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Abstract. There is unanimous agreement that a precise spa-
tial representation of past landslide occurrences is a prerequi-
site to produce high quality statistical landslide susceptibility
models. Even though perfectly accurate landslide inventories
rarely exist, investigations of how landslide inventory-based
errors propagate into subsequent statistical landslide suscep-
tibility models are scarce.

The main objective of this research was to systematically
examine whether and how inventory-based positional inaccu-
racies of different magnitudes influence modelled relation-
ships, validation results, variable importance and the visual
appearance of landslide susceptibility maps. The study was
conducted for a landslide-prone site located in the districts
of Amstetten and Waidhofen an der Ybbs, eastern Austria,
where an earth-slide point inventory was available.

The methodological approach comprised an artificial in-
troduction of inventory-based positional errors into the
present landslide data set and an in-depth evaluation of sub-
sequent modelling results. Positional errors were introduced
by artificially changing the original landslide position by a
mean distance of 5, 10, 20, 50 and 120 m. The resulting dif-
ferently precise response variables were separately used to
train logistic regression models. Odds ratios of predictor vari-
ables provided insights into modelled relationships. Cross-
validation and spatial cross-validation enabled an assessment
of predictive performances and permutation-based variable
importance. All analyses were additionally carried out with
synthetically generated data sets to further verify the findings
under rather controlled conditions.

The results revealed that an increasing positional
inventory-based error was generally related to increasing
distortions of modelling and validation results. However,

the findings also highlighted that interdependencies between
inventory-based spatial inaccuracies and statistical landslide
susceptibility models are complex. The systematic compar-
isons of 12 models provided valuable evidence that the re-
spective error-propagation was not only determined by the
degree of positional inaccuracy inherent in the landslide data,
but also by the spatial representation of landslides and the
environment, landslide magnitude, the characteristics of the
study area, the selected classification method and an inter-
play of predictors within multiple variable models. Based on
the results, we deduced that a direct propagation of minor
to moderate inventory-based positional errors into modelling
results can be partly counteracted by adapting the modelling
design (e.g. generalization of input data, opting for strongly
generalizing classifiers). Since positional errors within land-
slide inventories are common and subsequent modelling and
validation results are likely to be distorted, the potential ex-
istence of inventory-based positional inaccuracies should al-
ways be considered when assessing landslide susceptibility
by means of empirical models.

1 Introduction

The analysis of landslide susceptibility has been a highly ac-
tive research topic during the past decades (Wu et al., 2015).
The term landslide susceptibility refers to the likelihood of a
certain location to be affected by upcoming landslides with-
out taking into account the potential temporal occurrence or
magnitude of landslide events (Brabb, 1984; Corominas et
al., 2013; Fell et al., 2008; Guzzetti et al., 1999, 2005).

Published by Copernicus Publications on behalf of the European Geosciences Union.



2730 S. Steger et al.: The propagation of inventory-based positional errors

For large regions or areas where detailed geotechnical in-
formation is missing, statistically based approaches are most
commonly applied to generate landslide susceptibility maps
(Cascini, 2008; Corominas et al., 2013; Van Westen et al.,
2008). The underlying concept is based on a modified uni-
formitarian principle (Hutton, 1788) by assuming that future
landslides evolve more likely under those environmental con-
ditions that led to past slope movements (Brabb, 1984; Er-
mini et al., 2005; Fabbri et al., 2003; Fell et al., 2008; Glade
et al., 2005).

In practice, this idea is operationalized by fitting a binary
classification model to a data set containing spatial infor-
mation on the presence and absence of past landslides (re-
sponse) and a number of associated static preparatory envi-
ronmental factors (predictors; e.g. slope, lithology). The re-
sulting classification rule allows to identify conditions that
were likely to promote past slope movements and conditions
that favoured slope stability. When the constructed model is
considered to appropriately describe the underlying relation-
ship, a likelihood of landslide occurrence can be assigned to
all spatial units containing information on these environmen-
tal conditions. Thus, a specific location shows a high land-
slide susceptibility whenever the respective environmental
setting is similar to the conditions observed for past land-
slide occurrences (Ermini et al., 2005; Goetz et al., 2015b;
Petschko et al., 2014a; Van Den Eeckhaut et al., 2006).

The quality and applicability of a landslide susceptibility
map is regularly inferred from predictive performance es-
timates which compare the predicted susceptibility pattern
with an independent data set that is supposed to mimic future
landslide locations (Beguería, 2006; Brenning, 2005; Chung
and Fabbri, 2003; Frattini et al., 2010; Remondo et al., 2003).
An issue found by many authors is that the quality of the
presented landslide susceptibility map is directly related to
the quality of the input data used to construct the underly-
ing model (Cascini, 2008; Corominas et al., 2013; Fressard
et al., 2014; Guzzetti et al., 2006; Van Westen et al., 2008).
In this context, an accurate representation of past landslide
activities (landslide inventory) is regularly considered as a
crucial component to produce reliable results (Ardizzone et
al., 2002; Fressard et al., 2014; Galli et al., 2008; Guzzetti
et al., 2012; Harp et al., 2011; Hussin et al., 2016; Steger et
al., 2015, 2016). However, perfect landslide inventories are
known to be rarely available (Malamud et al., 2004; Petschko
et al., 2016). Several studies emphasize that the positional
accuracy of a landslide inventory can vary greatly and is in-
fluenced by the type (e.g. aerial photograph, shaded-relief
image) and quality (e.g. spatial resolution) of available base
maps, the type and sizes of mapped landslides, human fac-
tors (e.g. accuracy of public reports, covered time period) and
the processing of analogue information sources (e.g. digitiza-
tion) (Ardizzone et al., 2002; Harp et al., 2011; Petschko et
al., 2016; Santangelo et al., 2015).

A number of authors compared landslide susceptibility
models generated from different inventories (e.g. Ardizzone

et al., 2002; Fressard et al., 2014; Galli et al., 2008; Steger
et al., 2015, 2016; Zêzere et al., 2009). However, differences
between the respective landslide inventories could only be
approximated in relative terms due to a variety of underlying
data sources and an unavailability of quantitative information
on the specific positional errors. Thus, specific statements on
how a particular positional error may propagate into the final
models and maps could not be made.

This study aims to shed more light on the impact of po-
sitionally erroneous landslide inventories on the results of
statistical landslide susceptibility models by artificially con-
trolling for the extent of positional inaccuracy inherent in the
respective data set. The main objective was to systematically
examine the influence of positionally inaccurate landslide in-
ventories on modelled relationships, validation results and
the appearance of landslide susceptibility maps. All analy-
ses were also conducted with synthetically generated data to
further validate the results under controlled conditions.

2 Study area

The study site extends over 100 km2 (20 km× 5 km) and is
located in the eastern part of Austria (Fig. 1a). The area be-
longs to the Lower Austrian districts Amstetten and Waid-
hofen an der Ybbs. Altitudes range from less than 350 m a.s.l.
in the northern valley bottoms to 790 m a.s.l. at the southern
hilltops. The landslide-prone area (5.9 landslides/km2) can
be characterized as a hilly undulating landscape with an av-
erage slope gradient of 11◦ (Fig. 1b).

The morphological and lithological condition of the study
site plays a major role for the propensity of the respective
slopes to fail. The major part of the area (81 km2) relates to
alternating sediment sequences of the Rheno-Danubian Fly-
sch Zone (Fig. 1c). Several publications emphasize that the
high density of shallow landsliding within the Flysch is re-
lated to the widespread presence of deeply weathered soils
consisting of silts and clayey material (Petschko et al., 2016;
Schwenk, 1992; Wessely et al., 2006). A minor portion of the
terrain (3 km2) can be assigned to clastic sediments of the
Molasse Zone. The Molasse lies along the northern side of
the Eastern Alps and is regularly associated with several me-
tre thick clayey and marly soils which tend to be susceptible
to landsliding, even at lower slope gradients (Wessely et al.,
2006; Petschko et al., 2016). Quaternary sediments (16 km2)
that relate to alluvial deposits and fluvial terraces dominantly
cover the valley floors of the area. Landslide density is low
within this area, mainly due to its prevalent flat topography
(compare Fig. 1b with Fig. 1c).

In the light of the general litho-morphological predispo-
sition of the area, landslide triggering is primarily related
to a direct water-influx into the subsurface. Most landslides
of the area occurred after intensive precipitation and snow-
melting events (Petschko et al., 2016; Schweigl and Hervás,
2009; Schwenk, 1992). The resulting reduction of internal
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Figure 1. Location of the study area within Austria (a), shaded relief image of the area with an overlaid slope angle map and spatial
distribution of landslide scarps (b). The shaded relief images (top right) show typical landslides of the study area and the corresponding
mapping location. Lithological units are given in (c) while slope orientation is represented as northness (d) and eastness (e). The photograph
(source: K. Gokesch) in (f) relates to the northern part of Waidhofen an der Ybbs and shows a characteristic shallow landslide of the Flysch
Zone.

friction and increase in water-related loading are considered
to be the main driving forces along a regularly distinct slid-
ing plane. However, also human interventions were observed
to be an increasingly important landslide influencing factor
(Schwenk, 1992; Wessely et al., 2006). The southern hilly
areas are for the most parts used for intensive cattle farm-
ing (e.g. pastures) or covered by forests while arable land
is prevalent in the northern lying flat lowlands (Eder et al.,
2011). The area lies in a transitional climate zone (oceanic
influences from the west and continental influences from the
east) with mean annual precipitation rates around 1000 mm
(Skoda and Lorenz, 2007).

The majority of landslides in the area are relatively small
and shallow. Petschko et al. (2016) investigated landslide
sizes for the districts Amstetten, Waidhofen an der Ybbs and
Baden and found a median size of landslides of the slide-type
movement of 787 m2 for the Rheno-Danubian Flysch Zone,
1189 m2 for the Molasse Zone and 1260 m2 for Quaternary
sediments. Based on an analysis of landslide archive entries
(i.e. Building Ground Registry), Bell et al. (2014a) estimated
a median landslide depth of 1.7 m (mean 2.2 m) for 142 land-
slides recorded for the district Waidhofen an der Ybbs.

3 Data

3.1 Landslide inventory

The historical landslide inventory used for this study rep-
resents a subsample of landslides mapped by Petschko et
al. (2016). The original data set consists of 13 166 point
features, which represent the initiation zone of landslides
of the slide-type movement (one point per landslide) and
was compiled by analyzing mainly topographic derivatives
of a 1 m× 1 m airborne laser scanning (ALS) digital terrain
model (DTM; flight campaign: 2006–2009), supported by
interpreting two orthophotos (flight campaigns: 2000–2004
and 2007–2008). The point-inventory was generated for sus-
ceptibility assessments while also several other studies en-
dorse to use one point per landslide observation (Atkinson
et al., 1998; Goetz et al., 2015a; Petschko et al., 2014a; Van
Den Eeckhaut et al., 2006). Since the respective points stand
representative for the main scarp location (see Petschko et
al., 2016), subsequent landslide susceptibility maps provide
an estimate on where landslides are more likely to be initi-
ated. The sample used for this study consists of 591 land-
slides. Further information on the mapping of this inventory
and its related advantages and disadvantages are described
by Petschko et al. (2016).
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3.2 Predictor variables

The number and type of predictors used within statistical
landslide susceptibility analyses varies greatly depending on
the scope of the study, the type of the investigated landslides,
the characteristics of the area and data availability (Guzzetti
et al., 1999; Van Westen et al., 2008). To enhance trace-
ability of modelling results, we opted to include only few
but widely used predictors within the analyses. All models
were generated with a predictor set consisting of a lithol-
ogy layer (Fig. 1c) and three topographic variables, namely
slope (Fig. 1b) and two variables representing slope orienta-
tion (Fig. 1d, e).

The inclination of a slope is directly related to shear
stresses and therefore almost always used as a predictor
within statistical landslide susceptibility modelling. Slope as-
pect is regularly introduced as a proxy for a varying degree of
insolation and evapotranspiration influencing moisture and
weathering conditions or, in some cases, as a representative
for the dipping of geologic structures (Gorsevski et al., 2006;
Van Westen et al., 2008). The two slope azimuth predictors
were directly derived from a resampled (10 m× 10 m) ALS-
based DTM. Classification of the continuously scaled aspect
layer (originally ranging from 0 to 360◦) was avoided by cal-
culating its cosine (representing the degree of north exposed-
ness) and sine (east exposedness) (Brenning, 2009, 2012a).
This transformation ensured that the applied linear models
treated similarly oriented slopes (e.g. 1◦ vs. 360◦) similarly.
At regional scales, the parent material of the soils is usually
represented by lithological maps (Gorsevski et al., 2006; Van
Westen et al., 2008). This information was obtained from a
digital geological map of Lower Austria (GK200) available
at a scale of 1 : 200 000 and resampled to the modelling res-
olution of 10 m× 10 m.

We decided to exclude land cover from the analysis for two
reasons. Firstly, the available recent land cover data do not
necessarily correspond to the land cover present at the time
of landslide occurrence, due to constantly ongoing land use
changes and the fact that landslide age is expected to vary
substantially within the present inventory (Petschko et al.,
2014b; Van Westen et al., 2008). Secondly, an omission of
land cover as a predictor was expected to reduce the chances
that the suspected land cover related-bias (e.g. overrepresen-
tation of landslides in forested areas; see Bell et al., 2012;
Petschko et al., 2016) is directly propagated into the final re-
sults (see Steger et al., 2016). However, land cover was intro-
duced as a predictor within the synthetic data set, because the
respective landslide data set was not defined to be affected by
a systematic error, while land cover was specified to be static
in time (see Sect. 4.6).

4 Methods

In this study we aimed to analyse all data in a tangible and
traceable way. Therefore, we avoided using less interpretable
classifiers or a high number of predictors. For classification
we opted for the well-established logistic generalized lin-
ear model, also known as logistic regression (see Sect. 4.2),
while we included only a small number of frequently ap-
plied predictors (see Sect. 3.2). The general methodologi-
cal framework consisted of an artificial introduction of po-
sitional inaccuracies into the present landslide inventory (see
Sect. 4.1) and a subsequent in-depth evaluation of modelling
results. The final response variable included within each
model was based on an equal number of landslide presence-
observations (landslide inventory) and randomly sampled
absence-observations (1 : 1 sampling) (Goetz et al., 2015a;
Heckmann et al., 2014). All analyses were additionally per-
formed with synthetic data in order to further verify the ob-
servations under rather controlled conditions (see Sect. 4.6).

4.1 Artificial introduction of positional errors into the
landslide inventory

Inventory-based positional errors were introduced by artifi-
cially changing the original landslide scarp position accord-
ing to a normal distribution in a random direction (Fig. 2).
The mean distance to the original position was specified as
5, 10, 20, 50 and 120 m (Fig. 2c). Smaller positional inaccu-
racies (e.g. 5 or 10 m) may be present when digitizing land-
slide inventories mapped through interpretation of aerial pho-
tographs (Santangelo et al., 2015) while the highest value
(120 m) was defined according to an analysis made for the
Flysch Zone. Within this analysis, 65 of the 681 analysed
landslide database entries of the Building Ground Registry
(more information refer to Schwenk, 1992 and Steger et al.,
2016) contained a quantitative estimate on the positional ac-
curacy of the respective landslide point location. The derived
mean positional error of 120 m (standard deviation of 84 m)
was directly adopted to specify the inaccuracy of the most
erroneous inventory.

4.2 Logistic regression and odds ratios

Logistic regression is probably the most widely used clas-
sifier to generate landslide susceptibility maps (Wu et al.,
2015). Many studies confirmed its high suitability for the
analysis of landslide susceptibility due to its ability to predict
a binary response variable (absence and presence of land-
slides) using both, continuously and categorically scaled pre-
dictors while ensuring a high generalizability, interpretabil-
ity and smooth prediction surfaces (Atkinson and Massari,
1998; Felicísimo et al., 2013; Goetz et al., 2015a; Steger et
al., 2016; Van Den Eeckhaut et al., 2006). Logistic regres-
sion models of this study were fitted by using the R package
“stats” (R Core Team, 2014). The probability of a landslide
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Figure 2. Overview of the simulated positional inaccuracy of the inventory for the study area (real data). The excerpt in (a) shows an example
of an original mapping position of a landslide scarp (red dot) and corresponding simulated positional inaccuracies (the white grid corresponds
to the modelling resolution of 10 m). The conditional frequency plot in (b) shows that a decreasing positional accuracy of the inventory led to
the effect that landslides were more likely located on flatter slopes. The histograms in (c) (bin width 10 m) depict the frequency of landslides
(n= 591) in relation to the distance from the original mapping position for the respective simulated positional inaccuracy.

occurring P(Y = 1) was predicted by:

logit(P (Y = 1))= β0+β1X1+ . . .+βpXp (1)

in which, β0 represents the intercept and β1. . .βp the regres-
sion coefficients of predictors X1. . .Xp. The associations be-
tween predictors and the response within multiple variable
regression models can be expressed as odds ratios (OR). In
contrast to an interpretation of probabilities, OR allow to ex-
press this relation with a single number while accounting for
the influence of other predictors (Brenning et al., 2015; Hos-
mer and Lemeshow, 2000). For instance, OR estimated for
the predictor lithology display the estimated chances that a
certain lithological unit is affected by landsliding while ac-
counting for the possible confounding effect of slope angle
(Steger et al., 2016).

The odds of an event occurring (in this case a landslide) are
defined as the probability of this event occurring P(Y = 1),
divided by the probability that this event is not occurring
P(Y = 0). The ratio between the odds after a one-unit in-
crease in the predictor Xp and the original odds is referred to
as odds ratio:

OR
(
Xp

)
=

Odds
(
Xp+ 1

)
Odds

(
Xp

)
=

Odds after a one unit increase in the predictor
Original odds

(2)

For logistic regression based models, OR can be directly
derived from exponentiated regression coefficients (β1. . .βp).
OR of > 1 point to a positive relation between a continu-
ously scaled predictor and landslide occurrence while ORs of
< 1 express a negative association. Within this study, OR ob-
tained for all continuously scaled predictors were estimated
for “meaningful” increments (Brenning, 2012a; Brenning et
al., 2015; Hosmer and Lemeshow, 2000). For example, ORs
presented for the predictor slope angle refer to the changes
in the odds for a slope angle increase of 10◦ (Xp+ 10). OR
estimated for categorically scaled predictors have to be inter-
preted in relation to a specified reference level.

4.3 Comparison with reference models

An additional evaluation of the final results was conducted
by comparing all modelled relationships and maps with the
results obtained by the reference models that were generated
with the original (i.e. unmodified) inventory. These refer-
ences were assumed to be less affected (i.e. reference model
for the real data) or unaffected (i.e. reference for the synthetic
data) by inventory-based positional errors. We considered a
model or map to be strongly affected by an inventory-based
positional inaccuracy if the modelled relationships (i.e. OR
of predictors) respectively the spatial pattern of the maps dif-
fered substantially from their previously defined references.
We therefore considered the respective positional error to

www.nat-hazards-earth-syst-sci.net/16/2729/2016/ Nat. Hazards Earth Syst. Sci., 16, 2729–2745, 2016



2734 S. Steger et al.: The propagation of inventory-based positional errors

have little effect in all cases where the estimated OR and the
susceptibility maps were similar to their references.

4.4 Assessment of the predictive performance

The prediction skills of the models were estimated by cal-
culating the AUROC by applying two partitioning tech-
niques, implemented in the R package “sperrorest” (Bren-
ning, 2012b), namely k-fold cross validation (CV) and k-fold
spatial cross validation (SCV). In contrast to single hold-out
validation, CV and SCV are not based on one single split of
the training and test sample (e.g. 80 % for calibration and
20 % for validation), but on a repeated partitioning of the
original sample into k subsamples. In each iteration, a perfor-
mance measure (e.g. AUROC) is estimated for one of the k
subsamples, while the remaining (k−1) subsamples are com-
bined into a training set that is used to calibrate the model.
Thus, validation results that are based on CV and SCV are
not dependent on one specific sample split. In fact, CV as
well as SCV allow that all available data can be used to val-
idate and to calibrate the final models. CV is based on a
repeated non-spatial random splitting, whereas SCV is per-
formed spatially and consists of a repeated spatial partition-
ing of the training sample and test sample (Brenning, 2012b;
Ruß and Brenning, 2010). In this study, the predictive per-
formance of all models was estimated by repeating CV and
SCV 50 times with 10 folds per repetition. More specifically,
within each of the 50 repetitions, each observation of the re-
sponse variable was applied nine times to calibrate the model
and once to test the predictive performance. The presented
AUROC values refer to the median of these 500 estimates.
Previous studies emphasized the suitability of CV and SCV
in the context of landslide susceptibility modelling (Goetz et
al., 2015a; Petschko et al., 2014a; Steger et al., 2016).

Furthermore, an additional validation strategy was applied
in order to quantitatively evaluate and compare the ability
of all models to “predict” landslide presences and landslide
absences of the unmodified response variable. For this pur-
pose, the AUROC was used to compare the predictions of
each model with the unmodified landslide inventory (i.e. un-
affected by an artificially introduced positional error). This
metric relates to the goodness of model fit, whenever the re-
spective models were calibrated with an unmodified data set.

4.5 Estimation of predictor importance

Permutation-based variable importance assessments assume
that the importance of a specific predictor is directly related
to the decrease in classification accuracy or predictive perfor-
mance after randomly reordering (i.e. permuting) the values
of this predictor (Strobl et al., 2007). In landslide suscepti-
bility modelling, permutation-based variable importance was
previously applied by Goetz et al. (2015a).

In this study, a predictor importance evaluation was con-
ducted to assess whether and how the apparent importance

of a specific predictor changes when the positional accuracy
of the inventory changes. Thus, the AUROC decrease of each
predictor was assessed on non-spatial (CV) and spatial cross-
validation partitions (SCV) using the R package “sperrorest”
(Brenning, 2012b; Ruß and Brenning, 2010). Herewith, each
predictor was permuted 50 times within each fold leading to
a total number of 25 000 permutations per predictor (50 repe-
titions times 10 folds times 50 permutations) within each par-
titioning technique (CV and SCV) for each of the 12 models.

4.6 Generation of synthetic data

None of the susceptibility models generated for the present
study area can be considered to reflect a true and unbiased re-
lation between landslides and environmental conditions, es-
pecially due to the unavailability of perfect and accurate spa-
tial information (i.e. landslide data and predictors) and the in-
herent subjectivity involved during model construction (e.g.
predictor and classifier selection). Thus, the conducted com-
parison of a reference model with models generated with er-
roneous inventories may only provide an indication of the
effect of inventory-based inaccuracies on modelling results.
Thus, all analyses were additionally performed with synthet-
ically generated data. This procedure allowed us to define
a “true” association between landslides and their predispos-
ing factors while further controlling for environmental condi-
tions (e.g. spatial distribution and interrelations between pre-
dictors) and model specific parameters (e.g. sample size).

The preparation of synthetic data consisted of three major
steps: (i) designing the environmental conditions of the study
area (= predictors), (ii) specifying a “true” relation between
landslides and predictors and (iii) simulating a landslide dis-
tribution within the study area according to the predefined
“true” relation.

The areal extent of the synthetic study site (20 km× 5 km)
was adopted from the Lower Austrian study area while a to-
pographically diverse terrain was generated by generalizing
an already available DTM (see 3-D image in Fig. 3a). The
topographic predictors slope (Fig. 3a) and both aspect layers
(Fig. 3b, c) were directly derived from this smoothed DTM,
which was expected to be unaffected by local data noise
and to represent undisturbed pre-failure conditions (see Van
Den Eeckhaut et al., 2006). Lithology and land cover layers
were generated by systematically intersecting and reclassi-
fying randomly generated raster files produced at different
spatial scales. The resulting noisy appearing grid files were
smoothed and resampled (Fig. 3d, e).

The three lithological classes (33 km2 each) were posi-
tioned in the western (unit A) and eastern half (unit B) of
the study site, while unit C was similarly spread across the
area (Fig. 3d). The spatial distribution of land cover classes
(33 km2 each) was conditioned on the spatial distribution of
slope inclinations as regularly observed within European re-
gions (Rickli et al., 2002; Steger et al., 2016; Van Den Eeck-
haut et al., 2006). More specifically, we defined that the flat-
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Figure 3. Spatial representation of the synthetically generated data set. Topographic parameters (a, b, c); Lithological and land cover units (d,
e) with excerpts depicting the generation of this data sets (1: initial random raster; 2: intersection with a random raster produced at a higher
spatial resolution; 3: moving window-based smoothing; 4: introduction of a slope-dependency for land cover). Landslide susceptibility
according the predefined relationship and subsequent landslide sample further used as landslide presences for model realizations (f). The
plot in (g) depicts the conditional frequency of landslide occurrence on slope angle for the respective inventories. The histograms in (h) (bin
width 10 m) show the frequency of landslides (n= 2000) in relation to the distance from the original mapping position.

test areas (1st slope tercile) consist of arable lands (66 %)
and pastures (33 %) while the steepest parts (3rd slope ter-
cile) are dominated by forests (66 %) and pastures (33 %).
Only medium inclined slopes (2nd slope tercile) were equally
covered by all three land cover classes. Landslide suscep-
tibility was defined to be solely dependent on five factors,
namely slope, northness, eastness, lithology and land cover
(Table 1). For the definition of the effect of topographic vari-
ations, we oriented ourselves on observed associations for the
Lower Austrian study area. Pastures and Arable lands were
defined to be equally prone to landsliding (OR: 1) while the
stabilizing effects of forests on shallow landslide activity was

expected to decrease the chances of landsliding (OR: 0.5).
For the lithological units we specified that the units A and B
should be equally prone to landsliding (OR: 1) while unit C
was defined to be less susceptible (OR: 0.5).

Relationships depicted in Table 1 (first row) were back-
transformed to regression coefficients while a rare events
correction of the intercept (King and Zeng, 2001) was con-
ducted to consider the low portion of landslide presences in
the area (∼ 0.002 % of the cells were envisaged to represent
landslide initiation) in relation to the 50 % of presence data
in the final response variable (1 : 1 sampling strategy). The
resulting logistic regression equation was then transferred to
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Table 1. Prescribed relationship between the predictors and the response variable for the synthetic data set expressed as odds ratios (OR)
(first row). The model estimate (bottom row) was based on the synthetically generated landslide sample (see Fig. 3f) and a logistic regression
model trained with the predictors slope, northness, eastness, lithology, land cover. OR for the predictor slope relate to a slope angle increase
of 10◦, OR for both components of slope aspect (northness, eastness) to an orientation change of 45◦.

Slope Northness Eastness Litho. A Litho. B Litho. C Pastures Forests Arable land

OR 6 0.8 1.4 1 1 0.5 1 0.5 1
(prescribed)

OR 6.22 0.76 1.37 1 0.86 0.45 1 0.51 0.86
(reference model) ∗5.4/7.2 ∗0.7/0.8 ∗1.3/1.5 ref. class ∗0.7/1 ∗0.4/0.6 ref. class ∗0.4/0.6 ∗0.7/1.1

∗ 95 % confidence interval

each raster cell of the area to obtain a probability raster ex-
pressing the predefined associations (Fig. 3f). A sampling ap-
proach developed by Theobald et al. (2007) was adopted to
spatially distribute landslide initiation zones (i.e. represented
by points) according to the predefined relationships. More
precisely, the mentioned probability raster was used to con-
trol sampling intensity during the generation of 2000 spa-
tially balanced landslide initiation points (i.e. raster cells with
high probabilities are more likely selected as landslide loca-
tion) (Theobald et al., 2007). This comparably high number
of landslide points was chosen to assure a high explanatory
power of the empirical results while simultaneously assuring
computational feasibility. The resulting sample (Fig. 3f) was
considered to represent an unbiased and accurate landslide
inventory and used as presence data within all previously
mentioned analyses (see Sects. 4.1 to 4.5). The similarity of
prescribed relationships (OR in the first row of Table 1) and
model estimates (OR in the second row of Table 1) indicated
that the previously established associations were successfully
describable by the logistic regression model fitted with arti-
ficially generated data sets (i.e. response variable and predic-
tors). Thus, we further considered this model as a useful ref-
erence that reflects the “true” relation between the response
and the respective environmental conditions.

5 Results

A first inspection of real and synthetic data sets revealed that
landslides were more frequent on flatter slopes and less fre-
quent on steeper slopes with a decreasing positional accuracy
of the respective inventory (Figs. 2b, 3g). On average, slope
angles of the original landslide locations were 4.1◦ (real data)
and 4.6◦ (synthetic data) higher compared to the most in-
accurate inventory (mean error: 120 m). Landslide densities
within lithological units changed comparably little when in-
troducing the highest positional error (mean 120 m) into the
inventories. Landslide densities within the Flysch decreased
from 7.2 to 7 landslides per km2 while landslide densities
observed for the Molasse remained unchanged (1 landslide
per km2). An increasing landslide density was detected for

the Quaternary unit by introducing a mean positional error
of 120 m (from 0.4 to 0.7 landslides per km2). The following
changes in landslide densities were observed for the litho-
logical units of the synthetically generated data set by intro-
ducing a high positional error (mean: 120 m): The number
of landslides per km2 for unit A (respectively B) decreased
from 33.3 (B: 14.1) to 31.4 (B: 12.7), while landslide density
within the unit C increased from 13.3 to 14.9.

5.1 Modelled relationships

Modelled relationships obtained for the predictors slope an-
gle, northness and eastness (for both data sets) and land
cover (only synthetic data) indicated that the strength of
association with landslide occurrence generally decreased
with an increasing positional error of the inventory since
the respective OR tended to approach the neutral value of
1 (Fig. 4a, c, d, f, g). Only the predictor lithology (Fig. 4b, e)
did not show this trend.

Modelled associations remained nearly unchanged when
simulating the smallest positional error (mean: 5 m) (Fig. 4).
OR changes became noticeable for a simulated mean posi-
tional error of 10 m (real data) respectively 50 m (synthetic
data; compare OR with the dashed line in Fig. 4). Espe-
cially, OR of the predictors slope (Fig. 4a, d) and lithol-
ogy (Fig. 4b, e) provided quantitative evidence that the mod-
els generated with real data exhibit a higher sensitivity to
medium positional errors of the inventory (e.g. mean: 10,
20 m) compared to the apparently more robust synthetic
models.

OR further exposed that a decreasing accuracy of landslide
inventories was related to decreasing sensitivity of modelling
results on slope angle (Fig. 4a, d). For instance, the suscepti-
bility model generated with real data and with the unmodified
inventory showed that the chances of a 10◦ steeper slope to be
affected by future landsliding are 7.3 times higher compared
to its 10◦ flatter counterparts. The respective model generated
with the most inaccurate inventory (mean error: 120 m) pre-
dicted that the chances of landslide occurrence solely rises by
a factor of 1.9 for such a slope angle increase (Fig. 4a). Nev-
ertheless, each produced model still predicted a positive rela-
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Figure 4. Estimated odds ratios (OR) for the models generated with differently accurate landslide inventories. ORs obtained for the predictors
slope (a, d), northness (c, f), eastness (c, f) and land cover (g) suggested a decreasing estimated effect of topographic and land cover variations
on modelling results with an increasing positional error of the inventory (i.e. ORs are approaching the no-effect threshold value 1). ORs of the
lithology classes revealed decreasing modelled chances that the Molasse (b) respectively the unit B (e) may be affected by future landsliding.

tion (OR > 1) between landslide occurrence and the inclina-
tion of a slope. OR obtained for the lithology layers revealed
major changes for the Molasse (real data) respectively the
lithological unit B (synthetic data) (Fig. 4b, e). The chances
that those units will be affected by future landslides were
modelled to be considerably lower (i.e. most distant from the
threshold of 1) whenever the respective model was generated
with the most inaccurate data sets.

5.2 Visual appearance of maps

A visual inspection of landslide susceptibility maps generally
confirmed that the respective modelled relationships were vi-
sually recognizable in the predicted susceptibility patterns.
Thus, a high positional error of the inventory (mean error:
120 m) was observed to result in susceptibility maps that
were less influenced by local slope angle and slope aspect
variations. Ultimately, this led to more uniformly appear-
ing susceptibility patterns at slope scale (e.g. Fig. 5f). Flat-
ter slopes were generally predicted as more susceptible and
steepest slopes as less susceptible with an increasing posi-
tional inventory-based error (Fig. 5). The declining effect of
local slope variations was accompanied by an increasing vis-
ibility of lithological transitions. Especially the model gener-
ated with real data and the most inaccurate inventory (Fig. 5f)
depicted this tendency by strongly accentuating the silhou-
ettes of the Flysch Zone (see Fig. 1c).

5.3 Predictive performance

Predictive performances decreased with a decreasing posi-
tional accuracy of the inventories (CV and SCV in Fig. 5).
However, models generated with a mean inventory-based er-
ror of 50 m still produced AUROCs of 0.76 (CV; real data) re-
spectively 0.83 (synthetic data). Non-spatially assessed me-
dian AUROCs were observed to decrease from 0.85 (real
data) and 0.86 (synthetic data) to 0.69 (real data) and 0.75
(synthetic data) (CV in Fig. 5). The general trend of de-
creasing prediction skills with an increasing positional error
was exposed by both partitioning techniques, namely CV and
SCV. In analogy to observations of the modelled relation-
ships, we observed a first distinct performance drop (AU-
ROC decrease of > 0.1) for the models generated with an
inventory-based positional mean error of 10 m (real data) re-
spectively 50 m (synthetic data).

A comparison of predicted susceptibility patterns with
the respective unmodified response variable revealed that all
models performed well to forecast the original landslide po-
sition (0 in Fig. 5). It was remarkable that models gener-
ated with highly inaccurate inventories (mean error: 120 m)
achieved AUROCs of 0.84 (real data) and 0.86 (synthetic
data).
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Figure 5. Landslide susceptibility maps (for the location of the cutouts refer to the red boxes) of models generated with differently accurate
inventories (rows) for the real data (left column) and the synthetic data (right column). Corresponding predictive performances (median
AUROC for CV and SCV) and the quantitative comparison with the original landslide positions (0 in Fig. 5) are given in the respective
white boxes. The cutouts additionally show the location of the positionally erroneous inventories (white dots) used as input for the respective
models and the position of the original inventory (red dot). Note that maps generated with the most inaccurate inventory (f, l) are characterized
by a locally more uniform spatial pattern.

5.4 Predictor importance

The findings provided quantitative indications that the re-
sults of variable importance assessments obtained by multi-
ple variable statistical landslide susceptibility models are not
only related to underlying geomorphic processes, but also to
positional errors inherent in the underlying landslide inven-
tories. The general ranking of predictors within the models
generated with real data changed first for a mean positional
accuracy of 10 m (CV) respectively 5 m (SCV) (Fig. 6a, c).
In contrast, the ranking of predictors remained unchanged for
the models generated with synthetic data sets up to a mean
positional error of 120 m (Fig. 6b, d).

Slope had the greatest variable importance in all situa-
tions, revealing that this environmental factor played the cen-
tral role to predict landslide susceptibility within each model.
However, an interpretation of AUROC decreases (Fig. 6) also
suggested that the dominance of this predictor diminished as
positional error increased (e.g. from 0.25 to 0.08 in Fig. 6a).
An opposite, but less pronounced tendency was observed for
the predictor lithology (e.g. from 0.01 to 0.05 in Fig. 6a). The

importance of the predictors slope (CV: 0.08; SCV: 0.07) and
lithology (CV: 0.05; SCV: 0.06) was similar whenever the
models were generated with the most inaccurate inventory
and with real data.

6 Discussion

In general, our results were in agreement with studies stating
that inventory-based errors modify the results of a landslide
susceptibility analysis (Ardizzone et al., 2002; Fressard et
al., 2014; Galli et al., 2008). We observed that an increasing
positional error of landslide locations was generally related
to an increasing distortion of subsequent modelling results.
Thus, this study provides quantitative evidence for the state-
ment that the explanatory power of a landslide susceptibility
analysis increases with an increasing quality of the under-
lying landslide data set (Blahut et al., 2010; Fressard et al.,
2014; Galli et al., 2008; Guzzetti et al., 2006; Harp et al.,
2011; Petschko et al., 2016; Steger et al., 2016; Van Westen
et al., 2008).
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Figure 6. Permutation-based variable importance for the respective reference models (0 m) and models generated with positionally erroneous
inventories (5–120 m) for the real data sets (a, c) and the synthetic data (b, d) obtained by CV (a, b) and SCV (c, d). The relative ranking
indicates that slope was the most influential predictor for each model while its estimated importance constantly decreased with an increasing
inventory-based positional error (see Median AUROC decrease). The estimated importance of lithology slightly increases with a growing
inventory-based positional inaccuracy.

However, the systematic comparisons also suggested that
interdependencies between inventory-based errors and sub-
sequent modelling and validation results are complex. Thus,
an identification of a generally valid threshold (i.e. the posi-
tional error should not exceed x metres), which separates ac-
ceptable models from unacceptable ones, was considered to
be inappropriate. The findings provided valuable indications
that the propagation of inventory-based errors is not only de-
termined by the degree of positional inaccuracy inherent in
a landslide data set, but also by a combination of additional
factors. Those aspects include (i) the spatial representation of
landslides and the environment (see Sect. 6.2), (ii) landslide
sizes (see Sect. 6.2), (iii) the characteristics of the study area
(see Sect. 6.3), (iv) the selection of a classification method
(see Sect. 6.4) and (v) an interplay of predictors within mul-
tiple variable models (see Sect. 6.5).

6.1 Usefulness of an additional modelling with
synthetic data

The spatial information available for this study was, as pre-
sumably every “real” data set used within regional landslide
susceptibility studies, considered to be imperfect. Apart from
the assumption that the present inventory was affected by
a land-cover related incompleteness (Petschko et al., 2016),
also the available environmental data were not expected to
represent the full spectrum of landslide predisposing factors
for the area. Thus, statements on how a specific data modifi-
cation (in this case using positionally inaccurate inventories)
reduced or increased the respective model’s quality should be
treated with caution, especially because increasing predictive
performances do not necessarily reflect an increasing quality
of a landslide susceptibility model (Lobo et al., 2008; Steger
et al., 2016). In this respect, synthetically generated data al-
lowed us to define a reference model that depicted a “true”
association between landslides and the environment. Subse-
quent modelling proved valuable to gain deeper insights into
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the effect of inventory-based errors on modelling results and
cross-check our findings. Furthermore, observed differences
between modelling results obtained from the real data sets
and the synthetically generated data (e.g. differences in OR-
drops; see Fig. 4) were helpful to move our attention to re-
lated important model-influencing aspects (e.g. characteris-
tics of the study area; see Sect. 6.3).

6.2 The spatial representation of input data and
landslide size

The available landslide point inventory represents the scarp
locations of mainly smaller landslide features, which tend to
exhibit a distinct steep and concave morphology in compari-
son to its surroundings (Petschko et al., 2016). Consequently,
already small changes in the point position (e.g. 5 m) may
lead to the tendency that the respective features are, in the
case of high-resolution slope data (e.g. 1 m× 1 m), displaced
into their usually flatter vicinities. However, those immediate
neighbourhoods may be represented by identical lithologies,
land cover classes or soil types due to a typically coarser spa-
tial resolution of the underlying data sets (Cascini, 2008; Van
Westen et al., 2008).

We argue that the applied modelling resolution of input
data might not only affect the relative importance of pre-
dictors within a landslide susceptibility model (Catani et al.,
2013), but also how spatial inventory-based errors are prop-
agated into the final modelling results. For instance, the re-
sampling of the present DTM from 1 m× 1 m to the mod-
elling resolution of 10 m× 10 m was related to an enlarge-
ment of the area covered by one grid cell (i.e. 1 to 100 m2)
and a generalization of the topography. This combination in-
creased the chances that nearby observations (e.g. 5 m dis-
tance from original location) were represented by an identi-
cal grid cell or cells with similar values (e.g. of slope) to the
respective original location. Therefore, slope angles of land-
slide locations (real data) derived from a 10 m-raster were
on average just 0.2◦ lower for a mean inventory-based inac-
curacy of 5 m compared to the unmodified inventory. These
similarities were expected to mainly cause the observed ef-
fect that an average inventory-based error of 5 m did almost
not affect modelled relationships (Fig. 4). Thus, we argue
that a resampling of predictors to a coarser resolution might
not only help to reduce the impact of local topographic varia-
tions related to post-failure conditions (conditions after land-
slide occurrence) or data noisiness (Petschko et al., 2014a;
Van Den Eeckhaut et al., 2006; Van Westen et al., 2008), but
also to reduce the impact of smaller inventory-based posi-
tional errors on the results of a grid-based statistical landslide
susceptibility model.

A very high mean positional error of an inventory (e.g.
120 m) may require a correspondingly higher generalization
of the topographic variables, such as slope angle or slope as-
pect, to enhance the chances that the respective landslide ob-
servation is still represented by an identical respectively simi-

lar grid cell. However, those high simplifications may as well
lead to the effect that actual important landslide-influencing
morphological features disappear within the derivatives of a
strongly resampled terrain model.

The chances that an inaccurately mapped landslide-point
may still be located within the boundaries of a corresponding
landslide may as well increase with an increasing size of the
respective landslides. However, statistically predicting land-
slide susceptibility for mainly larger events may nonethe-
less require a substantial generalization of a grid-based to-
pography, because the respective pre-failure conditions may
considerably differ from the conditions after landslide oc-
currence (Hussin et al., 2016; Süzen Lüfti and Doyuran,
2004; Van Den Eeckhaut et al., 2006). Again, corresponding
simplifications (i.e. resampling) might result in topographi-
cal predictors of little practical use. Such discrepancies (i.e.
between pre-failure and post-failure topographies) may be
counteracted for accurately mapped inventories by approxi-
mating the terrain before landslide occurrence (e.g. Van Den
Eeckhaut et al., 2006). However, such approaches are likely
to be inapplicable whenever only positionally erroneous in-
ventories are available.

We finally recommend that an expected small to moderate
positional inaccuracy inherent in a landslide inventory (e.g.
5 to 20 m) might partly be counteracted by resampling the
respective grid-based data sets to a spatial resolution higher
than the expected mean positional inaccuracy. An alterna-
tive spatial representation of the environment (e.g. terrain
units, first-order catchments) (Alvioli et al., 2016; Bell et al.,
2014b; Guzzetti et al., 1999) might be most expedient when-
ever modelling with highly inaccurate landslide inventories
or erroneous inventories that mainly consist of large events
is envisaged. The associated high generalization of environ-
mental conditions within terrain-unit based models might be
one reason for earlier observations that susceptibility maps
generated from inventories with considerable positional dis-
agreements appeared and performed similarly (Ardizzone et
al., 2002). In this respect, recent developments which allow
an automatic, but controllable (e.g. sizes of units) subdivi-
sions of the terrain into slope units (Alvioli et al., 2016)
might prove highly useful. It is, however, important to en-
sure that the respective landslides are still located within the
unit where they were initiated (Bell et al., 2014b). Which ap-
proach to apply also depends on the ultimate aim of the final
susceptibility maps, e.g. either to be used in spatial planning
strategies or as part of regional landslide early warning sys-
tems.

6.3 The characteristics of the study area

For the real data, the modelled relationship between land-
slide occurrence and topographic characteristics weakened
for positional inventory errors > 10 m (Fig. 4a, c). This was
attributed to the effect of positional error reducing observed
topographic differences between landslide and non-landslide
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locations (e.g. slope angles in Fig. 2b). In the more strongly
generalized synthetic area, in contrast, such changes in mod-
elled relationships were hardly noticeable up to a mean po-
sitional error of 50 m (3-D view in Figs. 3a, 4d). The dif-
ferences between the synthetic data and the real data were
interpreted as evidence that the geomorphic characteristics
of a study area plays as well a major role on how inventory-
based inaccuracies may be propagated into modelling results.
We inferred that as long as the resolution of the data is gen-
eralized to mainly present pre-failure conditions, grid-based
models generated for undulating and smooth landscapes (e.g.
Flysch Zone of Lower Austria) might tend to be less af-
fected by smaller positional errors of the inventory com-
pared to sites featuring sharp topographic transitions (e.g. ter-
raced landscapes, cuesta landscapes, limestone areas). Based
on the results we inferred that the influence of an identical
inventory-based mean positional error (e.g. 20 m) on subse-
quent modelling results may be considerably higher for ar-
eas exhibiting a topographically more complex terrain. This
complexity is on one hand dependent on how a study site is
represented (see Sect. 6.2), but also on the characteristics of
the study area itself.

6.4 An additional argument on why model overfitting
should be avoided

An aspect worth further consideration is whether different
classification techniques are to a different extent affected by
positional inaccuracies of landslide inventories. In particu-
lar, non-linear statistical models (e.g. Generalized additive
models, multivariate adaptive regression splines) or flexible
machine learning techniques (e.g. Support Vector Machines,
Decision Trees, Random Forest) are increasingly used be-
cause of possible gains in predictive performance (Ballabio
and Sterlacchini, 2012; Catani et al., 2013; Felicísimo et al.,
2013; Tien Bui et al., 2012), but they bear a higher risk of
overfitting to training data (Brenning, 2005, 2012a; Goetz et
al., 2015a; Steger et al., 2016). In analogy to a generalized
representation of the study area (see Sect. 6.2), we expect
that a higher degree of model generalization, as provided by
the less flexible techniques, may provide a certain level of
protection against learning, i.e. overfitting to, errors originat-
ing from a landslide inventory.

Thus, this study supports the statement that an application
of strongly generalizing classifiers might still be valuable in
the context of landslide susceptibility modelling (Brenning,
2012a; Goetz et al., 2015a; Steger et al., 2016) while we sus-
pect that strongly overfitting classifiers are likely to repro-
duce inventory-based errors. This assumption is supported
by earlier research, which showed that logistic regression-
based landslide susceptibility models generated with rather
different landslide inventories produced similar predictive
performances and landslide susceptibility maps (Zêzere et
al., 2009). Furthermore, Ardizzone et al. (2002) concluded

that statistical models may as well substantially minimize the
effect of data errors on landslide susceptibility models.

6.5 Considerations of an interplay of predictors within
multiple variable models

Logistic regression models, like other multiple variable clas-
sifiers, try to maximize the probability of obtaining the ob-
servations (landslide presence or landslide absence) accord-
ing to the data provided (Hosmer and Lemeshow, 2000). The
present findings (i.e. OR and predictor importance) provided
quantitative indications that the applied models counteracted
the diminishing explanatory power of topographic variations
(especially slope angle) by adjusting the weights assigned to
the coarser scaled predictor lithology.

For instance, the logistic regression models produced with
real data and with the unmodified inventory did not strongly
accentuate differences in landslide susceptibility (see OR
in Fig. 4b) between the Flysch (7.2 landslides per km2 )
and the Molasse (1 landslide per km2) since the respec-
tive models accounted for the fact that the Flysch Zone is
considerably steeper (mean slope 12.3◦) compared to the
Molasse (5.1◦). Even though landslide densities observed
for those units remained nearly unchanged when simulat-
ing an inventory-based-error (i.e. Flysch 7 and Molasse 1
landslide per km2 for the 120 m mean error), modelled rela-
tionships increasingly emphasized differences between those
units (Fig. 4b). Thus, we inferred that the respective mod-
els were decreasingly capable to account for local topo-
graphic variations (OR of slope are approaching the thresh-
old of 1) with an increasing positional error of the inven-
tory and subsequently were increasingly dependent on dif-
ferences describable by other predictors (e.g. landslide den-
sities for lithological units). Those tendencies were also dis-
cernible for the synthetic data set, ultimately due to deterio-
rating topographical effects (see Fig. 4) and dissimilar land-
slide densities between lithological units (see Sect. 5). Vari-
able importance assessments (e.g. decreasing importance of
slope and increasing importance of lithology in Fig. 6) and
the appearance of the final maps (e.g. striking appearance
of the Flysch in Fig. 5f) further exposed these distortions.
This study underlines that besides the applied raster reso-
lution (Catani et al., 2013), also the inventory-based posi-
tional accuracy influences how strongly a predictor appears
to discriminate landslide-presences from landslide-absences.
Consequently, we argue that potential inventory-based posi-
tional errors should additionally be taken into account, when
a process-based geomorphic interpretation of statistical land-
slide susceptibility models is envisaged (Brenning et al.,
2015; Vorpahl et al., 2012).

6.6 Misleading performance estimates

In general we found evidence that a point-based landslide
inventory that is increasingly affected by positional errors

www.nat-hazards-earth-syst-sci.net/16/2729/2016/ Nat. Hazards Earth Syst. Sci., 16, 2729–2745, 2016



2742 S. Steger et al.: The propagation of inventory-based positional errors

approaches a distribution of complete spatial randomness
(Cressie, 2015). Thus, statistically discriminating landslide
locations from non-landslide locations becomes increasingly
difficult since non-landslide observations are regularly rep-
resented by random spatial observations (e.g. Conoscenti
et al., 2016; Goetz et al., 2015a). The observed decreasing
predictive performances provided quantitative evidence for
this assumption (CV and SCV in Fig. 5). The tendency to-
wards diminishing differences between landslide presences
and absences were also reflected by conditional frequencies
of slope angles (Figs. 2b, 3g) and OR of topographic param-
eters (Fig. 4).

The spatial pattern of landslide susceptibility maps (e.g.
cutouts in Fig. 5) visually highlighted that all models estab-
lished a positive relationship between landslide occurrence
and slope angle (ORs > 1.9 in Fig. 4a, d) while the litho-
logical units Flysch (real data) respectively the unit A (syn-
thetic data) were consistently predicted as most suscepti-
ble (Fig. 4b, e). Thus, all models predicted that the steep-
est parts of the Flysch Zone (respectively unit A) are highly
prone to landsliding, even though the underlying landslide-
presences (white dots in Fig. 5) were increasingly located
on considerably flatter slopes (e.g. Figs. 2b, 3g). In analogy,
the flattest parts covered by Quaternary sediments (respec-
tively unit C) were consistently predicted as the most stable
locations. From this perspective, it might become clear that
models generated with erroneous inventories performed well
(all AUROCs > 0.84) in predicting the original landslide po-
sition (see 0 in Fig. 5). This observation is consistent with our
suggestion that strongly generalizing classifiers might also
reduce the effect of inventory-based errors on modelling re-
sults (see Sect. 6.4; Ardizzone et al., 2002). However, val-
idation results that were based on a landslide subsample of
the data set used to generate the model (as within most stud-
ies) revealed apparently lower predictive performances (CV,
SCV in Fig. 5). Thus, this study provides another example
that misleading performance estimates may follow whenever
a landslide susceptibility model is generated and validated
with erroneous landslide inventories (Steger et al., 2016).

This study further underlined that the predictive perfor-
mance of a statistical landslide susceptibility model is just
one of many indicators of the quality and reliability of a spa-
tial prediction model (Fressard et al., 2014; Guzzetti et al.,
2006; Lobo et al., 2008; Petschko et al., 2014a; Rossi et al.,
2010; Steger et al., 2016). Thus, we consider a differentiated
evaluation of input data qualities and modelling results (i.e.
quantitative and expert-based) as an necessary supplement to
get insights into limitations and the reliability of subsequent
modelling results (Demoulin and Chung, 2007; Fressard et
al., 2014; Guzzetti et al., 2006; Petschko et al., 2014a; Steger
et al., 2016).

7 Conclusion and final recommendations

There is no doubt that the explanatory power of a landslide
susceptibility analysis increases with an increasing quality
of the underlying landslide inventory (Fressard et al., 2014;
Galli et al., 2008; Guzzetti et al., 2006; Petschko et al., 2016;
Steger et al., 2016; Van Westen et al., 2008). The present find-
ings highlighted that positionally erroneous landslide inven-
tories affected modelled relationships, variable importance
assessments and the explanatory power of conventional pre-
dictive performance estimates of a statistical landslide sus-
ceptibility model. We found valuable evidence that the im-
pact of inventory-based positional errors on modelling re-
sults is not only dependent on the degree of inaccuracy in-
herent in the respective landslide-presence data but also on
an interplay of other model-influencing aspects. Aside from
the size (i.e. small vs. large landslides) and spatial represen-
tation of landslides (i.e. landslide scarp vs. landslide body),
the spatial representation of the environment (i.e. raster res-
olution, terrain unit) was also expected to determine how
a specific positional error was propagated into the final re-
sults. Furthermore, also the morphological characteristics of
the study area (i.e. undulating landscape vs. landscape with
sharp transitions) and the applied classification method (i.e.
strongly generalizing vs. highly flexible classifiers) are be-
lieved to control the extent of potentially misleading mod-
elling results.

The present findings indicate that the propagation of
inventory-based positional inaccuracies into modelling re-
sults can be reduced by selecting an appropriate study de-
sign. Thus, we advise to accept inventory-based errors as un-
avoidable and then seek to obtain in-depth information on the
potential limitations of present data sets. A subsequent im-
provement of the respective data set (e.g. updated mapping)
should be the first step. For the likely case that modelling
with positionally imperfect inventories cannot be avoided
(e.g. Bell et al., 2014b; Van Den Eeckhaut et al., 2011), we
recommend to generalize input data to a coarser scale (e.g.
resampling of predictors or using an alternative representa-
tion of the environment; see Sect. 6.2) while opting for mod-
elling techniques that simplify observed associations (e.g. lo-
gistic regression; see Sect. 6.4). The potential presence of
inventory-based errors should always be taken into account
since subsequent performance estimates (see Sect. 6.6), mod-
elled relationships and variable importance (see Sect. 6.5) are
likely to be distorted whenever the underlying models were
generated with positionally erroneous landslide inventories.
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