. 2). Early analysis suggested that the TWS variations

could be distinguished from GRACE monthly data over re-

gions larger than 200 000 km2, with an accuracy of 1.5 cm

equivalent water thickness (Rodell and Famiglietti, 1999),

and the larger the spatial scale of the research area was, the

better the accuracy the results could acquire (Swenson and

Wahr, 2003; Wahr et al., 2004).

Errorregion =

√√√√ n∑
i=1

n∑
j=1

Errori ·Errorj · e
−

(
dist2i,j

)/(
2·β2

)/
n (1)

Errortotal =

√
(Errormeasure)

2
+
(
Errorleakage

)2
(2)

State variables (snow water equivalent, SWE; canopy water

storage, CWS; total soil moisture storage in all layers, SM)
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Figure 1. Schematic diagrams of research area (A: Heilongjiang River, B: Liao River, C: Hai River, D: Huai River, E: Yellow River,

F: Changjiang River, G: Zhujiang, H: southeast rivers).

and flux variables (precipitation, P ; evapotranspiration, E;

runoff, Q) from the four models in GLDAS were presented

in the form of equivalent water thickness (unit: cm). The time

averages were removed from these variables following the

process used for the GRACE data to keep the same time base

for comparison. The ensemble mean (arithmetic average) of

the four models’ simulations was also calculated to be used

as the representative of model results.

2.2.2 TWS estimates from model simulations

In despite of deficiencies in model simulations, state vari-

ables SWE, CWS, and SM from GLDAS outputs can be

combined to estimate TWS (Eq. 3). Although the estimates

are not able to fully reflect the information in the actual TWS

variations, they can still capture the fluctuation and magni-

tude in land hydrology, which is necessary for assessing and

understanding the TWS observation from GRACE (Syed et

al., 2004).

TWS= SWE+CWS+SM (3)

Pearson correlation coefficients R between TWS from scaled

GRACE and model simulations are listed in Table 3. TWS

estimates from CLM and VIC have relatively poor correla-

tions with GRACE observations at the national scale. How-

ever, all model estimates generally have high correlation co-

efficients at the regional scale, except in the Heilongjiang

River basin. The differences between models and regions

showed that model simulations have a high degree of uncer-

tainties, and TWS estimates from NOAH and the GLDAS en-

semble mean have a good agreement with TWS from scaled

GRACE at both the national and regional scale. The dif-

ferences between the GLDAS simulations and the GRACE

observations are mainly the result of missing information

on components of land hydrology, such as groundwater and

reservoirs, and poor parameterization (snow cover, frost soil,

etc.) in the model mechanism (Syed et al., 2008). These com-

ponents or processes could be critical to TWS in some parts

Table 3. Pearson correlation coefficients r between regionally aver-

aged TWS from the scaled GRACE data and model simulations in

China as a whole and eight of its basins.

Region CLM VIC MOSAIC NOAH Ensemble

mean

HLJ 0.83 0.84 0.74 0.87 0.86

LR 0.71 0.65 0.54 0.64 0.64

HaiR 0.43 0.54 0.66 0.61 0.61

HuaiR 0.68 0.54 0.68 0.79 0.72

YR 0.77 0.62 0.62 0.70 0.69

CJ 0.61 0.51 0.47 0.77 0.60

ZJ 0.70 0.77 0.79 0.82 0.81

SERs 0.70 0.69 0.83 0.76 0.81

CHN 0.25 0.31 0.53 0.79 0.55

Table 4. Error statistics of regionally averaged TWS (unit: cm).

Region Area Measurement Leakage Total Bias for

(km2) error error error GLDAS

China 9 510 610 0.38 0.31 0.54 0.63

Changjiang River 1 815 855 0.90 0.79 1.27 1.47

Heilongjiang River 956 832 0.98 0.72 1.39 1.10

Yellow River 860 883 0.78 0.73 1.10 0.72

Zhujiang 463 050 1.86 1.62 2.63 3.35

Hai River 327 096 1.30 1.36 1.84 1.59

Liao River 310 881 1.13 0.98 1.60 1.61

Huai River 288 152 1.74 1.54 2.46 3.51

Southeast rivers 242 524 1.44 1.29 2.04 3.69

of the world (Rodell and Famiglietti, 2001). The RMS of de-

viations from the ensemble mean was calculated as the bias

of TWS estimates from the GLDAS simulations (Table 4).

2.2.3 Scaling effect assessment

To understand how many changes scale factors could make

to GRACE TWS in China, we compared the spatial distribu-

tions of the amplitude of TWS variations from observations
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and simulations. The RMS of the time series at each grid was

taken as a proxy for local TWS amplitude, and then the em-

pirical probability density functions (PDFs) for RMS values

over China were calculated for TWS derived from scaled and

unscaled GRACE data and the model simulations. To avoid

abnormal values, only RMS values between the 5th and 95th

quantile over China were considered. For regionally aver-

aged TWS, the slopes and coefficients of determination R2

were calculated with a linear least squares fit to assess the

damping influence of leakage errors (Eq. 4).

TWSscaled = a ·TWSunscaled (4)

2.2.4 Analysis of TWS long-term variations

TWSC, the integrated changes in the vertical components

of TWS, is the difference between current and previous

months’ TWS (Eq. 5). This value can also be inferred using

the water balance with precipitation, evapotranspiration and

runoff data in a specific basin (Hirschi et al., 2006, Eq. 6).

With GLDAS and GRACE products, we applied correlation

analysis to find out how much state/flux variables can con-

tribute to TWSC’s variance in different basins. After apply-

ing a 13-point moving average to remove intra-annual varia-

tions in times series, we analyzed annual variations based on

the regionally averaged TWS from scaled GRACE and the

GLDAS ensemble mean, in combination with annual Chi-

nese water resources bulletins. Annual data from the wa-

ter resources bulletins were converted from volume (unit:

millionm3) to equivalent water thickness (unit: cm), and the

multi-year average was removed. To identify a major area

with significant TWS increase or depletion in the recent

decade, a linear trend of scaled GRACE TWS for each grid

was calculated based on linear regression, and the long-term

trends of seasonal average TWS were also analyzed. Grids

with trends which passed the F test (significant at 95 % con-

fidence level) are marked with black dots in Figs. 7 and 8.

TWSCN = TWSN −TWSN−1 (5)

TWSC= P −E−Q (6)

3 Results and discussion

3.1 Effect of the scaled factor in China

The effect of the truncation (Ordermax = 60) and filtering

processes (300 km Gaussian filtering) on the GRACE spheri-

cal harmonics is equivalent to a low-pass filter; thus the effec-

tive resolution of the GRACE TWS product is several hun-

dred kilometers (Tapley et al., 2004). The TWS time series

in a 1◦ grid was mixed with TWS signals from the surround-

ing area, leading to leakage errors. When the outside TWS

signal was stronger than the inside, the grid value was exag-

gerated by leakage errors and vice versa. In addition, the sign

of gridded TWS could even be changed in cases where inside

and outside TWS signals had opposite phases caused by ex-

treme changes in topography, such as in the Turpan basin

in northwestern China. As relationships between TWS se-

ries at different spatial scales were inferred from land hydrol-

ogy model simulations, grid-scale factors calculated based on

this information could partially correct GRACE TWS and to

some extent recover small-scale information (Landerer and

Swenson, 2012); thus, these scale factors can be quite help-

ful for extracting TWS over arbitrary shaped region.

The RMS value of TWS time series in a specific grid is

an indicator for the amplitude of local TWS. And the empiri-

cal probability density distribution (empirical PDF) curve for

RMS values in the research region described the statistical

distribution of TWS amplitude within the area. In Fig. 2, em-

pirical PDF curves based on TWS data from modeled TWS

data (MOSAIC, VIC, CLM, NOAH, and GLDAS ensem-

ble mean) and observation TWS data (scaled and unscaled

GRACE data) were compared. Empirical PDF curves based

on scaled GRACE data and modeled data (except CLM) all

showed a larger RMS value range on the x axis than that

based on unscaled GRACE data. This means the range of

TWS amplitude within the research area has been stretched

after scaling. In addition, empirical PDF curves based on

scaled GRACE data and most modeled data showed that

RMS values concentrated in the relatively low numerical

zone, with lowest RMS values close to 0 cm. Spatially, ar-

eas with low RMS values correspond to northwest China,

which is an arid climate zone with vast deserts (Figs. 1, 3b

and c). From the comparison in Fig. 3, we can also see that

scaled GRACE TWS has a similar distribution of amplitude

to that from the GLDAS ensemble mean over China, partic-

ularly the boundary with RMS of 3cm, separating arid and

humid climate zones. TWS is quite stable over some part of

the oceans and major deserts around the world; thus a small

RMS for TWS in these areas indicates small data noise in

GRACE TWS (Sakumura et al., 2014). Both the empirical

PDFs and the spatial distribution of the RMS of the TWS

suggested that grid-scale factors could correct the amplitude

of TWS in space. Previous research has demonstrated that

correction for leakage is critical to regional TWS analysis

(Chen et al., 2014).

Regionally averaged TWS time series from scaled and un-

scaled GRACE data are highly correlated, and this means

that the fluctuation process in TWS has not been heavily in-

fluenced by the scale factors. At the same time, the values of

TWS were all amplified to different degrees (Table 5), with

the amplitudes in the Huai River basin and Zhujiang basin

increasing over 50 %. However, in the Liao River basin and

Yellow River basin, only small changes occurred (< 10 %).

The slopes in Table 5 can be regarded as the basin-specific

scale factors for GRACE TWS. Generally, basins with large

area are less affected by leakage errors and have slopes close

to 1.
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Figure 2. Empirical probability density distributions of root-mean-square of TWS from the scaled GRACE data, the unscaled GRACE data,

and model simulations (only TWS values between the 5th and 95th quantiles are considered); unit of RMS is centimeters.

Figure 3. (a) Root-mean-square of TWS from the unscaled GRACE data, (b) the scaled GRACE data, and (c) the GLDAS ensemble mean.

Table 5. Slopes of linear least squares fittings for basin-averaged TWS from the scaled and the unscaled GRACE data calculated in Eq. (4).

Region HLJ LR HaiR HuaiR YR CJ ZJ SERs CHN

Factor 1.26 1.10 1.32 1.57 1.08 1.34 1.54 1.11 1.19

R2 0.996 0.989 0.988 0.994 0.982 0.992 0.996 0.991 0.982

3.2 Annual variations in regional TWS time series

In general, fluctuations in annual precipitation could appro-

priately characterize the interannual variability in regionally

averaged TWS, but distinct processes also exist in certain

basins or over certain periods because of the influence of

other factors (Figs. 4, 6). TWS in China was at a relatively

high level before 2006, but then stayed at a continuously low

level with a high variability from 2006 to 2012. During this
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Figure 4. Regionally averaged monthly TWS series (2003–2013) from the scaled GRACE data and the GLDAS ensemble mean, and their

residual time series for China and eight of its basins (all time series have been processed with 13-point moving average; unit: cm).

Figure 5. Annual variations of water resources in China as a whole and eight of its basins from 2003 to 2013 (unit: cm).

period, severe droughts occurred frequently and caused par-

ticularly sharp declines in TWS in 2007, 2009, and 2011.

TWS in China did not recover to the same level as in 2005

until 2013. This periodic process was partially reflected in

the TWS estimates from the GLDAS ensemble mean (mostly

soil moisture storage) but not in the residual series or water

resources records (Figs. 4, 5).

In northeast China, TWS observations and simulation es-

timates in the Heilongjiang River basin were consistent and

showed no long-term trend; the region mainly suffered from

two severe regional droughts in 2007 and 2011 and a signif-

icant basin flood event in 2013. Annual precipitation in the

Liao River basin continuously declined from 2005 to 2009

and then increased rapidly in following years; TWS estimates

www.nat-hazards-earth-syst-sci.net/16/469/2016/ Nat. Hazards Earth Syst. Sci., 16, 469–482, 2016
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Figure 6. Regionally averaged annual precipitation for China and eight of its basins from 2003 to 2013 (unit: cm). P from CMAP refers to

precipitation grid data from GLDAS forcing, and P from CMA refers to precipitation grid data based on station observations provided by

China Meteorological Administration.

and water resources records both captured this process pre-

cisely. Nevertheless, it seemed that the TWS observations

failed to respond to heavy precipitation in 2010, with a 9 cm

increase in TWS estimates and only a 3 cm increase in TWS

observations.

In north China, annual precipitation in Hai River basin

changed following a V-shaped process, with year 2006 as

the turning point, which can also be recognized from the

TWS estimates and water resources records. After a rapid

decline from 2004 to 2006 (−2.48 cmyr−1), the TWS from

the scaled GRACE data in Hai River basin became sta-

ble around 2007. Contrary to increasing precipitation, TWS

dropped 3 cm in 2008 and continued to decline slowly at a

rate of −0.22 cmyr−1 until it started to recover in 2012. The

TWS in Hai River basin generally showed a linear decreas-

ing trend (−1.27 cmyr−1) during 2004–2011. The residual

between TWS from scaled GRACE data and the GLDAS

ensemble mean could be treated approximately as the sum

of surface reservoir and groundwater storage. Moreover, de-

tection depth of GRACE is much deeper than the layers

considered in models (1.90 m in VIC, 2.00 m in NOAH,

3.50 m in Mosaic, and 3.43 m in CLM) and in field moni-

toring (shallow aquifer). Although the increasing precipita-

tion seemed to have alleviated the depletion trend in these

areas, we should not ignore the large gap (−1.80 cmyr−1)

between the trends of the time series of the residuals and

summed water resources records (−1.28 and 0.50 cmyr−1)

during 2006–2011. The gap between these time series proba-

bly suggests that the long-term effect of over-exploitation of

groundwater still remained, even though water-saving man-

agement practices had already been carried out in this basin,

and water storage would suffer even worse depletion in the

future drought years. Similar to the Hai River basin, the

TWS from scaled GRACE data in the Yellow River basin fol-

lowed a nearly linear decreasing trend (−0.73 cmyr−1) dur-

ing 2004–2011, and it changed more slowly (0.13 cmyr−1)

after 2007. The basin-averaged TWS, gross water resource,

and precipitation also showed different processes in the lat-

ter half of research period. However, Fig. 7 reveals that the

area with large long-term decreasing trends is mainly located

midstream of the Yellow River basin (Shanxi and Shaanxi

provinces), which is famous for coal mining. To identify the

exact causes for decreasing TWS, more local statistical data

and groundwater level records should be collected. Over re-

cent decades, the TWS in the Huai River basin has shown a

long-term descending trend (−0.56 cmyr−1), which is sim-

ilar to annual precipitation over this basin. The TWS from

GLDAS ensemble mean also showed good agreement.

Annual variations in TWS from scaled GRACE data, the

GLDAS ensemble mean, and water resources records are

more similar across basins in south China than they are

in north China. The TWS in the Changjiang River basin,

Zhujiang basin, and southeast rivers basin all followed an

increasing trend from 2003 to 2013, at 0.35, 0.55, and

0.70 cmyr−1, respectively. As a result of typhoons and trop-

ical storms, the TWS in these basins also had much stronger

fluctuations than in north China.

Nat. Hazards Earth Syst. Sci., 16, 469–482, 2016 www.nat-hazards-earth-syst-sci.net/16/469/2016/



X. Mo et al.: Variations in TWS in China from GRACE observations and GLDAS 477

Figure 7. Spatial distribution of trends derived from linear least squares regression for TWS in 2003–2013 (unit: cmyr−1); (a) and (b) are

linear trends from the scaled GRACE data and a detailed diagram of the data for west part of China, (c) is the linear trend from the unscaled

GRACE data. Grids with trends significant (F test) at 95 % confidence level are marked with black dots.

The TWS variations observed by GRACE are integrated

information from different components in the vertical pro-

file. Compared to water storage in surface soil layers, snow

cover and canopy water storage are almost negligible in most

regions, and analysis results in China suggested that changes

in soil moisture contributed significantly to TWSC (Table 6).

The percentage of TWSC variance explained by SMC could

be as high as 62 % at the national scale. In most basins, over

half of the TWSC variance could be attributed to SMC, with

high percentages in the Changjiang River basin and Zhujiang

basin (64 and 67 %). In the Heilongjiang River basin, SMC

played a less important role in TWSC (38 %). Fluctuations

in hydrologic fluxes over the basin jointly affected water

storage. According to correlation analysis based on GRACE

TWS and GLDAS fluxes, precipitation, evapotranspiration,

and runoff each contributed 46, 41, and 32 %, respectively,

to the TWSC variance in China (Table 6). As most basins we

focused on are under control of the monsoon climate, pre-

cipitation and runoff generally showed higher contributions

to the TWSC variance than evapotranspiration did. Overall,

precipitation was found to have a much higher impact on

TWSC in the south than in the north, with the highest ex-

plained variance in the Zhujiang basin (60 %), followed by

that in the Changjiang River basin (44 %).

3.3 Spatial pattern of linear trend analysis

When focusing on differences between large regions, spatial

patterns of linear trends calculated from scaled and unscaled

Table 6. Coefficient of determination R2, based on Pearson cor-

relation, between precipitation (P ), evapotranspiration (E), runoff

(Q), soil moisture change (SMC) from GLDAS ensemble mean,

and TWSC from the scaled GRACE data in 2003–2013.

HLJ LR HaiR HuaiR YR CJ ZJ SERs CHN

P 0.04 0.20 0.18 0.35 0.41 0.44 0.60 0.23 0.46

E 0.00 0.08 0.10 0.09 0.28 0.25 0.30 0.00 0.32

Q 0.08 0.26 0.291 0.31 0.38 0.47 0.50 0.18 0.41

SMC 0.38 0.52 0.527 0.57 0.46 0.64 0.67 0.51 0.67

GRACE TWS are consistent (Fig. 7a, c). But at a local scale,

results from scaled GRACE TWS better correspond to natu-

ral features of the TWS intensity distribution. Areas around

river networks usually have a high level of TWS, thus pre-

senting large absolute values of trends. From 2003 to 2013,

four main regions were identified with intensive and signifi-

cant long-term trends in TWS. Results also revealed that sea-

sons in a year made different contributions to these trends

(Fig. 8).

According to the analysis in the previous section, we in-

ferred that human activities rather than climate parameters

could be responsible for the significant TWS depletion in

north China, as withdrawals usually surpass net recharge in

arid and semiarid regions. Severe areas are mainly located in

the province of Shanxi and the southern part of the Hebei

province, with decreasing trends less than −0.80 cmyr−1.

And offset to loss rate caused by mass gains from reser-
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Figure 8. Spatial distribution of trends derived from linear least squares regression for seasonally averaged TWS in 2003–2013 from the

scaled GRACE data (unit: cmyr−1); (a) spring (March–May); (b) summer (June–August); (c) autumn (September–November). Grids with

trends significant (F test) at 95 % confidence level are marked by black dots.

voir regulation, water diversion and coal transport in this

region was estimated to 0.76 cmyr−1 (Tang et al., 2013).

In the Shanxi province, the east to mid-section of Yellow

River, coal mining not only has disturbed normal recharge

to the nearby aquifer but has also caused over-exploitation

of groundwater. The groundwater is a major source of wa-

ter consumption in the Huang–Huai–Hai Plain; agricultural

irrigation consumes large amounts of freshwater pumped

from deep wells every year (Foster et al., 2004; Kendy et

al., 2004). This poor condition deteriorates with seasons and

the depletion becomes most severe, impacting the largest

area in autumn. Considering irrigation demand concentrated

mostly in MMA and high social water consumption comes

with JJA, TWS probably needs time to show all this influ-

ence in SON. The southwest rivers region (Yarlung Zangbo

River, Nu River, and Lancang River) also showed significant

TWS depletion, particularly in the upstream and downstream

portions of the Yarlung Zangbo River. The area impacted

by significant depletion was the largest in spring, while the

depletion also became the most severe in autumn. Climate

observation across this region proved that annual precipita-

tion was decreasing over 11 years, with significant droughts

in 2006, 2009, and 2012. Moreover, previous research also

found ice loss in Himalaya from 2003 to 2007 (Matsuo and

Heki, 2010).

Along with increasing precipitation in southeast China,

there were significant increasing trends in TWS over the mid-

dle and lower reaches of the Changjiang River and south-

eastern coastal area. The main contribution to this signifi-

cant increase occurred during the summer, when precipita-

tion was the most concentrated of the year. There are two

places that showed significant TWS increases in the Tibetan

Plateau. One of these areas is around the Hoh Xil Moun-

tains and the other is the headstream region of the Yellow

River; they have maximum increasing trends of 2.59 and

1.77 cmyr−1, respectively. The Hoh Xil Mountains are lo-

cated at the intersection of the inland lakes in the Qangtang

Plateau and the north source of the Changjiang River. The

headstream region of the Yellow River lies at the plateau’s

two largest freshwater lakes, Eling Lake and Zaling Lake.

Previous research applied multi-source satellite data to re-

construct volume changes in the Tibetan Plateau’s major

lakes, and found that they showed similar spatial distribu-

tion to mass variations in GRACE during 2003–2010 (Song

et al., 2013). According to satellite images, lakes in Hoh Xil

overall showed a trend of expansion during 2000–2011. Fur-

ther analysis suggested that increasing precipitation and de-

creasing evaporation were major factors contributing to this

trend, and additional water recharge from melting glacier and

frozen soil caused by climate warming was a minor factor

(Yao et al., 2014; Duan et al., 2007). In the headstream region

of the Yellow River, precipitation is the main recharge source

to runoff, with a ratio of 63 %. Local observations revealed

that there was an increasing trend in runoff as this region

was becoming warmer and wetter during the period 2000–

2012 (Lan et al., 2010, 2013; Wang et al., 2014). The Chi-
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nese government has launched an ecological protection and

construction project in the Three-River Source region that

started in 2005. According to monitoring data from the Qing-

hai Provincial Meteorological Bureau, average lake extents

during 2005–2012 showed an increase of 34.7 and 64.4 km2,

compared to those during 2003–2004 for Eling Lake and Za-

ling Lake, respectively.

In addition to the above large areas, there are also some

other small regions showing strong TWS changes from 2003

to 2013. Along the northeast country border, there is signifi-

cant TWS increase (0.34∼ 1.19 cmyr−1); this is mostly con-

tributed by winter. The central part of the province of Jilin

in northeast China shows severe TWS depletion in autumn

(−1.10∼−2.28 cm yr−1), but these linear trends have not

passed the significance test (P value< 0.05). In northwest

China, the unscaled GRACE data only show significant wa-

ter depletion mainly around Tianshan Mountains, which is

also identified with ice loss in previous research (Matsuo and

Heki, 2010). However, trends from the scaled GRACE TWS

also illustrate a significant TWS increase in the Turpan basin,

while there is a depletion in its surrounding mountains. The

Turban basin is the lowest basin in China, and Fig. 3b shows

that the basin has a much smaller TWS amplitude than that

in surrounding mountains. An extreme arid climate and lo-

cal topography features in this region could make TWS more

sensitive to climate change. Complex terrain in this region

leads to a more complicated GRACE TWS signal mixture at

a large spatial scale. Even though scale factors might have

separated mixed TWS signals, limitations in factors’ pro-

duction should also be taken care of (Launderer and Swen-

son, 2012).

4 Summary and conclusions

In this study we analyzed annual variations in TWS over

11 years in China as a whole and eight of its basins, based

on scaled GRACE data in combination with GLDAS simu-

lations and water resources records. Areas with significant

long-term trends were also identified and discussed. The ma-

jor points are summarized as follows.

1. Grid-scale factors could adequately correct leakage er-

rors in the GRACE products, and the scaled data gained

more spatial details of the TWS intensity distribution.

The values of the regionally averaged TWS were am-

plified after scale factors were applied. These increased

percentages reached up to over 50 % in the Huai River

basin (57 %) and Zhujiang basin (54 %), but were tiny

for basins with larger sizes, such as the Liao River basin

(10 %) and Yellow River basin (8 %).

2. The TWS at the national scale stayed at a relatively

low level. These values exhibited high-intensity vari-

ations from 2006 to 2012, before recovering to their

2003–2005 condition. The TWS in the Hai River basin,

Huai River basin, and Yellow River basin almost de-

creased linearly, while it increased in fluctuations in the

Changjiang River basin, Zhujiang basin, and southeast

rivers basin. The TWS variations generally followed the

variations in annual precipitation at the basin scale, but

they showed inverse changes in 2007–2013 in both the

Hai River basin and Yellow River basin.

3. Changes in soil moisture storage contributed 62 % of the

TWSC variance at the national scale, and the percent-

ages were generally beyond 50 % in all basins with ex-

ceptions in the Heilongjiang River basin (38 %) and Yel-

low River basin (46 %). Under the control of the mon-

soon climate, precipitation and runoff explained more

variance in TWSC than evapotranspiration did, and the

precipitation’s ability to explain TWSC variations was

stronger in the south basins than in the north, reaching

up to 60 % in the Zhujiang basin.

4. From 2003 to 2013, the southwest rivers region and

north China showed significant water storage deple-

tions, and the area of depletion was largest in spring and

summer, respectively. The middle and lower reaches of

the Changjiang River and southeastern coastal area, as

well as the Hoh Xil Mountains, and the headstream re-

gion of the Yellow River in the Tibetan Plateau, all ex-

hibited significant increases in TWS. These identified

trends reflected TWS’s responses to regional climate

changes and human activities.

The current data period of GRACE products is shorter than

some existing remote sensing data sets or site records, and

the resolution and accuracy of GRACE data also need to be

improved. However, TWS from GRACE has proved to be

valuable in understanding large-scale hydrological processes

over land. The results in this study would be helpful for water

resources management and climate change impact research.

More sources of data will be added to further analyze regions

or phenomena addressed in this study. The GRACE Follow-

On mission has already been scheduled, and will continue to

support monitoring and research on TWS in the future.
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